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Nonlocal Operators in Sobolev Spaces
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Abstract—Unbounded operators corresponding to nonlocal elliptic problems on a bounded
region G C R? are considered. The domain of these operators consists of functions in the Sobolev
space Wi (@) that are generalized solutions of the corresponding elliptic equation of order 2m
with the right-hand side in Lo(G) and satisfy homogeneous nonlocal boundary conditions. It
is known that such unbounded operators have the Fredholm property. It is proved that lower
order terms in the differential equation do not affect the index of the operator. Conditions under
which nonlocal perturbations on the boundary do not change the index are also formulated.
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INTRODUCTION

In the one-dimensional case, nonlocal problems were studied by A. Sommerfeld [20], Ya.D. Ta-
markin [13], and M. Picone [17|. T. Carleman [14] considered the problem of finding a function
harmonic on a two-dimensional bounded domain and subject to a nonlocal condition connecting the
values of this function at different points of the boundary. A.V. Bitsadze and A.A. Samarskii 1] sug-
gested another nonlocal problem arising in plasma theory: find a function harmonic on a bounded
domain and satisfying nonlocal conditions on shifts of the boundary that can take points of the
boundary inside the domain. Different generalizations of the above nonlocal problems were investi-
gated by many authors (see [19] and references therein).

It turns out that the most difficult situation occurs if the support of nonlocal terms intersects
the boundary. In this case, solutions of nonlocal problems may have power-law singularities near
some points even if the boundary and the right-hand sides are infinitely smooth [10]. For this
reason, such problems are naturally studied in weighted spaces (introduced by V.A. Kondrat’ev
for boundary-value problems in nonsmooth domains [7]). The most complete theory of nonlocal
problems in weighted spaces is developed by A.L. Skubachevskii [10-12, 18, 19] and his students.

Note that the study of nonlocal problems is motivated both by significant theoretical progress
in this field and important applications arising in biophysics, theory of diffusion processes, plasma
theory, and so on.

In this paper, we investigate the influence of lower order terms in an elliptic equation and
the influence of nonlocal perturbations in boundary conditions upon the index of the unbounded
nonlocal operator in Ly (G). This issue was earlier studied by A.L. Skubachevskii [18] for bounded
operators in weighted spaces. It is proved in [18] that nonlocal perturbations supported outside
the points of conjugation of the boundary conditions do not change the index of the corresponding
bounded operator. A similar assertion was later established in Sobolev spaces in the two-dimensional
case [16]. In both cases, one can either use the method of continuation with respect to a parameter
or reduce the original problem to that where nonlocal perturbations have compact square. As for
lower order terms in the elliptic equation, they are simply compact perturbations.
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ON THE STABILITY OF THE INDEX OF UNBOUNDED OPERATORS 109

The situation is quite different in the case of unbounded operators. The difficulty is that the
lower order terms in elliptic equations are not compact or relatively compact (see Definition A.2 in
the Appendix); moreover, if the order of the elliptic equation is greater than two, they are not even
relatively bounded, and therefore, they may change the domain of definition of the operator. As for
nonlocal perturbations in the boundary conditions, they explicitly change the domain of definition,
and therefore, they cannot be regarded as compact perturbations (in any sense).

To overcome the above difficulties, we consider an auxiliary operator (whose index equals the
index of the original operator) acting on weighted spaces. In Section 2, we prove that lower or-
der terms in elliptic equations are relatively compact perturbations of the auxiliary operator and,
therefore, do not affect the index. In Section 3, we consider nonlocal perturbations in boundary
conditions, which explicitly change the domain of definition. We make use of the notion of a gap
between unbounded operators (see Definition A.3). We show that if the nonlocal perturbations in
boundary conditions satisfy some regularity conditions at the conjugation points, then multiplying
the perturbations by a small parameter leads to a small gap between the corresponding operators.
Combining this fact with the method of continuation with respect to a parameter, we prove the
index stability theorem.

Finally, we note that the Fredholm property of unbounded nonlocal operators on Lo(G) was
earlier studied either in the case when nonlocal conditions were set on shifts of the boundary [19] or in
the case of a nonlocal perturbation of the Dirichlet problem for a second-order elliptic equation [5, 4.
For elliptic equations of order 2m with general nonlocal conditions, this question is being investigated
for the first time.

1. SETTING OF NONLOCAL PROBLEMS IN BOUNDED DOMAINS

1.1. Setting of nonlocal problems. Let G C R? be a bounded domain with boundary 9G.
We introduce a set K C 0G consisting of finitely many points and assume that 0G \ K = UZ]\L 11,
where I'; are open (in the topology of 9G) C* curves. In a neighborhood of each point g € K, the
domain G is supposed to coincide with some plane angle.

For any domain @ and for integer k& > 0, we denote by W*(Q) = W¥(Q) the Sobolev space with
the norm
1/2

lulweio = | 3 / D2 dy
lal<k

(we set WO(Q) = La(Q) for k = 0). For an integer £ > 1, we introduce the space Wk=1/2(T) of
traces on a smooth curve I' C @, with the norm

W llwsrrzy = inf Jullwrg), — weWHQ): ulr = . (L.1)

For any set X C R? with nonempty interior, we denote by C5°(X) the set of functions that are
infinitely differentiable on R? and compactly supported on X.

Now we introduce different weighted spaces for different domains (). Consider the following
cases:

(1) @ = G; denote M = K;
(2) Q is a plane angle, @ = {y € R?: |w| < wp}, where 0 < wy < 7; denote M = {0};
(3) Q@ ={y € R?: |w| < wp, 0 <7 < &} for some € > 0; denote M = {0};

here (w,r) are polar coordinates of the point y.
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110 P.L. GUREVICH

Introduce the weighted Kondrat’ev space H¥(Q) = HF(Q, M) as the completion of the set
Cs°(Q \ M) with respect to the norm

1/2

lllro = | / 2atlol=R) Doy gy |
la|<k Q

where £ > 0, a € R, and p(y) = dist(y, M); clearly, p(y) = r in cases (2) and (3).
Denote by H(]f_lﬂ(F) (k > 1 is an integer) the space of traces on a smooth curve I' C Q, with
the norm

1l s 12 gy = it lollmsiy v € HEQ): vlr =1

We denote by A(y, Dy) and Bjus(y, Dy) linear differential operators of orders 2m and m;, (with
miy < m — 1), respectively, with complex-valued C* coefficients (i = 1,...,N; p = 1,...,m;
s=0,...,5;). Set B?uu = Binuo(y, Dy)ulr;.

Condition 1.1 (see, e.g., [9]). The operator A(y, D,) is properly elliptic for all y € G, and
the system of operators {B?u ZLI covers A(y,D,) foralli=1,...,N and y € [;.

The operators A(y, Dy) and B?u will correspond to a “local” boundary-value problem.

Now we define operators corresponding to nonlocal conditions near the set K. For € > 0 and
any closed set NV, denote by O-(N) = {y € R?: dist(y, ) < €} its e-neighborhood.

Let Qs 1 =1,...,N; s =1,...,5;) be C* diffeomorphisms taking some neighborhood O; of
the curve I'; N O:(K) to the set Q;5(0;) in such a way that Q;5(I'; N O(K)) C G and Q45(g) € K for
g € T; N K. Thus, under the transformations Q;,, the curves I'; N O.(K) are mapped strictly inside
the domain G, whereas the set of end points I'; N K is mapped to itself.

Let us specify the structure of the transformations €2;5 near the set K. Denote by the symbol Q;;l
the transformation Q;s: O; — Q;5(0;) and by stl the inverse transformation. The set of all points
QL Lol ek (< s; < 8i;, j=1,...,q), i.e., the set of all points that can be obtained

iqSq 1181
by consecutively applying the transformations Q:;ij or Q;] ij (taking the points of K to K) to the
point g € K, is called the orbit of the point g and is denoted by Orb(g).

Clearly, for any g,¢' € K, either Orb(g) = Orb(g’) or Orb(g) N Orb(¢’) = @. In what follows,
we assume that the set IC consists of one orbit and the number of points in the orbit is equal to the
number N of the curves I';. Denote the points of the set (orbit) K by g;, j=1,...,N.

Take a small number € > 0 such that there exist neighborhoods O, (g;) of the points g; € K

satisfying the following conditions:
(1) Oc(95) O O:(g5);
(2) the boundary 0G coincides with some plane angle in the neighborhood O, (g;);
(3) Oc,(g5) N Oc,(gr) = @ for any gj, gx € K, j # k:
(4) if g; € I'; and Q45(g5) = g, then O-(g;) C O; and Q45(O:(g;5)) C Oc, (gk)-

For each point g; € T; N K, we fix a transformation Yj:y +— y'(g;) that is the composition of

the shift by the vector —59_;- and the rotation through some angle so that
}/j(OEl(gj)) = 051(0)7 }/}(GHOEI(g]')) = Kj ﬂOEl(O),
Yj(l“l-ﬂ(’)sl(gj)) :’ngﬂosl(O), c=1or2,

where K; = {y € R%:r > 0, |w| < wj}, vj0 = {y € R*:r > 0, w = (—1)°wj}, (w,r) are polar
coordinates, and 0 < w;j < 7.
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ON THE STABILITY OF THE INDEX OF UNBOUNDED OPERATORS 111

Condition 1.2. Let g; € T; N K and Q4s(9j) = gr € K. Then the transformation Y o €2, o
Yj_lz 0:(0) — O, (0) is the composition of a rotation and a homothety.

Remark 1.1. Condition 1.2, being combined with the assumption €2;5(I';NO(K)) C G, means,
in particular, that if g € Q;(I'; N ) NI N K # @, then the curves €4,(I';) and I'; are not tangent
to each other at the point g.

Consider a number €¢, 0 < gy < ¢, satisfying the following condition: if g; € T'; and Q;5(g;) = g,
then Og,(gr) C Qis(O:(g;)). Introduce a function ¢ € C>(R?) such that ((y) =1 for y € O, /2(K)
and supp ¢ C O, (K).

Now we define nonlocal operators Bilu by the formula

Si

leuu - Z(Blus(yaDy)(gu))(gzs(g/))v Yy e r;n OE(IC)7 Biluu =0, ye€ r; \ OE(K:),
s=1

where (Bius(y, Dy)u)(Qis(y)) = Bips(x, Dp)u(x)|p—0,, (y)- Since Biluu =0 if suppu C G\ O, (K),
we say that the operators Bz-lu correspond to nonlocal terms supported near the set K.

For any p > 0, we denote G, = {y € G: dist(y,0G) > p}. Consider linear operators Bz?u
satisfying the following condition (cf. [10, 18, 15]).

Condition 1.3. There exist numbers s > 35 > 0 and p > 0 such that the following inequal-
ities hold:

HBZZHuHWQm_%_l/Q(m < allullyem o m) (1.2)

”BZZ,U«u”ng_mi“_l/Q(Fi\m) S CQHUHWQm(Gp)' (13)

Remark 1.2. In (1.2), (1.3) and throughout the paper, we denote by ¢, c1, ¢, ... and ky, ko, . ..
positive constants that do not depend on the functions involved in the corresponding inequality.

We assume that Conditions 1.1-1.3 hold throughout, including the formulation of lemmas.

It follows from (1.2) that B?Mu = 0 whenever suppu C O, (K). For this reason, we say that
the operators BZZN correspond to nonlocal terms supported outside the set IC.

We study the following nonlocal elliptic problem:

A(yv Dy)u = f(y)v RS Gv (1'4)

Bju=B),u+Bju+Bu=0, yely, i=1,....,N, p=1,....m, (1.5)

where f € Ly(G). Introduce a space W™(G, B) consisting of functions u € W™ (G) that satisfy the
homogeneous nonlocal conditions (1.5). Consider the unbounded operator P: D(P) C La(G) —
Ls(G) given by

Pu = A(y, Dy)u, ueDP) ={ue W"™(G,B): Ay, Dy)u € Ly(G)}.

Definition 1.1. A function u is called a generalized solution of problem (1.4), (1.5) with right-
hand side f € La(G) if u € D(P) and Pu = f.

An equivalent definition of a generalized solution can be given in terms of an integral identity [3].

Note that generalized solutions a priori belong to the space W™ (G), whereas Condition 1.3 is
formulated for functions that belong to the space W2™ outside the set K. Such a formulation can
be justified by the following result (see Lemma 2.1 in [3] and Lemma 5.1 in [16]).
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112 P.L. GUREVICH

Lemma 1.1. Let u € W™ (G) be a generalized solution of problem (1.4), (1.5) with right-hand
side f € WK(G). Then

||u‘|wk+2m(g\m) < Cé(”f”y[ﬂc(g\m) + HUHLQ(G)) Vo >0,

where 61 = §1(6) > 0 and ¢5s > 0 do not depend on u.

Theorem 1.1 (see Theorem 2.1 in [3]). Let Conditions 1.1-1.3 hold. Then the operator P
has the Fredholm property.t

The aim of this paper is to investigate the influence of lower order terms in (1.4) and nonlocal
operators leu and BZZN in (1.5) upon the index of the operator P.

1.2. Nonlocal problems near the set . When studying problem (1.4), (1.5), one must
pay particular attention to the behavior of solutions near the set K of conjugation points. Let us
consider the corresponding model problems. Denote by w;(y) the function u(y) for y € O, (g;). If
g; € Ty, y € O:(gj), and Qis(y) € O, (gr), then we denote the function u(Q4s(y)) by uk(Qis(y)).
Using this notation, we rewrite the nonlocal problem (1.4), (1.5) in the e-neighborhood of the set
(orbit) K as follows:

A(y,Dy)u; = f(y),  y€O(g;)NG,
Si

0. (anyrs + 2 (Binas (4, Dy) (Cur)) (s ()

s=1

i€e{l<i<N:g;el}, j=1,...,N, pw=1,...,m,

Bin (ya Dy)uj (y)

O-(g;)NT; = filt(y)v (TS Oé(gj) N Fi’

where f;, = —B?Hu.
Let y — y'(g;) be the change of variables described in Subsection 1.1. Denote K = K; N O.(0)
and 75, = 7jo N O:(0). Introduce the functions

Ui(y) = uiy(), i) =rflW)), ¢ €K,
and
fiow®) = finw(®¥)): ¥ €0

where 0 = 1 (0 = 2) if, under the transformation y — ¢'(g;), the curve I'; is mapped to the
side ;1 (v;2) of the angle K;. Denote y' by y again. Then, by virtue of Condition 1.2, prob-
lem (1.4), (1.5) acquires the form

AJ’(?/’Dy)Uj = fj(y)7 y e Kjé) (16)

Z(Bjauks(ya Dy)Uk) (gjaksy) - iju(y)a RS 750; (17)
k,s

here j,k =1,....N; 0 = 1,2, p=1,...,m; s = 0,...,Sjor; Aj(y,Dy) and Bjsuks(y, Dy) are
differential operators of orders 2m and mjs, (Mjou < m—1), respectively, with C°° complex-valued
coefficients; and Gj,s is the operator of rotation through an angle wjs1s and the homothety with a
coefficient Xjoks (Xjors > 0). Moreover, |(—1)7b; + wjors| < by for (k,s) # (4,0) (cf. Remark 1.1),
Wjiojo = O, and Xjojo = 1 (i.e., gjo-joy = y)

Set Dy = 2max{xjoks}- The following lemma establishes the regularity property for the solu-
tions of nonlocal problems near the set K.

lgee Definition A.1.
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Lemma 1.2 (see? Lemma 2.3 in [3]). Let (Uy,...,Un) be a solution of problem (1.6), (1.7)
such that

Uj € W2m( KPxE A {ly| > d}) Vé>0, U € HSme(fog),

where a € R. Suppose that f; € Hg(KJE) and fio, € Hgm_mj””_lﬂ(’yj?a). Then

Z”Uj”Hgm(K;/Di) < CZ(HfjHHg(K;) +Z”fjau”H2m—mjw—l/2( ) +1Ujllao_, K5)>'
] ] o,

We write the principal homogeneous parts of the operators A;(0,D,) and Bjguks(0,Dy) in the
polar coordinates as r~2™A;(w, Dy, rD,) and r~™ox JUM]%’( , D, rD,), respectively, and consider
the analytic operator-valued function

N
L(N): HW”Qm —wj,w;)

J=1

2m
—wj,wj) x C ),

H',:]Z

‘C()‘)SO = {"Z] (wa Dwa A)@]? Z(Xjaks)i)\imjau Njo'liks(w’ D“” )\)@k(u) + wjng)‘w:(fl)"wj }
k,s

The basic definitions and facts concerning eigenvalues, eigenvectors, and associate vectors of analytic
operator-valued functions can be found in [2]. In the sequel, it is essential that the spectrum of the
operator £(\) is discrete (see Lemma 2.1 in [11]).

2. PERTURBATIONS BY LOWER ORDER TERMS

2.1. Reduction to weighted spaces. Introduce the lower order terms operator

Ay, D))= Y aaly)D", (2.1)

o <2m—1
where a, € C*°(R?). Consider the perturbed operator P’: D(P’) C La(G) — Lo(G) given by
P'u=A(y,Dy)u+ A'(y, Dy)u,
ueDP’) ={ueW™G,B): A(y,Dy)u+ A'(y,Dy)u € Ly(G)}.

By Theorem 1.1, the unbounded operator P’ has the Fredholm property (just as P does). The
main result of this section (to be proved in Subsection 2.2) is as follows.

Theorem 2.1. Let Conditions 1.1-1.3 hold. Then ind P/ = ind P.

This theorem shows that the lower order terms in (1.4) do not affect the index of the unbounded
operator P. The difficulty is that the above perturbations are, in general, neither compact nor
P-compact in the sense of Definition A.2. If m = 1, then u € D(P) implies only u € W!(G), which
ensures the P-boundedness of the perturbation but not its P-compactness. However, if m > 2, then
u € D(P) does not imply u € W?m~1(@), and the perturbation is not even P-bounded. Moreover,
D(P’) # D(P) in the latter case.

To overcome this difficulty, we introduce the operator Q: D(Q) C Ls(G) — HY(G) given by

Qu=A(y,Dy)u, uweD(Q)={ueW™G,B): Aly,Dy)uec H)G)}. (2.2)

2Lemma 2.3 in [3] was formulated for a > 2m — 1. However, its proof remains true for any a € R.
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114 P.L. GUREVICH

In this definition and further (unless otherwise stated), we assume that
m—1<a<m.

We will prove that ind Q = ind P. On the other hand, we will show that the operator A’(y, D,) is
a Q-compact perturbation and, therefore, does not change the index of Q and hence of P.

Lemma 2.1. Let the line Im\ = a + 1 — 2m contain no eigenvalues of the operator Z()\)
Then the operator Q has the Fredholm property and ind Q = ind P.

Proof. 1. Itisshown in [16, Section 6] that B;,u € Hgmfmi“fl/Q(I‘i)—i—Rff(Fi) foru € H>™(Q),

where RIF(T;) is a finite-dimensional subspace in Hj,m Tmiul/2 (T;) for any @’ > 2m — 1. Set

N m N m
HYG,T) = HYG) x [T [T 2" ™21y,  RUG.T) = {0} x [][] R¥T0).
i=1p=1 i=1p=1

By Theorem 6.1 in [16], the bounded operator
L ={A(y,Dy),Biu}: Hi"(G) — Ha(G,T) + RG(G,T) (2.3)

has the Fredholm property. Therefore, by virtue of the compactness of the embedding H>™(G) C
Ls(G) (see Lemma A.1) and by Theorem A.1, we have

ull gr2m () < Fr (Ll @ ryiro (ar) + 1ull o)) (2.4)
2. Introduce an unbounded operator Q: D(Q) C Lo(G) — HY(G) given by
Qu = A(y, Dy)u, u € D(Q) = {u € H™(G): Biu=0}. (2.5)

Since H2™(G) € W™(Q), it follows that Q is a restriction of Q, i.e., Q C Q.
First, we prove that Q has the Fredholm property. Let u € D(Q); then u € D(L) = H>™(G)
and A(y, Dy)u € H)(G), B;,u = 0. Therefore, estimate (2.4) acquires the form

lull zm ey < kr(I1Qull gy + lullaey)  Yu € D(Q). (2.6)

It follows from (2.6) that the operator Q is closed, dimker Q < oo, and R(Q) = R(Q) (to
obtain the latter two properties, one must apply Theorem A.1).

Let us prove that codimR(Q) < oco. Since L has the Fredholm property, there exist finitely
many linearly independent functions Fi,..., Fy € H?(G) such that a function f € HY(G) belongs
to the image of Q if and only if (f, Fj) o) =0, j = 1,...,d. Thus, Q has the Fredholm property.

3. Now we prove that Q has the Fredholm property. Since ker Q = ker P and P has the
Fredholm property, it follows that

dimker Q = dimker P < oo. (2.7)
On the other hand, Q is an extension of the Fredholm operator Q; therefore,
R(Q) =R(Q), codimR(Q) < oo. (2.8)

Thus, Q is an extension of the Fredholm operator Q and possesses properties (2.7) and (2.8).
Applying Theorem A.2, we see that Q has the Fredholm property.
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4. By virtue of (2.7), it remains to be proved that codim R(Q) = codim R(P).

Let codim R(Q) = di, where d; < d. Take an arbitrary function f € Ly(G). Then f € R(P) if
and only if f € R(Q) because Ly(G) C H)(G). However, the inclusion f € R(Q) is equivalent to
the relations (f, Fj)pgoy = 0, j = 1,...,d1, where Fy,..., Fy, € Hy(G) are linearly independent
functions. Using Schwarz’ inequality, the boundedness of the embedding Lo(G) C H2(G), and
Riesz’ theorem, we see that these relations are equivalent to the following ones: (f, f;) L) = 0,
j =1,...,dy, where f; € Lo(G). Moreover, the functions fi,..., fq, are linearly independent.
(Otherwise, some linear combination of the functions Fy, ..., Fy, would be orthogonal in HY(G) to
any function that lies in Ly(G). This is impossible because Fi,..., Fy, are linearly independent,
while Ls(G) is dense in HY(G).) Thus, we have proved that codimR(P) =d;. O

Introduce a perturbed operator Q': D(Q’) C Lo(G) — H2(G) given by

Q,’U, = A(y7 Dy)u + Al(?/? Dy)u’
ueD(Q) ={ueW™(G,B): Ay,Dy)u+ A'(y,Dy)u € H)(G)}.

In the following subsection, we prove that ind Q" = ind Q, provided that the line ImnA = a+1—2m
contains no eigenvalues of the operator £(A). Then, using the discreteness of the spectrum of £(\)
and Lemma 2.1, we will prove Theorem 2.1.

2.2. Compactness of lower order terms in weighted spaces.

Lemma 2.2. Let the line Im\ = a + 1 — 2m contain no eigenvalues of the operator Z()\)
Then

lullwnc) < c(lQullmg(e) + lullry@) — YueD(Q).

Proof. Consider the unbounded operator Q: D(Q) ¢ W™(G) — HY(G) given by Qu =
A(y,Dy)u, u € D((AQ) = D(Q). Since Q has the Fredholm property, the same is true for (AQ
Therefore, the desired estimate follows from the compactness of the embedding W™ (G) C L2(G)
and from Theorem A.1. [

Take a number b such that

m—-1<b<a<m. (2.9)

Consider a function ¢; € C§°(R?) equal to 1 in a small neighborhood of the point g; € K
and vanishing outside a larger neighborhood of g;. The following lemma describes the behavior of
u € D(Q) near the set K.

Lemma 2.3. For any u € D(Q), we have

N
u(y) = > Pi(y) +o(y), (2.10)
j=1
where
Piy)=vi(y) Y pPialy—9)%  piac€C, (2.11)
|a|<m—2

and v e HP(G) (if m =1, we set P;(y) = 0); moreover,

Z pjal + 10l 2 ) < e(1Qullmg(c) + lullza(e)- (2.12)
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Proof. 1. It follows from Lemma 1.1 that u € W?™(G \ Os(K)) for any § > 0 and

el om oy < *1s (1Quilo(ay + o). (2.13)

where k15 does not depend on u. Therefore, it suffices to consider the behavior of u near the set .
By Lemma A.2, u € W™(G) can be represented in the form (2.10), where P;(y) is given by (2.11),
ve ' (G), and

Z IPjal + ”UHngmH(G) < ko (1Qull oy + vl Lo(e)) (2.14)
j?a
(to obtain (2.14), we have also applied Lemma 2.2).
Moreover, relations (2.10), (2.13), and (2.14) imply that

Hvazm(G\m) < kQJ(”Qu”Hg(G) + HUHLQ(G)) Vo > 0, (2'15)

where kos does not depend on u. It remains to be proved that v € H, gfl(G)

2. By using (1.4) and (1.5), we see that v is a solution of the problem
A(y,Dyv=f—-A(y,D,)P=f, Blwv+Bjv=-B,P-Blv=f, (2.16)

where P(y) = Zj\[:l Pj(y) and f = Qu € H)(G). It follows from the boundedness of the embedding
HQ(G) C HY, | (G) (see (2.9)) and from the estimate of the coefficients pjq (see (2.14)) that

1 a9, @) < ks (IQullga) + l[ullaa))- (2.17)
Similarly, using additionally inequalities (1.2) and (2.15), we obtain f/ = —B;,P — B?Mv €
W2m=miu=1/2(T;) and
il zm—mi =172,y < Fa(1Qull g(ay + lull o)) (2.18)
—m,—1/2

On the other hand, v € H;" . (G); hence, f] = B?HU + B}Mv € ani

i (T';). We claim
that

m+1
il < K (1 Qg + ) (219)

To prove this assertion, we fix i and p and set I' = I';. Let g € T'\ I'. Assume, without loss of
generality, that g = 0 and T" coincides with the axis Oy; in a sufficiently small neighborhood O,(0)
of the origin. Denote

Gf=GNO.(0), TI*=CIn0o.0)

in which case H¥(G®) = H¥(G#,{0}).
Using Lemma A.3(1), we represent f;, € W2m=min=1/2(T¢) near the origin as follows:
fz-’u(r) =P (r)+ f{L(T), 0<r<e,
2m—my,—1/2
Hb+1 .

replace b+ 1 by any positive number in the last relation). Now we have f; , fj, € H,:r:nnj:fflﬂ (),

therefore, P, € H," " -V 2(FE); i.e., Py consists of monomials of order greater than or equal to

b—m+1
m —mi, — 1. This implies that P € Hyyy "™ "/*(I%). Using Lemma A.3(3), we obtain

where P (r) is a polynomial of order 2m —m;, — 2, whereas fj, € (I'¢) (in fact, we can

15l 1 gy < VBRI om s Ll < Rl e

1/2
o (re)

H

Combining this estimate with (2.18) yields (2.19).
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3. Applying Lemma 1.2 to problem (2.16) and taking into account (2.15), (2.17), (2.19),
and (2.14), we obtain

el o <k7<||f\|Hg+1 )+ D Wl + ||Hg_2m+l<c)>

L,
< ks (11Qull gy + llulla(e))-

Combining this inequality with (2.14) yields (2.12). O
The following corollary results from Lemma 2.3.
Corollary 2.1. Let A'(y,D,) be the differential operator of order 2m—1 given by (2.1). Then

HA/(Z/aDy)UHHgH(G) <c(IQullgo() + llulliy@)  Yu e D(Q). (2.20)

Now we can prove that lower order perturbations in (1.4) do not change the index of Q.

Lemma 2.4. Let the line Im\ = a + 1 — 2m contain no eigenvalues of the operator Z()\)
Then the operators Q and Q' have the Fredholm property and ind Q' = ind Q.

Proof. By Lemma 2.1, Q and Q' have the Fredholm property.

Introduce an operator A’: D(A’) C Ly(G) — H2(G) given by A'u = A’(y, Dy)u, u € D(A’) =
D(Q). It follows from Corollary 2.1 and from the compactness of the embedding H;, | (G) C HQ(G)
(see (2.9) and Lemma A.1) that Q' = Q + A’ and A’ is a Q-compact operator. Therefore, by
Theorem A.4, we have ind Q' = indQ. O

Proof of Theorem 2.1. It follows from Lemma 2.1 in [11] that the spectrum of £()) is discrete.
Therefore, one can find a number a such that m —1 < a < m and the line ImA = a +1 —2m
contains no eigenvalues of £()\). In this case, Lemmas 2.1 and 2.4 imply ind P’ =ind Q' = ind Q =
indP. O

3. PERTURBATIONS IN NONLOCAL CONDITIONS

3.1. Formulation of the main result. In this section, we study the stability of the index
for nonlocal operators under the perturbation of nonlocal conditions by operators of the same
form as Bz-lu and B%u' This situation is more difficult than that in Section 2 because the above
perturbations explicitly change the domain of the corresponding unbounded operators. Therefore,
these perturbations cannot be treated as relatively compact ones, and we make use of another
approach based on the notion of a gap between closed operators.

We consider differential operators Cj,s(y, Dy), i =1,...,N, p=1,...,m, s =1,..., 5], of the
same order m;, as Bj,s in Subsection 1.1, given by

Cips(y, Dy)u = Z Cipsa (y) D u,

lal<mip
where ¢, 50 € C™ (R?). Introduce an operator Cm by the formula

!
Ciluu = Z(Cius(y’ Dy)(cu))(gis(y)% y € Fz N OE(IC)7 Czluu = 07 y € FZ \ OE(,C)u

s=1

where ¢ and e are the same as in the definition of BZ-IN, whereas Q)  are C'° diffeomorphisms
possessing the same properties as ;5 (in particular, they satisfy Condition 1.2 with S; and ;s
replaced by S! and €,).
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We also consider operators C?u satisfying Condition 1.3 with B?u replaced by C?u' Set

Cy. = Ci, +C;,.

[

We prove an index stability theorem under the following conditions (which are assumed to hold
along with Conditions 1.1-1.3 throughout this section, including the formulation of lemmas).

Condition 3.1 (see, e.g., [9]). The system {B?u ZLI

Condition 3.2. D7¢jusa(gi1) = D7¢Cipsalgiz) = 0 for [o| = 0,...,(m — 1) — (my, — |a]).

Denote by g;1 and g;o the end points of T';. Let 7;1 (752) be a unit vector tangent to I'; at the
point g;1 (gi2)-

Condition 3.3.

isnormalon I';, ¢ =1,..., N.

8ﬂCZ2uu 8/6C22“u om -
3 = 3 =0, =0,....,m—1—-—m;,, YueWG\O,(K)).
Ot |y, Ti2  ly=g,
Y=gi1 Y=gi2

The following lemma is a consequence of Conditions 3.2 and 3.3 (recall that m — 1 < a < m
throughout).

Lemma 3.1. The following inequalities hold:
Gkl ez g < exllullizg, o (3.

2 _
IICwUHHgmfmwlﬂ(Fi) < eollullyom o)

Proof. 1. For any u € H27 (G), we have

at+m

(Du)( ()|, € Hat 172y € 2 M2 ().

at+m a+m—(m;,—|al)

Therefore, by Condition 3.2 and Lemma A.5, we have (ciusa D) (S, (y))Ir; € Hgm_mi“_lﬂ(ri).
Estimate (3.1) follows from the boundedness of the above embedding and from inequality (A.5).

2. It follows from Condition 1.3 (applied to szu) that C?Mu € W2m=mau=12(1,) for any
u € W?M(G\ O,,(K)). Now, by Condition 3.3 and Lemma A.4, Cfuu € Hgm_mi“_l/Q(I‘i). Esti-
mate (3.2) follows from inequality (1.2) (applied to C3,) and from (A.2). O

In this section, we write A = A(y, D,). Consider the operators P;: D(P;) C La(G) — Lao(G),
t € C, given by

Pyu = Au, ueDP,) ={ueW™G,B+tC): Auc€ Ly(G)},

where W™ (G,B + tC) is the space of functions v € W™ (G) that satisfy the nonlocal conditions
(Bf, + Bj, +tCj,)u = 0. The main result of this section (to be proved in Subsection 3.2) is as
follows.

Theorem 3.1. Let Conditions 1.1-1.3 and 3.1-3.3 hold. Then ind P; = const Vit € C.

3.2. The gap between nonlocal operators in weighted spaces. As in Section 2, we
preliminarily study the operators Q;: D(Q;) C L2(G) — HY(G) given by

Qiu = Au, ueD(Q) ={ueW"G,B+tC): Aue HJ(G)},
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where t € C and W™ (G, B 4 tC) is the same as in the definition of the operator P;. The operators
P; and Q; correspond to the problem

Au = f(y)a yeaq, (33)

(B), + B}, +tCy)u =0, yely, i=1,....,N, p=1,....,m. (3.4)

Remark 3.1. The operator Z()\) was constructed in Subsection 1.2 by means of the principal
homogeneous parts of the operators A and B;,s(y, Dy) at the points of the set K. Due to Condi-
tion 3.2, the principal homogeneous parts of the operators Cj,s(y, Dy) are equal to zero at these
points. Therefore, the same operator Z()\) corresponds to problem (3.3), (3.4) for any t.

Fix a number a such that m — 1 < a < m and the line ImA = a + 1 — 2m contains no
cigenvalues of £()\) (which is possible due to the discreteness of the spectrum of £())). It follows
from Remark 3.1 and Lemma 2.1 that Q; has the Fredholm property. Therefore, its graph Gr Qy is
a closed subspace in the Hilbert space Ly(G) x H?(G); this space is endowed with the norm

1/2

1w, A= (lallZ, @) + 1 1o (ey) V(u, f) € La(G) x HY(G).

Denote

3(Qi, Qrys) = sup dist ((u, Qeu), Gr Qus). (3.5)
ueD(Qy): [|(u,Qeu)||=1

~

By Definition A.3, the number §(Qy, Qt+s) = max{0(Qy, Qi+s), 0(Qe+s, Qi) } is the gap between the

operators Q; and Qtis.
The main tool that enables us to prove the index stability theorem is Theorem A.5 and the
following result (to be proved later on).

Theorem 3.2. Let Conditions 1.1-1.3 and 3.1-3.3 hold. Suppose that the lines Im A = a +
1—2m and Im\ = a+ 1 —m contain no eigenvalues of L(\). Then

5(Qt, Qirs) < s, ls| < st, (3.6)

where sy > 0 is sufficiently small, while ¢; > 0 does not depend on s.
First, we prove several auxiliary results.

Lemma 3.2. Let the line ImA = a + 1 — m contain no eigenvalues of Z()\) Then, for all
sufficiently small |s|, we have

lullzn () < cill(w, Aw)l|  Vu € D(Qu), (3.7)

where ¢; > 0 does not depend on s and u.

Proof. 1. Consider the bounded operator

M, = {A, B}, + B}, +tCy,}: H" (G) = HY,,.(G,T). (3.8)

m 2m—mi —1/2 m—m;,, —
If v € HZP (G), then (BY, + Bl +tCL o € Hoi ™" '*(Ty) and C2,0 € W2m—mu=1/2(Ty) C
Hgfrgmi”_lﬂ(ﬂ) (the latter relations are due to Condition 1.3 and Lemma A.3(1)); thus, the

operator M; is well defined.

By Theorem 6.1 in [16] and by Remark 3.1, the operator M; has the Fredholm property for any
t € C. Therefore, applying Theorem A.1 and noting that the embedding H, g_’fm C Lo(G) is compact
for a < m (see Lemma A.1), we obtain

llzn, @) < ki (Ml oy + lullzae)  Vu € H2P(G), (3.9)

where k1 > 0 may depend on ¢ but does not depend on s and wu.
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2. Now take a function u € D(Qu+s). By Lemma 2.3, u € H??' (G). Inequality (3.9), esti-

mate (1.2) (for C7,), and the boundedness of the embedding W2m—mi=1/2(1,) ¢ HjT;mi“fl/Q(Fi)
(see Lemma A.3(1)) yield

ull gz () < Fr(lAullgo, | (@) + lulio@) + Ralsl - lullgzn @) Vo € D(Quss),

where ko > 0 may depend on ¢ but does not depend on s and w. Choosing |s| < 1/(2k2) and noting
that the embedding HY(G) C HY,,,(G) is bounded, we obtain (3.7). O

at+m

Lemmas 3.1 and 3.2 imply
Corollary 3.1. Let the line ImA = a4+ 1 —m contain no eigenvalues of Z()\) Then

Hciuu”HQm—miH—l/Q < e (u, Au)| Vu € D(Qits), (3.10)

)

where ¢; > 0 does not depend on s and u, provided that |s| is sufficiently small.

The following two lemmas enable us to reduce nonlocal problems with nonhomogeneous nonlocal
conditions to nonlocal problems with homogeneous ones. This is the place where Condition 3.1 is
needed.

Lemma 3.3 (see Lemma 8.1 in [16]). Let a € R. Then, for any right-hand sides fjo, €
Hgm_mj””_lﬂ(’yja) in (1.7) such that supp fjou C ’yjf, there exist functions U; € H2™(K;) such
that suppU; C Fj,

BjUMjO(yv Dy)Uj(y) = fjau(y)a (Bjauks(yaDy)Uk)(gjaksy) =0, Y € Yjo, (ka 5) # (j,O),

; Uil zm i,y < e sonll yom-mion-ir2 -

3500
2m—my,—1/2 . .
Lemma 3.4. Let f;, € Hg (T';). Then, for t € C and |s| < 1, there is a function
u € H*(Q) such that
(B, + Bi, + (t + 5)Ci)u = fiy, (3.11)

[w]l fr2m () < et Z Hfi’u,HHimfmiufl/Q (3.12)

By b

T )’

where ¢; > 0 does not depend on f;, and s.

Proof. Using Lemma 3.3 and a partition of unity, we construct a function v € H>™(G) such
that

suppv C G\ G, (3.13)
B?uv = fiuv Biluv = 07 Ciluv = 07 (314)

ollzmey < k1Y I fiull pmmmimrro s (3.15)

- (Ty)
i

where k1 > 0 does not depend on f;,, ¢, and s.

By (3.13) and (1.3), we have supp C?Hv C 0,,(K). Moreover, by virtue of Lemma 3.1, C?Hv €
Hgmfm“‘*l/ 2(FZ-). Therefore, using Lemma 3.3 and a partition of unity again, we construct a
function w € H2™(G) such that

suppw C O, (K), (3.16)
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B w=—(t+ S)C?NU, B! w=0, Cjw =0, (3.17)

[ [ [

[wll grzm(cy < k1 > II(E+ S)C?uvﬂHgmmem

, (T9)
[N

Using the relation |s| < 1 and inequalities (3.2) and (3.15), from the last inequality we infer

ey < F 3+ DICEN ooz g < Rallllmzy < ok 3 Wil 2o,

1/2
- - T )’
1 3

(3.18)
where ko > 0 may depend on ¢ but does not depend on f;, and s.
By (3.16) and (3.2), we have C?Hw = 0. It follows from this relation, (3.14), and (3.17) that
u = v + w satisfies (3.11). Inequality (3.12) follows from inequalities (3.15) and (3.18). O

Remark 3.2. One can easily see that if (C?Mv)(y) =0 in O,/(K) for some » > 0 and for any

v e W?™(G\ 0O,,(K)), then Lemma 3.4 is true for any a € R.

Proof of Theorem 3.2. 1. We must prove inequality (3.6) for the quantity 6(Qq, Qi+s)
replaced by 0(Q¢, Qi+s) and §(Qsrs, Q). Let us prove the inequalit
P Y ) + +s» p q Yy

6(Qt, Qtts) < crlsl, |s| < st. (3.19)
(The corresponding inequality for 6(Qy+s, Q¢) is proved in a similar way.)
Fix an arbitrary number ¢ and take a function v € D(Q;). According to the definition (3.5), it
suffices to find a function vy € D(Q+s) (which depends on u) such that
lu = vsll Ly @) + |Aw = Avgllgo(e) < kals| - || (u, Au)], (3.20)

where |s| is sufficiently small and kq, ko,... > 0 may depend on ¢ but do not depend on u and s.
Let us seek vs € D(Qy4s) in the form

Vs = U+ wg, (3.21)

where wy € H2™(G) is a solution of the problem
Js
Aws = Z ﬁ;’f;” (B?u + leu + (t + S)Ciu)ws = _SCZ'MU; (3.22)
j=1

the numbers Js and 7, as well as the functions f} € H, 9(@), will be defined later in such a way
that the solution ws € H2™(G) exists.
2m—mw—1/2

2. To solve problem (3.22), we first note that C;,u € Hy (I';) due to Corollary 3.1.
Hence, we can apply Lemma 3.4 and construct a function Wy € H2™(G) such that
(BY), + Bj, + (t + 5)Cip) Wy = —sCjpu, (3.23)
Wl zzm(ay < kals| Z HCz‘uuHHim—mw—l/z(Fi)- (3.24)
s
Combining (3.24) with (3.10), we obtain
IWallzzm Gy < ksls| - [|(u, Au)]. (3.25)
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Clearly, problem (3.22) is equivalent to the following one:

Js
AY, = —AW,+3 65, (B, +Bl+(t+Cy)Y. =0, (3.26)
j=1
where
Y; = wg — Ws € Hgm(G) (3'27)

3. To solve problem (3.26), we consider the bounded operator

L; = {A,B), + B}, +tC;,}: H2™(G) — H2(G,T). (3.28)

“w m

Note that C?Mv € Hgmfmi”fl/Q(Fi) for any v € H>™(G) due to Lemma 3.1; for this reason, we
can write H2(G,T) instead of HO(G,T) +R2(G,T) in the definition of the operator L; (cf. (2.3)).
It follows from Theorem 6.1 in [16] and from Remark 3.1 that the operator L; has the Fredholm
property for any t € C.

Let us expand the space H>™(G) in the orthogonal sum H2™(G) = ker L; ® FE;, where E; is a
closed subspace in H>™((). Clearly, the operator

L, = {A, B?u + B}M +tCi,}: B — HY(G,T) (3.29)

has the Fredholm property and its kernel is trivial. In particular, this means that
ull 2m ey < kallLtullpory — Vu € Er. (3.30)
Let J = codim R(L}). It follows from Lemma 3.1 and Theorem A.3 that the operator

Li, = {A,B),+ B, + (t+5)Ci.}: Er — H)(G.T)

also has the Fredholm property, its kernel is trivial, and codim R(Lj},) = J, provided that |s| < s,
where s; > 0 is sufficiently small. Moreover, using estimates (3.30), (3.1), and (3.2), we obtain

[l g2m () < ka <|’Lffsu\\Hg(G,F) + Stz HCiuu”HQm—mw—l/?(F,)) < ks (HLqu”Hg(G,r) + StHu”Hgm(G))
i ¢ '
for all u € E;. Taking s; < 1/(2k¢), we arrive at
lullzzm () < kollLisullgery  Yu € Er (3.31)

Since L}, has the Fredholm property, the set {f € H?(G): (f,0) € R(Lj},)} is closed and is of
finite codimension Jg in HY(G). It is easy to see that J, < J.
Let ff,..., [}, be an orthogonal normalized basis for the space

H(G) & {f € HJ(G): (f,0) € R(Li,)}.

Set 35 = (AW, f;)Hg(G). In this case, problem (3.26) admits a unique solution Y € E}, and,
by virtue of (3.31) and (3.25), we have

Js
Vsl r2m () < Ko <||AWSHH3(G) +)° |ﬁ;’|> < krls| - || (u, Aw)|| + keJ max{G5,...,55.}.  (3.32)
j=1
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Estimating 3] = (AW, ff)Hg(G) by Schwarz’ inequality and using (3.25), we obtain

18} < [AWs||moc)y < ks|s| - [|(u, Au).
Combining this inequality with (3.32) yields
1Ysll tzm () < Kols - [|(u, Aw)l]. (3.33)
4. Taking into account equality (3.27), from estimates (3.25) and (3.33) we deduce

lwsll 2oy < krollwslgzm ) < kaals| - [|(uw, Au)ll, (3.34)
[Aws | goa) < kizllws||gzma) < ki2kials| - || (u, Au)ll, (3.35)

where wy = Yy + W is a solution of problem (3.22).

It follows from the boundedness of the embedding H2™(G) C W™(G) that the function v,
defined by (3.21) belongs to W™(G), and vs € D(Q¢+s) due to the second relation in (3.22). The
desired inequality (3.20) follows from (3.21), (3.34), and (3.35). O

Proof of Theorem 3.1. It follows from Lemma 2.1 in [11] that the spectrum of £()) is discrete.
Therefore, one can find a number a such that m — 1 < a < m and the lines ImA =a+ 1 — 2m and
Im A = a+1—m contain no eigenvalues of E()\) Fix two arbitrary numbers ¢1,t2 € C. By Lemma 2.1
and Remark 3.1, the operators Q; have the Fredholm property for all ¢ in the interval I, C C
with the end points ¢; and t2. Covering each point of the interval I;;, by a disk of sufficiently
small radius, choosing a finite subcovering of I, +,, and applying Theorems 3.2 and A.5, we see that
ind Q¢, = ind Qy,. It follows from this fact and from Lemma 2.1 that ind P;, =indPy,. O

Remark 3.3. Theorems 2.1 and 3.1 remain true in the case where the set K consists of finitely
many disjoint orbits. The proofs need evident modifications.

APPENDIX

A.1. Some properties of Sobolev and weighted spaces. Let G and I'; be the same as in
Section 1.

Lemma A.1 (see Lemma 3.5 in [7]). Let ko > k1 and ko —az > ki — a1. Then the space
H}(G) is compactly embedded in HF(G).

Fix an arbitrary index i and set I' = I';. Let g € T \ I'. Throughout this section, we assume
without loss of generality that ¢ = 0 and I' coincides with the axis Oy; in a sufficiently small
neighborhood O(0) of the origin. In this appendix, we use the notation G* = G N O.(0) and
I'* =T'N0O.(0), in which case H¥(G?) = HF(G*,{0}).

Lemma A.2. If uc W*(G®), k > 1, then the following assertions are true:

(1) u(y) = P(y) +v(y) for y € G=, where P(y) = 3 4 <o Pay™ v € WH(GE) N HF(GF) V6 > 0

(if k=1, we set P(y) =0); in particular, u € H,’;LHJ(GE);

(2) D*uly—g = D*Ply—q for |a| <k —2;

(3) 2jaj<k—2Pal + HUHH(J;(GE) < csllullyrgey, where cs > 0 does not depend on u.

Proof. The proof follows from Lemma 4.9 in [7] for k¥ = 1 and from Lemma 4.11 in [7] for
k> 2.

Lemma A.3. If ¢ € WF-1/2(I), k > 1, then the following assertions are true:

(1) ¥(r) = Pi(r) + @(r) for 0 < r < e, where Pi(r) = Zg;gp/grﬁ and o € Wk1/2(T5) n

Hgfl/Q(FE) Vo >0 (if k=1, we set P(r) =0); in particular, 1 € H,f:lli%(FE),
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(2) (dB/dr®)|,—o = (AP Py /dr®)|,—o for B =0,...,k—2;
(3) Z'E;;% lpg| + ”(P”Hécfl/Q(FE) < ¢5l[Y|lwr-1/2(rey, where c5 >0 does not depend on .

Proof. Consider a function u € W*(G®) such that u|re = 1 and [ullwraey < 209 llwr-172(pey-
Now it remains to apply Lemma A.2. [

Lemma A.4. Let ¢y € WFV2(D), k > 2, and let
dsep

S
dr =0

=0, s=0,...,1, (A.1)

for a fized | <k —2. Then ¢ € H,f:;g”(F) Vo > 0 and
Hw”H::;@HJ(F) < CéHw”Wk_l/Q(FV (AQ)

where c5 > 0 does not depend on .
Proof. It follows from relations (A.1) and Lemma A.3 (assertions (1) and (2)) that

k—2
P(r) = Z pﬁrﬁ + (1), 0<r<e, (A.3)
B=Il+1
where
pe HEVAre) c HEM2, (1), 50 (A4)

If | = k—2, then the sum in (A.3) is absent and the lemma follows from (A.4) and Lemma A.3(3).
If | < k — 3, then the sum comprises the terms r” for § > [ + 1. One can directly verify that
P e H::21£2l+5(F5) for the above ( and for all 6 > 0. Therefore, combining (A.3) with (A.4) and

with Lemma A.3(3), we complete the proof. [

Lemma A.5. Let 1 € Hf;l1/2(F), I,k €N,a R, andlet b€ C®(T) be a compactly supported

unction satisfying the relations bl —=0,s=0,...,0—1. Then
ors lr=0

10881 s gy < €l vy (A5)

Proof. Clearly, it suffices to carry out the proof for compactly supported functions ¢ and for
G and T replaced by K = {y € R?: 0 < w < wp} and v = {y € R?: w = 0}, respectively.

Denote by b € C*°(R) an extension of b(y1) to R and introduce the function B(yi,y2) = by1)
for (y1,y2) € R2. Clearly, we have

B € C™(K), D?Bly—o =0, |o|<i-1 (A.6)

Let v € HF

n+1(K) be a compactly supported extension of 1) to the angle K such that

el ) < eall¥l e (A7)

It follows from Teylor’s formula and (A.6) that |[D?B| = O(rl_"’ ) for any o; therefore,

\|Bu||§{§(K) = Z /r2(a+|a—k)|Da(Bu)|2 dy < ¢y Z /702(a+|a|+<—k)|D<fB|2|D<u|2 dy

lo|<k g lol+ICI<k K
2(a+l -k 2 2
<e Y /r (AR DO dy = eslullfye
ICI<k ¢
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(recall that w is compactly supported). Combining this estimate with (A.7), we finally obtain
1/2 1/2
1000 172y < 1Bl < 5 el ) < sl giorrng)e O

A.2. Some properties of Fredholm operators. Let H; and Hs be Hilbert spaces, and let
P:D(P) C Hy — Hj be a linear (in general, unbounded) operator.

Definition A.1. The operator P is said to have the Fredholm property if it is closed, its image
is closed, and the dimension of its kernel ker P and the codimension of its image R(P) are finite.
The number ind P = dimker P — codim R(P) is called the index of the Fredholm operator P.

Theorem A.1 (see Theorem 7.1 in [8]). Let H be a Hilbert space such that Hy is compactly
embedded in H, and let the operator P be closed. Then dimker P < oo and R(P) = R(P) if and
only if

lullz, < c(lPulls, + llullr)  Yu € D(P).

The proof of the following result is contained in part 2 of the proof of Lemma 2.5 in [3].

Theorem A.2. Let P: D(P) C H{ — Hy be a Fredholm operator such that P is an extension
of P, i.e, P C P. Suppose that dimker P < oo, R(P) = R(P), and codim R(P) < co. Then the
operator P is closed (hence, it has the Fredholm property).

Let A: D(A) C H; — Hj be a linear operator.

Theorem A.3 (see Section 16 in [8]). Let the operator P have the Fredholm property, A be
bounded, and D(A) = Hy. Then the operator P+ A has the Fredholm property, ind(P+ A) = ind P,
dimker(P + A) < dimker P, and codimR(P + A) < codim R(P), provided that || Al is sufficiently
small.

Definition A.2 (see, e.g., [8, 6]). The operator A is said to be relatively compact with respect
to P or simply P-compact if D(P) C D(A) and, for any sequence u, € D(P) with both {u,} and
{Puy} bounded, {Au,} contains a convergent subsequence.

Theorem A.4 (see Theorem 5.26 in Chapter 4 of [6]). Suppose that the operator P has the
Fredholm property and the operator A is P-compact. Then the operator P+ A also has the Fredholm
property and ind(P + A) = ind P.

Finally, we introduce a concept of a gap between closed operators. Let S: D(S) C Hy — Hj be
a linear operator. In the space Hi X Hs, we introduce the norm

1w, Il = (lald, +11F13,)" V(u, f) € Hi x Ho.

Set 6(P,S) = SuPuep(p): ||(u,Pu)|=1 dist ((u, Pu),Gr S), where Gr S is the graph of the opera-
tor S.

Definition A.3. The number §(P,S) = max{d(P,S5),0(S,P)} is called a gap between the
operators P and S.

Theorem A.5 (see Theorem 5.17 in Chapter 4 of [6]). Let the operator P have the Fredholm
property and S be closed. Then the operator S has the Fredholm property, ind S = ind P, dimker S <
dimker P, and codim R(S) < codim R(P) provided that the gap 6(P,S) is sufficiently small.
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