
ISSN 0081-5438, Proceedings of the Steklov Institute of Mathematics, 2006, Vol. 255, pp. 108–126. c© Pleiades Publishing, Inc., 2006.
Published in Russian in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2006, Vol. 255, pp. 116–135.
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Nonlocal Operators in Sobolev Spaces
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Abstract—Unbounded operators corresponding to nonlocal elliptic problems on a bounded
region G ⊂ R2 are considered. The domain of these operators consists of functions in the Sobolev
space Wm

2 (G) that are generalized solutions of the corresponding elliptic equation of order 2m
with the right-hand side in L2(G) and satisfy homogeneous nonlocal boundary conditions. It
is known that such unbounded operators have the Fredholm property. It is proved that lower
order terms in the differential equation do not affect the index of the operator. Conditions under
which nonlocal perturbations on the boundary do not change the index are also formulated.
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INTRODUCTION

In the one-dimensional case, nonlocal problems were studied by A. Sommerfeld [20], Ya.D. Ta-
markin [13], and M. Picone [17]. T. Carleman [14] considered the problem of finding a function
harmonic on a two-dimensional bounded domain and subject to a nonlocal condition connecting the
values of this function at different points of the boundary. A.V. Bitsadze and A.A. Samarskii [1] sug-
gested another nonlocal problem arising in plasma theory: find a function harmonic on a bounded
domain and satisfying nonlocal conditions on shifts of the boundary that can take points of the
boundary inside the domain. Different generalizations of the above nonlocal problems were investi-
gated by many authors (see [19] and references therein).

It turns out that the most difficult situation occurs if the support of nonlocal terms intersects
the boundary. In this case, solutions of nonlocal problems may have power-law singularities near
some points even if the boundary and the right-hand sides are infinitely smooth [10]. For this
reason, such problems are naturally studied in weighted spaces (introduced by V.A. Kondrat’ev
for boundary-value problems in nonsmooth domains [7]). The most complete theory of nonlocal
problems in weighted spaces is developed by A.L. Skubachevskii [10–12, 18, 19] and his students.

Note that the study of nonlocal problems is motivated both by significant theoretical progress
in this field and important applications arising in biophysics, theory of diffusion processes, plasma
theory, and so on.

In this paper, we investigate the influence of lower order terms in an elliptic equation and
the influence of nonlocal perturbations in boundary conditions upon the index of the unbounded
nonlocal operator in L2(G). This issue was earlier studied by A.L. Skubachevskii [18] for bounded
operators in weighted spaces. It is proved in [18] that nonlocal perturbations supported outside
the points of conjugation of the boundary conditions do not change the index of the corresponding
bounded operator. A similar assertion was later established in Sobolev spaces in the two-dimensional
case [16]. In both cases, one can either use the method of continuation with respect to a parameter
or reduce the original problem to that where nonlocal perturbations have compact square. As for
lower order terms in the elliptic equation, they are simply compact perturbations.
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ON THE STABILITY OF THE INDEX OF UNBOUNDED OPERATORS 109

The situation is quite different in the case of unbounded operators. The difficulty is that the
lower order terms in elliptic equations are not compact or relatively compact (see Definition A.2 in
the Appendix); moreover, if the order of the elliptic equation is greater than two, they are not even
relatively bounded, and therefore, they may change the domain of definition of the operator. As for
nonlocal perturbations in the boundary conditions, they explicitly change the domain of definition,
and therefore, they cannot be regarded as compact perturbations (in any sense).

To overcome the above difficulties, we consider an auxiliary operator (whose index equals the
index of the original operator) acting on weighted spaces. In Section 2, we prove that lower or-
der terms in elliptic equations are relatively compact perturbations of the auxiliary operator and,
therefore, do not affect the index. In Section 3, we consider nonlocal perturbations in boundary
conditions, which explicitly change the domain of definition. We make use of the notion of a gap
between unbounded operators (see Definition A.3). We show that if the nonlocal perturbations in
boundary conditions satisfy some regularity conditions at the conjugation points, then multiplying
the perturbations by a small parameter leads to a small gap between the corresponding operators.
Combining this fact with the method of continuation with respect to a parameter, we prove the
index stability theorem.

Finally, we note that the Fredholm property of unbounded nonlocal operators on L2(G) was
earlier studied either in the case when nonlocal conditions were set on shifts of the boundary [19] or in
the case of a nonlocal perturbation of the Dirichlet problem for a second-order elliptic equation [5, 4].
For elliptic equations of order 2m with general nonlocal conditions, this question is being investigated
for the first time.

1. SETTING OF NONLOCAL PROBLEMS IN BOUNDED DOMAINS

1.1. Setting of nonlocal problems. Let G ⊂ R
2 be a bounded domain with boundary ∂G.

We introduce a set K ⊂ ∂G consisting of finitely many points and assume that ∂G \ K =
⋃N

i=1 Γi,
where Γi are open (in the topology of ∂G) C∞ curves. In a neighborhood of each point g ∈ K, the
domain G is supposed to coincide with some plane angle.

For any domain Q and for integer k ≥ 0, we denote by W k(Q) = W k
2 (Q) the Sobolev space with

the norm

‖u‖W k(Q) =

⎛⎝ ∑
|α|≤k

∫
Q

|Dαu|2 dy

⎞⎠1/2

(we set W 0(Q) = L2(Q) for k = 0). For an integer k ≥ 1, we introduce the space W k−1/2(Γ) of
traces on a smooth curve Γ ⊂ Q, with the norm

‖ψ‖W k−1/2(Γ) = inf ‖u‖W k(Q), u ∈ W k(Q) : u|Γ = ψ. (1.1)

For any set X ⊂ R
2 with nonempty interior, we denote by C∞

0 (X) the set of functions that are
infinitely differentiable on R

2 and compactly supported on X.
Now we introduce different weighted spaces for different domains Q. Consider the following

cases:

(1) Q = G; denote M = K;

(2) Q is a plane angle, Q = {y ∈ R
2 : |ω| < ω0}, where 0 < ω0 < π; denote M = {0};

(3) Q = {y ∈ R
2 : |ω| < ω0, 0 < r < ε} for some ε > 0; denote M = {0};

here (ω, r) are polar coordinates of the point y.
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110 P.L. GUREVICH

Introduce the weighted Kondrat’ev space Hk
a (Q) = Hk

a (Q,M) as the completion of the set
C∞

0 (Q \M) with respect to the norm

‖u‖Hk
a (Q) =

⎛⎝ ∑
|α|≤k

∫
Q

ρ2(a+|α|−k)|Dαu|2 dx

⎞⎠1/2

,

where k ≥ 0, a ∈ R, and ρ(y) = dist(y,M); clearly, ρ(y) = r in cases (2) and (3).
Denote by H

k−1/2
a (Γ) (k ≥ 1 is an integer) the space of traces on a smooth curve Γ ⊂ Q, with

the norm
‖ψ‖

H
k−1/2
a (Γ)

= inf ‖v‖Hk
a (Q), v ∈ Hk

a (Q) : v|Γ = ψ.

We denote by A(y,Dy) and Biµs(y,Dy) linear differential operators of orders 2m and miµ (with
miµ ≤ m − 1), respectively, with complex-valued C∞ coefficients (i = 1, . . . , N ; µ = 1, . . . ,m;
s = 0, . . . , Si). Set B0

iµu = Biµ0(y,Dy)u|Γi .

Condition 1.1 (see, e.g., [9]). The operator A(y,Dy) is properly elliptic for all y ∈ G, and
the system of operators

{
B0

iµ

}m

µ=1
covers A(y,Dy) for all i = 1, . . . , N and y ∈ Γi.

The operators A(y,Dy) and B0
iµ will correspond to a “ local” boundary-value problem.

Now we define operators corresponding to nonlocal conditions near the set K. For ε > 0 and
any closed set N , denote by Oε(N ) = {y ∈ R

2 : dist(y,N ) < ε} its ε-neighborhood.
Let Ωis (i = 1, . . . , N ; s = 1, . . . , Si) be C∞ diffeomorphisms taking some neighborhood Oi of

the curve Γi ∩Oε(K) to the set Ωis(Oi) in such a way that Ωis(Γi ∩Oε(K)) ⊂ G and Ωis(g) ∈ K for
g ∈ Γi ∩K. Thus, under the transformations Ωis, the curves Γi ∩Oε(K) are mapped strictly inside
the domain G, whereas the set of end points Γi ∩ K is mapped to itself.

Let us specify the structure of the transformations Ωis near the set K. Denote by the symbol Ω+1
is

the transformation Ωis : Oi → Ωis(Oi) and by Ω−1
is the inverse transformation. The set of all points

Ω±1
iqsq

(. . . Ω±1
i1s1

(g)) ∈ K (1 ≤ sj ≤ Sij , j = 1, . . . , q), i.e., the set of all points that can be obtained
by consecutively applying the transformations Ω+1

ijsj
or Ω−1

ijsj
(taking the points of K to K) to the

point g ∈ K, is called the orbit of the point g and is denoted by Orb(g).
Clearly, for any g, g′ ∈ K, either Orb(g) = Orb(g′) or Orb(g) ∩ Orb(g′) = ∅. In what follows,

we assume that the set K consists of one orbit and the number of points in the orbit is equal to the
number N of the curves Γi. Denote the points of the set (orbit) K by gj, j = 1, . . . , N .

Take a small number ε > 0 such that there exist neighborhoods Oε1(gj) of the points gj ∈ K
satisfying the following conditions:

(1) Oε1(gj) ⊃ Oε(gj);
(2) the boundary ∂G coincides with some plane angle in the neighborhood Oε1(gj);

(3) Oε1(gj) ∩ Oε1(gk) = ∅ for any gj , gk ∈ K, j 	= k;
(4) if gj ∈ Γi and Ωis(gj) = gk, then Oε(gj) ⊂ Oi and Ωis(Oε(gj)) ⊂ Oε1(gk).

For each point gj ∈ Γi ∩ K, we fix a transformation Yj : y 
→ y′(gj) that is the composition of
the shift by the vector −−−→

Ogj and the rotation through some angle so that

Yj(Oε1(gj)) = Oε1(0), Yj(G ∩ Oε1(gj)) = Kj ∩Oε1(0),

Yj(Γi ∩ Oε1(gj)) = γjσ ∩ Oε1(0), σ = 1 or 2,

where Kj = {y ∈ R
2 : r > 0, |ω| < ωj}, γjσ = {y ∈ R

2 : r > 0, ω = (−1)σωj}, (ω, r) are polar
coordinates, and 0 < ωj < π.
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Condition 1.2. Let gj ∈ Γi ∩ K and Ωis(gj) = gk ∈ K. Then the transformation Yk ◦ Ωis ◦
Y −1

j : Oε(0) → Oε1(0) is the composition of a rotation and a homothety.

Remark 1.1. Condition 1.2, being combined with the assumption Ωis(Γi∩Oε(K)) ⊂ G, means,
in particular, that if g ∈ Ωis(Γi ∩K) ∩ Γj ∩K 	= ∅, then the curves Ωis(Γi) and Γj are not tangent
to each other at the point g.

Consider a number ε0, 0 < ε0 ≤ ε, satisfying the following condition: if gj ∈ Γi and Ωis(gj) = gk,
then Oε0(gk) ⊂ Ωis(Oε(gj)). Introduce a function ζ ∈ C∞(R2) such that ζ(y) = 1 for y ∈ Oε0/2(K)
and supp ζ ⊂ Oε0(K).

Now we define nonlocal operators B1
iµ by the formula

B1
iµu =

Si∑
s=1

(
Biµs(y,Dy)(ζu)

)
(Ωis(y)), y ∈ Γi ∩ Oε(K), B1

iµu = 0, y ∈ Γi \ Oε(K),

where (Biµs(y,Dy)u)(Ωis(y)) = Biµs(x,Dx)u(x)|x=Ωis(y). Since B1
iµu = 0 if suppu ⊂ G \ Oε0(K),

we say that the operators B1
iµ correspond to nonlocal terms supported near the set K.

For any ρ > 0, we denote Gρ = {y ∈ G : dist(y, ∂G) > ρ}. Consider linear operators B2
iµ

satisfying the following condition (cf. [10, 18, 15]).

Condition 1.3. There exist numbers κ1 > κ2 > 0 and ρ > 0 such that the following inequal-
ities hold:

‖B2
iµu‖

W 2m−miµ−1/2(Γi)
≤ c1‖u‖W 2m(G\Oκ1 (K))

, (1.2)

‖B2
iµu‖

W 2m−miµ−1/2(Γi\Oκ2(K))
≤ c2‖u‖W 2m(Gρ). (1.3)

Remark 1.2. In (1.2), (1.3) and throughout the paper, we denote by c, c1, c2, . . . and k1, k2, . . .
positive constants that do not depend on the functions involved in the corresponding inequality.

We assume that Conditions 1.1–1.3 hold throughout, including the formulation of lemmas.
It follows from (1.2) that B2

iµu = 0 whenever suppu ⊂ Oκ1(K). For this reason, we say that
the operators B2

iµ correspond to nonlocal terms supported outside the set K.
We study the following nonlocal elliptic problem:

A(y,Dy)u = f(y), y ∈ G, (1.4)

Biµu ≡ B0
iµu + B1

iµu + B2
iµu = 0, y ∈ Γi, i = 1, . . . , N, µ = 1, . . . ,m, (1.5)

where f ∈ L2(G). Introduce a space W m(G,B) consisting of functions u ∈ W m(G) that satisfy the
homogeneous nonlocal conditions (1.5). Consider the unbounded operator P : D(P) ⊂ L2(G) →
L2(G) given by

Pu = A(y,Dy)u, u ∈ D(P) =
{
u ∈ W m(G,B) : A(y,Dy)u ∈ L2(G)

}
.

Definition 1.1. A function u is called a generalized solution of problem (1.4), (1.5) with right-
hand side f ∈ L2(G) if u ∈ D(P) and Pu = f .

An equivalent definition of a generalized solution can be given in terms of an integral identity [3].
Note that generalized solutions a priori belong to the space W m(G), whereas Condition 1.3 is

formulated for functions that belong to the space W 2m outside the set K. Such a formulation can
be justified by the following result (see Lemma 2.1 in [3] and Lemma 5.1 in [16]).
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Lemma 1.1. Let u ∈ W m(G) be a generalized solution of problem (1.4), (1.5) with right-hand
side f ∈ W k(G). Then

‖u‖W k+2m(G\Oδ(K)) ≤ cδ

(
‖f‖W k(G\Oδ1

(K)) + ‖u‖L2(G)

)
∀δ > 0,

where δ1 = δ1(δ) > 0 and cδ > 0 do not depend on u.
Theorem 1.1 (see Theorem 2.1 in [3]). Let Conditions 1.1–1.3 hold. Then the operator P

has the Fredholm property.1

The aim of this paper is to investigate the influence of lower order terms in (1.4) and nonlocal
operators B1

iµ and B2
iµ in (1.5) upon the index of the operator P.

1.2. Nonlocal problems near the set K. When studying problem (1.4), (1.5), one must
pay particular attention to the behavior of solutions near the set K of conjugation points. Let us
consider the corresponding model problems. Denote by uj(y) the function u(y) for y ∈ Oε1(gj). If
gj ∈ Γi, y ∈ Oε(gj), and Ωis(y) ∈ Oε1(gk), then we denote the function u(Ωis(y)) by uk(Ωis(y)).
Using this notation, we rewrite the nonlocal problem (1.4), (1.5) in the ε-neighborhood of the set
(orbit) K as follows:

A(y,Dy)uj = f(y), y ∈ Oε(gj) ∩ G,

Biµ0(y,Dy)uj(y)
∣∣
Oε(gj)∩Γi

+
Si∑

s=1

(
Biµs(y,Dy)(ζuk)

)
(Ωis(y))

∣∣
Oε(gj)∩Γi

= fiµ(y), y ∈ Oε(gj) ∩ Γi,

i ∈ {1 ≤ i ≤ N : gj ∈ Γi}, j = 1, . . . , N, µ = 1, . . . ,m,

where fiµ = −B2
iµu.

Let y 
→ y′(gj) be the change of variables described in Subsection 1.1. Denote Kε
j = Kj ∩Oε(0)

and γε
jσ = γjσ ∩ Oε(0). Introduce the functions

Uj(y′) = uj(y(y′)), fj(y′) = f(y(y′)), y′ ∈ Kε
j ,

and
fjσµ(y′) = fiµ(y(y′)), y′ ∈ γε

jσ,

where σ = 1 (σ = 2) if, under the transformation y 
→ y′(gj), the curve Γi is mapped to the
side γj1 (γj2) of the angle Kj. Denote y′ by y again. Then, by virtue of Condition 1.2, prob-
lem (1.4), (1.5) acquires the form

Aj(y,Dy)Uj = fj(y), y ∈ Kε
j , (1.6)∑

k,s

(
Bjσµks(y,Dy)Uk

)
(Gjσksy) = fjσµ(y), y ∈ γε

jσ; (1.7)

here j, k = 1, . . . , N ; σ = 1, 2; µ = 1, . . . ,m; s = 0, . . . , Sjσk; Aj(y,Dy) and Bjσµks(y,Dy) are
differential operators of orders 2m and mjσµ (mjσµ ≤ m−1), respectively, with C∞ complex-valued
coefficients; and Gjσks is the operator of rotation through an angle ωjσks and the homothety with a
coefficient χjσks (χjσks > 0). Moreover, |(−1)σbj + ωjσks| < bk for (k, s) 	= (j, 0) (cf. Remark 1.1),
ωjσj0 = 0, and χjσj0 = 1 (i.e., Gjσj0y ≡ y).

Set Dχ = 2max{χjσks}. The following lemma establishes the regularity property for the solu-
tions of nonlocal problems near the set K.

1See Definition A.1.
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Lemma 1.2 (see2 Lemma 2.3 in [3]). Let (U1, . . . , UN ) be a solution of problem (1.6), (1.7)
such that

Uj ∈ W 2m
(
K

Dχε
j ∩ {|y| > δ}

)
∀δ > 0, Uj ∈ H0

a−2m

(
K

Dχε
j

)
,

where a ∈ R. Suppose that fj ∈ H0
a(Kε

j ) and fjσµ ∈ H
2m−mjσµ−1/2
a (γε

jσ). Then

∑
j

‖Uj‖H2m
a (K

ε/D3
χ

j ) ≤ c
∑

j

(
‖fj‖H0

a(Kε
j ) +

∑
σ,µ

‖fjσµ‖
H

2m−mjσµ−1/2
a (γε

jσ)
+ ‖Uj‖H0

a−2m(Kε
j )

)
.

We write the principal homogeneous parts of the operators Aj(0,Dy) and Bjσµks(0,Dy) in the
polar coordinates as r−2mÃj(ω,Dω , rDr) and r−mjσµB̃jσµks(ω,Dω, rDr), respectively, and consider
the analytic operator-valued function

L̃(λ) :
N∏

j=1

W l+2m(−ωj, ωj) →
N∏

j=1

(
W l(−ωj , ωj) × C

2m
)
,

L̃(λ)ϕ =

{
Ãj(ω,Dω, λ)ϕj ,

∑
k,s

(χjσks)iλ−mjσµB̃jσµks(ω,Dω , λ)ϕk(ω + ωjσks)
∣∣
ω=(−1)σωj

}
.

The basic definitions and facts concerning eigenvalues, eigenvectors, and associate vectors of analytic
operator-valued functions can be found in [2]. In the sequel, it is essential that the spectrum of the
operator L̃(λ) is discrete (see Lemma 2.1 in [11]).

2. PERTURBATIONS BY LOWER ORDER TERMS

2.1. Reduction to weighted spaces. Introduce the lower order terms operator

A′(y,Dy) =
∑

|α|≤2m−1

aα(y)Dα, (2.1)

where aα ∈ C∞(R2). Consider the perturbed operator P′ : D(P′) ⊂ L2(G) → L2(G) given by

P′u = A(y,Dy)u + A′(y,Dy)u,

u ∈ D(P′) =
{
u ∈ W m(G,B) : A(y,Dy)u + A′(y,Dy)u ∈ L2(G)

}
.

By Theorem 1.1, the unbounded operator P′ has the Fredholm property (just as P does). The
main result of this section (to be proved in Subsection 2.2) is as follows.

Theorem 2.1. Let Conditions 1.1–1.3 hold. Then indP′ = indP.
This theorem shows that the lower order terms in (1.4) do not affect the index of the unbounded

operator P. The difficulty is that the above perturbations are, in general, neither compact nor
P-compact in the sense of Definition A.2. If m = 1, then u ∈ D(P) implies only u ∈ W 1(G), which
ensures the P-boundedness of the perturbation but not its P-compactness. However, if m ≥ 2, then
u ∈ D(P) does not imply u ∈ W 2m−1(G), and the perturbation is not even P-bounded. Moreover,
D(P′) 	= D(P) in the latter case.

To overcome this difficulty, we introduce the operator Q : D(Q) ⊂ L2(G) → H0
a(G) given by

Qu = A(y,Dy)u, u ∈ D(Q) =
{
u ∈ W m(G,B) : A(y,Dy)u ∈ H0

a(G)
}
. (2.2)

2Lemma 2.3 in [3] was formulated for a > 2m − 1. However, its proof remains true for any a ∈ R.
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In this definition and further (unless otherwise stated), we assume that

m − 1 < a < m.

We will prove that indQ = indP. On the other hand, we will show that the operator A′(y,Dy) is
a Q-compact perturbation and, therefore, does not change the index of Q and hence of P.

Lemma 2.1. Let the line Im λ = a + 1 − 2m contain no eigenvalues of the operator L̃(λ).
Then the operator Q has the Fredholm property and indQ = indP.

Proof. 1. It is shown in [16, Section 6] that Biµu ∈ H
2m−miµ−1/2
a (Γi)�Riµ

a (Γi) for u ∈ H2m
a (G),

where Riµ
a (Γi) is a finite-dimensional subspace in H

2m−miµ−1/2
a′ (Γi) for any a′ > 2m − 1. Set

H0
a(G,Γ) = H0

a(G) ×
N∏

i=1

m∏
µ=1

H
2m−miµ−1/2
a (Γi), R0

a(G,Γ) = {0} ×
N∏

i=1

m∏
µ=1

Riµ
a (Γi).

By Theorem 6.1 in [16], the bounded operator

L = {A(y,Dy),Biµ} : H2m
a (G) → H0

a(G,Γ) � R0
a(G,Γ) (2.3)

has the Fredholm property. Therefore, by virtue of the compactness of the embedding H2m
a (G) ⊂

L2(G) (see Lemma A.1) and by Theorem A.1, we have

‖u‖H2m
a (G) ≤ k1

(
‖Lu‖H0

a(G,Γ)�R0
a(G,Γ) + ‖u‖L2(G)

)
. (2.4)

2. Introduce an unbounded operator Q̇ : D(Q̇) ⊂ L2(G) → H0
a(G) given by

Q̇u = A(y,Dy)u, u ∈ D(Q̇) = {u ∈ H2m
a (G) : Biµu = 0}. (2.5)

Since H2m
a (G) ⊂ W m(G), it follows that Q̇ is a restriction of Q, i.e., Q̇ ⊂ Q.

First, we prove that Q̇ has the Fredholm property. Let u ∈ D(Q̇); then u ∈ D(L) = H2m
a (G)

and A(y,Dy)u ∈ H0
a(G), Biµu = 0. Therefore, estimate (2.4) acquires the form

‖u‖H2m
a (G) ≤ k1

(
‖Q̇u‖H0

a(G) + ‖u‖L2(G)

)
∀u ∈ D(Q̇). (2.6)

It follows from (2.6) that the operator Q̇ is closed, dim ker Q̇ < ∞, and R(Q̇) = R(Q̇) (to
obtain the latter two properties, one must apply Theorem A.1).

Let us prove that codimR(Q̇) < ∞. Since L has the Fredholm property, there exist finitely
many linearly independent functions F1, . . . , Fd ∈ H0

a(G) such that a function f ∈ H0
a(G) belongs

to the image of Q̇ if and only if (f, Fj)H0
a(G) = 0, j = 1, . . . , d. Thus, Q̇ has the Fredholm property.

3. Now we prove that Q has the Fredholm property. Since ker Q = kerP and P has the
Fredholm property, it follows that

dim ker Q = dim ker P < ∞. (2.7)

On the other hand, Q is an extension of the Fredholm operator Q̇; therefore,

R(Q) = R(Q), codimR(Q) < ∞. (2.8)

Thus, Q is an extension of the Fredholm operator Q̇ and possesses properties (2.7) and (2.8).
Applying Theorem A.2, we see that Q has the Fredholm property.
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4. By virtue of (2.7), it remains to be proved that codimR(Q) = codimR(P).
Let codimR(Q) = d1, where d1 ≤ d. Take an arbitrary function f ∈ L2(G). Then f ∈ R(P) if

and only if f ∈ R(Q) because L2(G) ⊂ H0
a(G). However, the inclusion f ∈ R(Q) is equivalent to

the relations (f, Fj)H0
a(G) = 0, j = 1, . . . , d1, where F1, . . . , Fd1 ∈ H0

a(G) are linearly independent
functions. Using Schwarz’ inequality, the boundedness of the embedding L2(G) ⊂ H0

a(G), and
Riesz’ theorem, we see that these relations are equivalent to the following ones: (f, fj)L2(G) = 0,
j = 1, . . . , d1, where fj ∈ L2(G). Moreover, the functions f1, . . . , fd1 are linearly independent.
(Otherwise, some linear combination of the functions F1, . . . , Fd1 would be orthogonal in H0

a(G) to
any function that lies in L2(G). This is impossible because F1, . . . , Fd1 are linearly independent,
while L2(G) is dense in H0

a(G).) Thus, we have proved that codimR(P) = d1. �
Introduce a perturbed operator Q′ : D(Q′) ⊂ L2(G) → H0

a(G) given by

Q′u = A(y,Dy)u + A′(y,Dy)u,

u ∈ D(Q′) =
{
u ∈ W m(G,B) : A(y,Dy)u + A′(y,Dy)u ∈ H0

a(G)
}
.

In the following subsection, we prove that indQ′ = indQ, provided that the line Imλ = a+1− 2m
contains no eigenvalues of the operator L̃(λ). Then, using the discreteness of the spectrum of L̃(λ)
and Lemma 2.1, we will prove Theorem 2.1.

2.2. Compactness of lower order terms in weighted spaces.

Lemma 2.2. Let the line Im λ = a + 1 − 2m contain no eigenvalues of the operator L̃(λ).
Then

‖u‖W m(G) ≤ c
(
‖Qu‖H0

a(G) + ‖u‖L2(G)

)
∀u ∈ D(Q).

Proof. Consider the unbounded operator Q̂ : D(Q̂) ⊂ W m(G) → H0
a(G) given by Q̂u =

A(y,Dy)u, u ∈ D(Q̂) = D(Q). Since Q has the Fredholm property, the same is true for Q̂.
Therefore, the desired estimate follows from the compactness of the embedding W m(G) ⊂ L2(G)
and from Theorem A.1. �

Take a number b such that

m − 1 < b < a < m. (2.9)

Consider a function ψj ∈ C∞
0 (R2) equal to 1 in a small neighborhood of the point gj ∈ K

and vanishing outside a larger neighborhood of gj . The following lemma describes the behavior of
u ∈ D(Q) near the set K.

Lemma 2.3. For any u ∈ D(Q), we have

u(y) =
N∑

j=1

Pj(y) + v(y), (2.10)

where

Pj(y) = ψj(y)
∑

|α|≤m−2

pjα(y − gj)α, pjα ∈ C, (2.11)

and v ∈ H2m
b+1(G) (if m = 1, we set Pj(y) ≡ 0); moreover,∑

j,α

|pjα| + ‖v‖H2m
b+1(G) ≤ c

(
‖Qu‖H0

a(G) + ‖u‖L2(G)

)
. (2.12)
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Proof. 1. It follows from Lemma 1.1 that u ∈ W 2m(G \ Oδ(K)) for any δ > 0 and

‖u‖
W 2m(G\Oδ(K))

≤ k1δ

(
‖Qu‖H0

a(G) + ‖u‖L2(G)

)
, (2.13)

where k1δ does not depend on u. Therefore, it suffices to consider the behavior of u near the set K.
By Lemma A.2, u ∈ W m(G) can be represented in the form (2.10), where Pj(y) is given by (2.11),

v ∈ Hm
b−m+1(G), and ∑

j,α

|pjα| + ‖v‖Hm
b−m+1(G) ≤ k2

(
‖Qu‖H0

a(G) + ‖u‖L2(G)

)
(2.14)

(to obtain (2.14), we have also applied Lemma 2.2).
Moreover, relations (2.10), (2.13), and (2.14) imply that

‖v‖W 2m(G\Oδ(K)) ≤ k2δ

(
‖Qu‖H0

a(G) + ‖u‖L2(G)

)
∀δ > 0, (2.15)

where k2δ does not depend on u. It remains to be proved that v ∈ H2m
b+1(G).

2. By using (1.4) and (1.5), we see that v is a solution of the problem

A(y,Dy)v = f −A(y,Dy)P ≡ f ′, B0
iµv + B1

iµv = −BiµP − B2
iµv ≡ f ′

iµ, (2.16)

where P (y) =
∑N

j=1 Pj(y) and f = Qu ∈ H0
a(G). It follows from the boundedness of the embedding

H0
a(G) ⊂ H0

b+1(G) (see (2.9)) and from the estimate of the coefficients pjα (see (2.14)) that

‖f ′‖H0
b+1(G) ≤ k3

(
‖Qu‖H0

a(G) + ‖u‖L2(G)

)
. (2.17)

Similarly, using additionally inequalities (1.2) and (2.15), we obtain f ′
iµ = −BiµP − B2

iµv ∈
W 2m−miµ−1/2(Γi) and

‖f ′
iµ‖W 2m−miµ−1/2(Γi)

≤ k4

(
‖Qu‖H0

a(G) + ‖u‖L2(G)

)
. (2.18)

On the other hand, v ∈ Hm
b−m+1(G); hence, f ′

iµ = B0
iµv + B1

iµv ∈ H
m−miµ−1/2
b−m+1 (Γi). We claim

that
‖f ′

iµ‖H
2m−miµ−1/2

b+1 (Γi)
≤ k5

(
‖Qu‖H0

a(G) + ‖u‖L2(G)

)
. (2.19)

To prove this assertion, we fix i and µ and set Γ = Γi. Let g ∈ Γ \ Γ. Assume, without loss of
generality, that g = 0 and Γ coincides with the axis Oy1 in a sufficiently small neighborhood Oε(0)
of the origin. Denote

Gε = G ∩ Oε(0), Γε = Γ ∩ Oε(0),

in which case Hk
a (Gε) = Hk

a (Gε, {0}).
Using Lemma A.3(1), we represent f ′

iµ ∈ W 2m−miµ−1/2(Γε) near the origin as follows:

f ′
iµ(r) = P1(r) + f ′′

iµ(r), 0 < r < ε,

where P1(r) is a polynomial of order 2m−miµ−2, whereas f ′′
iµ ∈ H

2m−miµ−1/2
b+1 (Γε) (in fact, we can

replace b + 1 by any positive number in the last relation). Now we have f ′
iµ, f ′′

iµ ∈ H
m−miµ−1/2
b−m+1 (Γε);

therefore, P1 ∈ H
m−miµ−1/2
b−m+1 (Γε); i.e., P1 consists of monomials of order greater than or equal to

m − miµ − 1. This implies that P1 ∈ H
2m−miµ−1/2
b+1 (Γε). Using Lemma A.3(3), we obtain

‖f ′
iµ‖H

2m−miµ−1/2

b+1 (Γε)
≤ ‖P1‖

H
2m−miµ−1/2

b+1 (Γε)
+ ‖f ′′

iµ‖H
2m−miµ−1/2

b+1 (Γε)
≤ k6‖f ′

iµ‖W 2m−miµ−1/2(Γε)
.

Combining this estimate with (2.18) yields (2.19).
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3. Applying Lemma 1.2 to problem (2.16) and taking into account (2.15), (2.17), (2.19),
and (2.14), we obtain

‖v‖H2m
b+1(G) ≤ k7

(
‖f ′‖H0

b+1(G) +
∑
i,µ

‖f ′
iµ‖H

2m−miµ−1/2

b+1 (Γi)
+ ‖v‖H0

b−2m+1(G)

)

≤ k8

(
‖Qu‖H0

a(G) + ‖u‖L2(G)

)
.

Combining this inequality with (2.14) yields (2.12). �
The following corollary results from Lemma 2.3.
Corollary 2.1. Let A′(y,Dy) be the differential operator of order 2m−1 given by (2.1). Then

‖A′(y,Dy)u‖H1
b+1(G) ≤ c

(
‖Qu‖H0

a(G) + ‖u‖L2(G)

)
∀u ∈ D(Q). (2.20)

Now we can prove that lower order perturbations in (1.4) do not change the index of Q.
Lemma 2.4. Let the line Im λ = a + 1 − 2m contain no eigenvalues of the operator L̃(λ).

Then the operators Q and Q′ have the Fredholm property and indQ′ = indQ.
Proof. By Lemma 2.1, Q and Q′ have the Fredholm property.
Introduce an operator A′ : D(A′) ⊂ L2(G) → H0

a(G) given by A′u = A′(y,Dy)u, u ∈ D(A′) =
D(Q). It follows from Corollary 2.1 and from the compactness of the embedding H1

b+1(G) ⊂ H0
a(G)

(see (2.9) and Lemma A.1) that Q′ = Q + A′ and A′ is a Q-compact operator. Therefore, by
Theorem A.4, we have indQ′ = indQ. �

Proof of Theorem 2.1. It follows from Lemma 2.1 in [11] that the spectrum of L̃(λ) is discrete.
Therefore, one can find a number a such that m − 1 < a < m and the line Imλ = a + 1 − 2m
contains no eigenvalues of L̃(λ). In this case, Lemmas 2.1 and 2.4 imply indP′ = indQ′ = indQ =
indP. �

3. PERTURBATIONS IN NONLOCAL CONDITIONS

3.1. Formulation of the main result. In this section, we study the stability of the index
for nonlocal operators under the perturbation of nonlocal conditions by operators of the same
form as B1

iµ and B2
iµ. This situation is more difficult than that in Section 2 because the above

perturbations explicitly change the domain of the corresponding unbounded operators. Therefore,
these perturbations cannot be treated as relatively compact ones, and we make use of another
approach based on the notion of a gap between closed operators.

We consider differential operators Ciµs(y,Dy), i = 1, . . . , N , µ = 1, . . . ,m, s = 1, . . . , S′
i, of the

same order miµ as Biµs in Subsection 1.1, given by

Ciµs(y,Dy)u =
∑

|α|≤miµ

ciµsα(y)Dαu,

where ciµsα ∈ C∞(R2). Introduce an operator C1
iµ by the formula

C1
iµu =

S′
i∑

s=1

(
Ciµs(y,Dy)(ζu)

)
(Ω′

is(y)), y ∈ Γi ∩ Oε(K), C1
iµu = 0, y ∈ Γi \ Oε(K),

where ζ and ε are the same as in the definition of B1
iµ, whereas Ω′

is are C∞ diffeomorphisms
possessing the same properties as Ωis (in particular, they satisfy Condition 1.2 with Si and Ωis

replaced by S′
i and Ω′

is).
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We also consider operators C2
iµ satisfying Condition 1.3 with B2

iµ replaced by C2
iµ. Set

Ciµ = C1
iµ + C2

iµ.

We prove an index stability theorem under the following conditions (which are assumed to hold
along with Conditions 1.1–1.3 throughout this section, including the formulation of lemmas).

Condition 3.1 (see, e.g., [9]). The system
{
B0

iµ

}m

µ=1
is normal on Γi, i = 1, . . . , N .

Condition 3.2. Dσciµsα(gi1) = Dσciµsα(gi2) = 0 for |σ| = 0, . . . , (m − 1) − (miµ − |α|).
Denote by gi1 and gi2 the end points of Γi. Let τi1 (τi2) be a unit vector tangent to Γi at the

point gi1 (gi2).

Condition 3.3.

∂βC2
iµu

∂τβ
i1

∣∣∣∣∣
y=gi1

=
∂βC2

iµu

∂τβ
i2

∣∣∣∣∣
y=gi2

= 0, β = 0, . . . ,m − 1 − miµ, ∀u ∈ W 2m(G \ Oκ1(K)).

The following lemma is a consequence of Conditions 3.2 and 3.3 (recall that m − 1 < a < m
throughout).

Lemma 3.1. The following inequalities hold :

‖C1
iµu‖

H
2m−miµ−1/2
a (Γi)

≤ c1‖u‖H2m
a+m(G), (3.1)

‖C2
iµu‖

H
2m−miµ−1/2
a (Γi)

≤ c2‖u‖W 2m(G\Oκ1 (K)). (3.2)

Proof. 1. For any u ∈ H2m
a+m(G), we have

(Dαu)(Ω′
is(y))

∣∣
Γi

∈ H
2m−|α|−1/2
a+m (Γi) ⊂ H

2m−miµ−1/2

a+m−(miµ−|α|)(Γi).

Therefore, by Condition 3.2 and Lemma A.5, we have (ciµsαDαu)(Ω′
is(y))|Γi ∈ H

2m−miµ−1/2
a (Γi).

Estimate (3.1) follows from the boundedness of the above embedding and from inequality (A.5).

2. It follows from Condition 1.3 (applied to C2
iµ) that C2

iµu ∈ W 2m−miµ−1/2(Γi) for any

u ∈ W 2m(G \ Oκ1(K)). Now, by Condition 3.3 and Lemma A.4, C2
iµu ∈ H

2m−miµ−1/2
a (Γi). Esti-

mate (3.2) follows from inequality (1.2) (applied to C2
iµ) and from (A.2). �

In this section, we write A = A(y,Dy). Consider the operators Pt : D(Pt) ⊂ L2(G) → L2(G),
t ∈ C, given by

Ptu = Au, u ∈ D(Pt) =
{
u ∈ W m(G,B + tC) : Au ∈ L2(G)

}
,

where W m(G,B + tC) is the space of functions u ∈ W m(G) that satisfy the nonlocal conditions
(B0

iµ + B1
iµ + tCiµ)u = 0. The main result of this section (to be proved in Subsection 3.2) is as

follows.

Theorem 3.1. Let Conditions 1.1–1.3 and 3.1–3.3 hold. Then indPt = const ∀t ∈ C.

3.2. The gap between nonlocal operators in weighted spaces. As in Section 2, we
preliminarily study the operators Qt : D(Qt) ⊂ L2(G) → H0

a(G) given by

Qtu = Au, u ∈ D(Qt) =
{
u ∈ W m(G,B + tC) : Au ∈ H0

a(G)
}
,
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where t ∈ C and W m(G,B + tC) is the same as in the definition of the operator Pt. The operators
Pt and Qt correspond to the problem

Au = f(y), y ∈ G, (3.3)

(B0
iµ + B1

iµ + tCiµ)u = 0, y ∈ Γi, i = 1, . . . , N, µ = 1, . . . ,m. (3.4)

Remark 3.1. The operator L̃(λ) was constructed in Subsection 1.2 by means of the principal
homogeneous parts of the operators A and Biµs(y,Dy) at the points of the set K. Due to Condi-
tion 3.2, the principal homogeneous parts of the operators Ciµs(y,Dy) are equal to zero at these
points. Therefore, the same operator L̃(λ) corresponds to problem (3.3), (3.4) for any t.

Fix a number a such that m − 1 < a < m and the line Imλ = a + 1 − 2m contains no
eigenvalues of L̃(λ) (which is possible due to the discreteness of the spectrum of L̃(λ)). It follows
from Remark 3.1 and Lemma 2.1 that Qt has the Fredholm property. Therefore, its graph GrQt is
a closed subspace in the Hilbert space L2(G) × H0

a(G); this space is endowed with the norm

‖(u, f)‖ =
(
‖u‖2

L2(G) + ‖f‖2
H0

a(G)

)1/2 ∀(u, f) ∈ L2(G) × H0
a(G).

Denote
δ(Qt,Qt+s) = sup

u∈D(Qt) : ‖(u,Qtu)‖=1
dist

(
(u,Qtu),Gr Qt+s

)
. (3.5)

By Definition A.3, the number δ̂(Qt,Qt+s) = max{δ(Qt,Qt+s), δ(Qt+s,Qt)} is the gap between the
operators Qt and Qt+s.

The main tool that enables us to prove the index stability theorem is Theorem A.5 and the
following result (to be proved later on).

Theorem 3.2. Let Conditions 1.1–1.3 and 3.1–3.3 hold. Suppose that the lines Im λ = a +
1 − 2m and Imλ = a + 1 − m contain no eigenvalues of L̃(λ). Then

δ̂(Qt,Qt+s) ≤ cts, |s| ≤ st, (3.6)

where st > 0 is sufficiently small, while ct > 0 does not depend on s.
First, we prove several auxiliary results.
Lemma 3.2. Let the line Im λ = a + 1 − m contain no eigenvalues of L̃(λ). Then, for all

sufficiently small |s|, we have

‖u‖H2m
a+m(G) ≤ ct‖(u,Au)‖ ∀u ∈ D(Qt+s), (3.7)

where ct > 0 does not depend on s and u.
Proof. 1. Consider the bounded operator

Mt = {A,B0
iµ + B1

iµ + tCiµ} : H2m
a+m(G) → H0

a+m(G,Γ). (3.8)

If v ∈ H2m
a+m(G), then (B0

iµ + B1
iµ + tC1

iµ)v ∈ H
2m−miµ−1/2
a+m (Γi) and C2

iµv ∈ W 2m−miµ−1/2(Γi) ⊂
H

2m−miµ−1/2
a+m (Γi) (the latter relations are due to Condition 1.3 and Lemma A.3(1)); thus, the

operator Mt is well defined.
By Theorem 6.1 in [16] and by Remark 3.1, the operator Mt has the Fredholm property for any

t ∈ C. Therefore, applying Theorem A.1 and noting that the embedding H2m
a+m ⊂ L2(G) is compact

for a < m (see Lemma A.1), we obtain

‖u‖H2m
a+m(G) ≤ k1

(
‖Mtu‖H0

a+m(G,Γ) + ‖u‖L2(G)

)
∀u ∈ H2m

a+m(G), (3.9)

where k1 > 0 may depend on t but does not depend on s and u.
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2. Now take a function u ∈ D(Qt+s). By Lemma 2.3, u ∈ H2m
a+m(G). Inequality (3.9), esti-

mate (1.2) (for C2
iµ), and the boundedness of the embedding W 2m−miµ−1/2(Γi) ⊂ H

2m−miµ−1/2
a+m (Γi)

(see Lemma A.3(1)) yield

‖u‖H2m
a+m(G) ≤ k1

(
‖Au‖H0

a+m(G) + ‖u‖L2(G)

)
+ k2|s| · ‖u‖H2m

a+m(G) ∀u ∈ D(Qt+s),

where k2 > 0 may depend on t but does not depend on s and u. Choosing |s| ≤ 1/(2k2) and noting
that the embedding H0

a(G) ⊂ H0
a+m(G) is bounded, we obtain (3.7). �

Lemmas 3.1 and 3.2 imply
Corollary 3.1. Let the line Im λ = a + 1 − m contain no eigenvalues of L̃(λ). Then

‖Ciµu‖
H

2m−miµ−1/2
a (Γi)

≤ ct‖(u,Au)‖ ∀u ∈ D(Qt+s), (3.10)

where ct > 0 does not depend on s and u, provided that |s| is sufficiently small.
The following two lemmas enable us to reduce nonlocal problems with nonhomogeneous nonlocal

conditions to nonlocal problems with homogeneous ones. This is the place where Condition 3.1 is
needed.

Lemma 3.3 (see Lemma 8.1 in [16]). Let a ∈ R. Then, for any right-hand sides fjσµ ∈
H

2m−mjσµ−1/2
a (γjσ) in (1.7) such that suppfjσµ ⊂ γ

ε/2
jσ , there exist functions Uj ∈ H2m

a (Kj) such
that suppUj ⊂ Kε

j ,

Bjσµj0(y,Dy)Uj(y) = fjσµ(y), (Bjσµks(y,Dy)Uk)(Gjσksy) = 0, y ∈ γjσ, (k, s) 	= (j, 0),∑
j

‖Uj‖H2m
a (Kj) ≤ c

∑
j,σ,µ

‖fjσµ‖
H

2m−mjσµ−1/2
a (γjσ)

.

Lemma 3.4. Let fiµ ∈ H
2m−miµ−1/2
a (Γi). Then, for t ∈ C and |s| ≤ 1, there is a function

u ∈ H2m
a (G) such that

(B0
iµ + B1

iµ + (t + s)Ciµ)u = fiµ, (3.11)

‖u‖H2m
a (G) ≤ ct

∑
i,µ

‖fiµ‖
H

2m−miµ−1/2
a (Γi)

, (3.12)

where ct > 0 does not depend on fiµ and s.
Proof. Using Lemma 3.3 and a partition of unity, we construct a function v ∈ H2m

a (G) such
that

supp v ⊂ G \ Gρ, (3.13)

B0
iµv = fiµ, B1

iµv = 0, C1
iµv = 0, (3.14)

‖v‖H2m
a (G) ≤ k1

∑
i,µ

‖fiµ‖
H

2m−miµ−1/2
a (Γi)

, (3.15)

where k1 > 0 does not depend on fiµ, t, and s.
By (3.13) and (1.3), we have suppC2

iµv ⊂ Oκ2(K). Moreover, by virtue of Lemma 3.1, C2
iµv ∈

H
2m−miµ−1/2
a (Γi). Therefore, using Lemma 3.3 and a partition of unity again, we construct a

function w ∈ H2m
a (G) such that

suppw ⊂ Oκ1(K), (3.16)
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B0
iµw = −(t + s)C2

iµv, B1
iµw = 0, C1

iµw = 0, (3.17)

‖w‖H2m
a (G) ≤ k1

∑
i,µ

‖(t + s)C2
iµv‖

H
2m−miµ−1/2
a (Γi)

.

Using the relation |s| ≤ 1 and inequalities (3.2) and (3.15), from the last inequality we infer

‖w‖H2m
a (G) ≤ k1

∑
i,µ

(|t| + 1)‖C2
iµv‖

H
2m−miµ−1/2
a (Γi)

≤ k2‖v‖H2m
a (G) ≤ k2k1

∑
i,µ

‖fiµ‖
H

2m−miµ−1/2
a (Γi)

,

(3.18)
where k2 > 0 may depend on t but does not depend on fiµ and s.

By (3.16) and (3.2), we have C2
iµw = 0. It follows from this relation, (3.14), and (3.17) that

u = v + w satisfies (3.11). Inequality (3.12) follows from inequalities (3.15) and (3.18). �
Remark 3.2. One can easily see that if (C2

iµv)(y) = 0 in Oκ(K) for some κ > 0 and for any
v ∈ W 2m(G \ Oκ1(K)), then Lemma 3.4 is true for any a ∈ R.

Proof of Theorem 3.2. 1. We must prove inequality (3.6) for the quantity δ̂(Qt,Qt+s)
replaced by δ(Qt,Qt+s) and δ(Qt+s,Qt). Let us prove the inequality

δ(Qt,Qt+s) ≤ ct|s|, |s| ≤ st. (3.19)

(The corresponding inequality for δ(Qt+s,Qt) is proved in a similar way.)
Fix an arbitrary number t and take a function u ∈ D(Qt). According to the definition (3.5), it

suffices to find a function vs ∈ D(Qt+s) (which depends on u) such that

‖u − vs‖L2(G) + ‖Au − Avs‖H0
a(G) ≤ k1|s| · ‖(u,Au)‖, (3.20)

where |s| is sufficiently small and k1, k2, . . . > 0 may depend on t but do not depend on u and s.
Let us seek vs ∈ D(Qt+s) in the form

vs = u + ws, (3.21)

where ws ∈ H2m
a (G) is a solution of the problem

Aws =
Js∑

j=1

βs
j f

s
j , (B0

iµ + B1
iµ + (t + s)Ciµ)ws = −sCiµu; (3.22)

the numbers Js and βs
j , as well as the functions f s

j ∈ H0
a(G), will be defined later in such a way

that the solution ws ∈ H2m
a (G) exists.

2. To solve problem (3.22), we first note that Ciµu ∈ H
2m−miµ−1/2
a (Γi) due to Corollary 3.1.

Hence, we can apply Lemma 3.4 and construct a function Ws ∈ H2m
a (G) such that

(B0
iµ + B1

iµ + (t + s)Ciµ)Ws = −sCiµu, (3.23)

‖Ws‖H2m
a (G) ≤ k2|s|

∑
i,µ

‖Ciµu‖
H

2m−miµ−1/2
a (Γi)

. (3.24)

Combining (3.24) with (3.10), we obtain

‖Ws‖H2m
a (G) ≤ k3|s| · ‖(u,Au)‖. (3.25)
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Clearly, problem (3.22) is equivalent to the following one:

AYs = −AWs +
Js∑

j=1

βs
j f

s
j , (B0

iµ + B1
iµ + (t + s)Ciµ)Ys = 0, (3.26)

where
Ys = ws − Ws ∈ H2m

a (G). (3.27)

3. To solve problem (3.26), we consider the bounded operator

Lt = {A,B0
iµ + B1

iµ + tCiµ} : H2m
a (G) → H0

a(G,Γ). (3.28)

Note that C2
iµv ∈ H

2m−miµ−1/2
a (Γi) for any v ∈ H2m

a (G) due to Lemma 3.1; for this reason, we
can write H0

a(G,Γ) instead of H0
a(G,Γ) � R0

a(G,Γ) in the definition of the operator Lt (cf. (2.3)).
It follows from Theorem 6.1 in [16] and from Remark 3.1 that the operator Lt has the Fredholm
property for any t ∈ C.

Let us expand the space H2m
a (G) in the orthogonal sum H2m

a (G) = ker Lt ⊕ Et, where Et is a
closed subspace in H2m

a (G). Clearly, the operator

L′
t = {A,B0

iµ + B1
iµ + tCiµ} : Et → H0

a(G,Γ) (3.29)

has the Fredholm property and its kernel is trivial. In particular, this means that

‖u‖H2m
a (G) ≤ k4‖L′

tu‖H0
a(G,Γ) ∀u ∈ Et. (3.30)

Let J = codimR(L′
t). It follows from Lemma 3.1 and Theorem A.3 that the operator

L′
ts = {A,B0

iµ + B1
iµ + (t + s)Ciµ} : Et → H0

a(G,Γ)

also has the Fredholm property, its kernel is trivial, and codimR(L′
ts) = J , provided that |s| ≤ st,

where st > 0 is sufficiently small. Moreover, using estimates (3.30), (3.1), and (3.2), we obtain

‖u‖H2m
a (G) ≤ k4

(
‖L′

tsu‖H0
a(G,Γ) + st

∑
i,µ

‖Ciµu‖
H

2m−miµ−1/2
a (Γi)

)
≤ k5

(
‖L′

tsu‖H0
a(G,Γ) + st‖u‖H2m

a (G)

)
for all u ∈ Et. Taking st ≤ 1/(2k6), we arrive at

‖u‖H2m
a (G) ≤ k6‖L′

tsu‖H0
a(G,Γ) ∀u ∈ Et. (3.31)

Since L′
ts has the Fredholm property, the set {f ∈ H0

a(G) : (f, 0) ∈ R(L′
ts)} is closed and is of

finite codimension Js in H0
a(G). It is easy to see that Js ≤ J .

Let f s
1 , . . . , f s

Js
be an orthogonal normalized basis for the space

H0
a(G) � {f ∈ H0

a(G) : (f, 0) ∈ R(L′
ts)}.

Set βs
j = (AWs, f

s
j )H0

a(G). In this case, problem (3.26) admits a unique solution Ys ∈ Et, and,
by virtue of (3.31) and (3.25), we have

‖Ys‖H2m
a (G) ≤ k6

(
‖AWs‖H0

a(G) +
Js∑

j=1

|βs
j |

)
≤ k7|s| · ‖(u,Au)‖ + k6J max{βs

1, . . . , β
s
Js
}. (3.32)
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Estimating βs
j = (AWs, f

s
j )H0

a(G) by Schwarz’ inequality and using (3.25), we obtain

|βs
j | ≤ ‖AWs‖H0

a(G) ≤ k8|s| · ‖(u,Au)‖.

Combining this inequality with (3.32) yields

‖Ys‖H2m
a (G) ≤ k9|s| · ‖(u,Au)‖. (3.33)

4. Taking into account equality (3.27), from estimates (3.25) and (3.33) we deduce

‖ws‖L2(G) ≤ k10‖ws‖H2m
a (G) ≤ k11|s| · ‖(u,Au)‖, (3.34)

‖Aws‖H0
a(G) ≤ k12‖ws‖H2m

a (G) ≤ k12k11|s| · ‖(u,Au)‖, (3.35)

where ws = Ys + Ws is a solution of problem (3.22).
It follows from the boundedness of the embedding H2m

a (G) ⊂ W m(G) that the function vs

defined by (3.21) belongs to W m(G), and vs ∈ D(Qt+s) due to the second relation in (3.22). The
desired inequality (3.20) follows from (3.21), (3.34), and (3.35). �

Proof of Theorem 3.1. It follows from Lemma 2.1 in [11] that the spectrum of L̃(λ) is discrete.
Therefore, one can find a number a such that m− 1 < a < m and the lines Im λ = a + 1− 2m and
Im λ = a+1−m contain no eigenvalues of L̃(λ). Fix two arbitrary numbers t1, t2 ∈ C. By Lemma 2.1
and Remark 3.1, the operators Qt have the Fredholm property for all t in the interval It1t2 ⊂ C

with the end points t1 and t2. Covering each point of the interval It1t2 by a disk of sufficiently
small radius, choosing a finite subcovering of It1t2 , and applying Theorems 3.2 and A.5, we see that
indQt1 = indQt2 . It follows from this fact and from Lemma 2.1 that indPt1 = indPt2 . �

Remark 3.3. Theorems 2.1 and 3.1 remain true in the case where the set K consists of finitely
many disjoint orbits. The proofs need evident modifications.

APPENDIX

A.1. Some properties of Sobolev and weighted spaces. Let G and Γi be the same as in
Section 1.

Lemma A.1 (see Lemma 3.5 in [7]). Let k2 > k1 and k2 − a2 > k1 − a1. Then the space
Hk2

a2
(G) is compactly embedded in Hk1

a1
(G).

Fix an arbitrary index i and set Γ = Γi. Let g ∈ Γ \ Γ. Throughout this section, we assume
without loss of generality that g = 0 and Γ coincides with the axis Oy1 in a sufficiently small
neighborhood Oε(0) of the origin. In this appendix, we use the notation Gε = G ∩ Oε(0) and
Γε = Γ ∩ Oε(0), in which case Hk

a (Gε) = Hk
a (Gε, {0}).

Lemma A.2. If u ∈ W k(Gε), k ≥ 1, then the following assertions are true:

(1) u(y) = P (y) + v(y) for y ∈ Gε, where P (y) =
∑

|α|≤k−2 pαyα, v ∈ W k(Gε)∩Hk
δ (Gε) ∀δ > 0

(if k = 1, we set P (y) ≡ 0); in particular, u ∈ Hk
k−1+δ(G

ε);
(2) Dαu|y=0 = DαP |y=0 for |α| ≤ k − 2;
(3)

∑
|α|≤k−2 |pα| + ‖v‖Hk

δ (Gε) ≤ cδ‖u‖W k(Gε), where cδ > 0 does not depend on u.

Proof. The proof follows from Lemma 4.9 in [7] for k = 1 and from Lemma 4.11 in [7] for
k ≥ 2.

Lemma A.3. If ψ ∈ W k−1/2(Γε), k ≥ 1, then the following assertions are true:

(1) ψ(r) = P1(r) + ϕ(r) for 0 < r < ε, where P1(r) =
∑k−2

β=0 pβrβ and ϕ ∈ W k−1/2(Γε) ∩
H

k−1/2
δ (Γε) ∀δ > 0 (if k = 1, we set P1(r) ≡ 0); in particular, ψ ∈ H

k−1/2
k−1+δ(Γ

ε);
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(2) (dβψ/drβ)|r=0 = (dβP1/drβ)|r=0 for β = 0, . . . , k − 2;
(3)

∑k−2
β=0 |pβ| + ‖ϕ‖

H
k−1/2
δ (Γε)

≤ cδ‖ψ‖W k−1/2(Γε), where cδ > 0 does not depend on ψ.

Proof. Consider a function u ∈ W k(Gε) such that u|Γε = ψ and ‖u‖W k(Gε) ≤ 2‖ψ‖W k−1/2(Γε).
Now it remains to apply Lemma A.2. �

Lemma A.4. Let ψ ∈ W k−1/2(Γ), k ≥ 2, and let

dsψ

drs

∣∣∣∣
y=0

= 0, s = 0, . . . , l, (A.1)

for a fixed l ≤ k − 2. Then ψ ∈ H
k−1/2
k−2−l+δ(Γ) ∀δ > 0 and

‖ψ‖
H

k−1/2
k−2−l+δ(Γ)

≤ cδ‖ψ‖W k−1/2(Γ), (A.2)

where cδ > 0 does not depend on ψ.
Proof. It follows from relations (A.1) and Lemma A.3 (assertions (1) and (2)) that

ψ(r) =
k−2∑

β=l+1

pβrβ + ϕ(r), 0 < r < ε, (A.3)

where
ϕ ∈ H

k−1/2
δ (Γε) ⊂ H

k−1/2
k−2−l+δ(Γ

ε), δ > 0. (A.4)

If l = k−2, then the sum in (A.3) is absent and the lemma follows from (A.4) and Lemma A.3(3).
If l ≤ k − 3, then the sum comprises the terms rβ for β ≥ l + 1. One can directly verify that

rβ ∈ H
k−1/2
k−2−l+δ(Γ

ε) for the above β and for all δ > 0. Therefore, combining (A.3) with (A.4) and
with Lemma A.3(3), we complete the proof. �

Lemma A.5. Let ψ ∈ H
k−1/2
a+l (Γ), l, k ∈ N, a ∈ R, and let b ∈ C∞(Γ) be a compactly supported

function satisfying the relations ∂sb
∂rs

∣∣
r=0

= 0, s = 0, . . . , l − 1. Then

‖bψ‖
H

k−1/2
a (Γ)

≤ c‖ψ‖
H

k−1/2
a+l (Γ)

. (A.5)

Proof. Clearly, it suffices to carry out the proof for compactly supported functions ψ and for
G and Γ replaced by K = {y ∈ R

2 : 0 < ω < ω0} and γ = {y ∈ R
2 : ω = 0}, respectively.

Denote by b̂ ∈ C∞(R) an extension of b(y1) to R and introduce the function B(y1, y2) = b̂(y1)
for (y1, y2) ∈ R

2. Clearly, we have

B ∈ C∞(K), DσB|y=0 = 0, |σ| ≤ l − 1. (A.6)

Let u ∈ Hk
a+l(K) be a compactly supported extension of ψ to the angle K such that

‖u‖Hk
a+l(K) ≤ c1‖ψ‖H

k−1/2
a+l (γ)

. (A.7)

It follows from Teylor’s formula and (A.6) that |DσB| = O
(
rl−|σ|) for any σ; therefore,

‖Bu‖2
Hk

a (K) =
∑
|α|≤k

∫
K

r2(a+|α|−k)|Dα(Bu)|2 dy ≤ c2

∑
|σ|+|ζ|≤k

∫
K

r2(a+|σ|+|ζ|−k)|DσB|2|Dζu|2 dy

≤ c3

∑
|ζ|≤k

∫
K

r2(a+l+|ζ|−k)|Dζu|2 dy = c3‖u‖2
Hk

a+l(K)

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 255 2006



ON THE STABILITY OF THE INDEX OF UNBOUNDED OPERATORS 125

(recall that u is compactly supported). Combining this estimate with (A.7), we finally obtain

‖bψ‖
H

k−1/2
a (γ)

≤ ‖Bu‖Hk
a (K) ≤ c

1/2
3 ‖u‖Hk

a+l(K) ≤ c
1/2
3 c1‖ψ‖H

k−1/2
a+l (γ)

. �

A.2. Some properties of Fredholm operators. Let H1 and H2 be Hilbert spaces, and let
P : D(P ) ⊂ H1 → H2 be a linear (in general, unbounded) operator.

Definition A.1. The operator P is said to have the Fredholm property if it is closed, its image
is closed, and the dimension of its kernel ker P and the codimension of its image R(P ) are finite.
The number indP = dim ker P − codimR(P ) is called the index of the Fredholm operator P .

Theorem A.1 (see Theorem 7.1 in [8]). Let H be a Hilbert space such that H1 is compactly
embedded in H, and let the operator P be closed. Then dim ker P < ∞ and R(P ) = R(P ) if and
only if

‖u‖H1 ≤ c(‖Pu‖H2 + ‖u‖H ) ∀u ∈ D(P ).

The proof of the following result is contained in part 2 of the proof of Lemma 2.5 in [3].
Theorem A.2. Let Ṗ : D(Ṗ ) ⊂ H1 → H2 be a Fredholm operator such that P is an extension

of Ṗ , i.e., Ṗ ⊂ P . Suppose that dim ker P < ∞, R(P ) = R(P ), and codimR(P ) < ∞. Then the
operator P is closed (hence, it has the Fredholm property).

Let A : D(A) ⊂ H1 → H2 be a linear operator.
Theorem A.3 (see Section 16 in [8]). Let the operator P have the Fredholm property, A be

bounded, and D(A) = H1. Then the operator P +A has the Fredholm property, ind(P +A) = indP,
dim ker(P + A) ≤ dim ker P, and codimR(P + A) ≤ codimR(P ), provided that ‖A‖ is sufficiently
small.

Definition A.2 (see, e.g., [8, 6]). The operator A is said to be relatively compact with respect
to P or simply P -compact if D(P ) ⊂ D(A) and, for any sequence un ∈ D(P ) with both {un} and
{Pun} bounded, {Aun} contains a convergent subsequence.

Theorem A.4 (see Theorem 5.26 in Chapter 4 of [6]). Suppose that the operator P has the
Fredholm property and the operator A is P -compact. Then the operator P +A also has the Fredholm
property and ind(P + A) = indP .

Finally, we introduce a concept of a gap between closed operators. Let S : D(S) ⊂ H1 → H2 be
a linear operator. In the space H1 × H2, we introduce the norm

‖(u, f)‖ =
(
‖u‖2

H1
+ ‖f‖2

H2

)1/2 ∀(u, f) ∈ H1 × H2.

Set δ(P, S) = supu∈D(P ) : ‖(u,Pu)‖=1 dist
(
(u, Pu),Gr S

)
, where Gr S is the graph of the opera-

tor S.
Definition A.3. The number δ̂(P, S) = max{δ(P, S), δ(S,P )} is called a gap between the

operators P and S.
Theorem A.5 (see Theorem 5.17 in Chapter 4 of [6]). Let the operator P have the Fredholm

property and S be closed. Then the operator S has the Fredholm property, ind S = indP, dim ker S ≤
dim ker P, and codimR(S) ≤ codimR(P ) provided that the gap δ̂(P, S) is sufficiently small.
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