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Abstract. This is the second part of the paper (for the first part, see Russ. J. Math. Phys.,
vol. 10, no. 4, pp. 436-466; the numbering of the sections continues that of part one). We study
elliptic equations of order 2m with nonlocal boundary-value conditions in plane bounded
domains for the case in which the support of nonlocal terms can nontrivially intersect the
boundary. We give necessary and sufficient conditions for nonlocal problems to have the
Fredholm property in Sobolev spaces and in weighted spaces with small weight exponents,
respectively. We also find the asymptotic behavior of solutions of nonlocal problems near the
conjugation points on the boundary, where solutions can have power-law singularities.
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2 P. L. GUREVICH

4. NONLOCAL PROBLEMS IN BOUNDED DOMAINS FOR THE CASE IN
WHICH THE LINE Im A = 1 — [ — 2m CONTAINS NO EIGENVALUES OF L,())

In this section, using the results of Sec. 2, we construct a right regularizer for the operator

_ 0 1 2 . +2m l
L={P, B;, +B;, +B;,}: W (G) = W'(G,T)

(see Sec. 1.1) corresponding to problem (1.7), (1.8). It follows from the existence of a right regu-
larizer that the image of L is closed and of finite codimension. To prove that the kernel of L is of
finite dimension, we will reduce L to an operator between weighted spaces such that the kernel of
the reduced operator is finite-dimensional.

We write B¥ = {Bf# i k=0,...,2;B = B°+B'+B?, C = B’ +B!. Along with the nonlocal
operator L = {P, B}, we consider the bounded operators

L'={P, C}: W' (@) - WYG,T) and L°={P, B°}: W'?"(@) - WYG,T).

We first consider the operator L! (i.e., we suppose that B?M = 0) and then proceed with the
study of the operator L for the general case in which B?,u # 0. Throughout the section, we assume
that the following condition holds.

Condition 4.1. For each orbit Orb,, p ., N1, the line Im A = 1 — [ — 2m contains no

—1,..
eigenvalues of the corresponding operator £, ().

4.1. Construction of a Right Regularizer When B?# =0

In this subsection we discuss the situation with B?# = 0, i.e., the case in which the support of
nonlocal terms is concentrated near the set IC.

For each curve Y; (i = 1,..., Ny), denote the endpoints of T; by g;1 and g;>. Recall that the
domain G has the form of a plane angle in some neighborhood of the point g;1 (gs2), while the
curve Y; coincides there with a segment I;; (I;2). Let 7;1 (7;2) be the unit vector parallel to the
segment ;1 (I;2).

Let S{(G,Y) be the set consisting of the functions f = {fo, fin} € W'(G,Y) satisfying the
following relations:

Dfoly) =0 (y € K), o] <I-2, (4.1)
B r. B f.
0 f/;u , 0 f;ﬂ =0, A< l+2m—mi#—2. (4-2)
oty | _ OTia |, _
y=gi1 y=9giz

It follows from Sobolev’s embedding theorem and Riesz’ theorem on the general form of a continuous
linear functional in a Hilbert space that S!(G,Y) is a closed subset of the space W!(G, ) and the
codimension of S!(G,T) in W!(G, Y) is finite.

Lemma 4.1. Let Condition 4.1 hold. If the number €y is sufficiently small, then there exist a
bounded operator Ry: SL(G,Y) — WH2™(Q) and a compact operator T1: SL(G,Y) — SH(G, )
such that

L'R; =1, + Ty, (4.3)
where 1y stands for the identity operator in SL(G,Y).

Proof. 1. By Theorem 2.1, there exist bounded operators
Ry : {f € S{(G,T) :supp f C O, (K)} — W™ (@),
My, Tic : {f € SI(G,T) : supp f C Oz, (K)} — SH(G, )
RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS Vol. 11 No. 1 2004



SOLVABILITY OF NONLOCAL ELLIPTIC PROBLEMS IN SOBOLEV SPACES, II 3

such that ||[Mx fllwi e,y < ceollfllwi(e,r), where ¢ > 0 does not depend on €y, the operator Tk
is compact, and
L'Ricf=f+Mxgf+Tkf. (4.4)

2. For each point g € G\Oa¢,(K), we consider its (g9/2)-neighborhood O, />(g). The family of
these neighborhoods, together with the set O, (K), covers G. Let us choose a finite subcovering
O26,(K), Oy y2(95), 5 =1,...,J = J(eo). Let ¥, ¢p; € C°(R?), j =1,...,J, be a partition of unity
subordinated to the covering Qo (K), O, /2(g5), j =1,...,J.

According to the general theory of elliptic boundary-value problems in smooth domains (see,
e.g., [27]), there exist bounded operators

Ry : {f € Wl(G,T) ssupp f C Ogy/2(95)} — {u € Wl+2m(G) :suppu C O, (g5)} (4.5)
and compact operators
Ty, : {f € Wl(G,T) ssupp f C O, /2(95)} — {f € Wl(G,T) csupp f C Og,(95)}

such that
L°Ro; f = f + To; f- (4.6)

3. For any f € S{(G, ), set
J
Rof =Y Ro;(¥;f)
j=1

and Ry f = Ric(¢vf) + Rof.
In this case,

PR:f = PRc(¢f) + PRof. (4.7)

Since supp Rof C G'\ O, (K), it follows from the definition of the operator B! that B!Ryf = 0.
Therefore,

CR1f = CRx(¥f) + B°Ryf. (4.8)
Relations (4.7) and (4.8), with regard to (4.4) and (4.6), imply

J
L'Rif = f+ Mg (¢ f) + Te(¥f) + Tof, where  Tof = ZTOj(¢jf)- (4.9)
j=1

4. Let us estimate the norm of My (¢ f):
M (@) wec,x) < Freoll fllwea,r)

< keeoll fllwe e, vy + k3(eo) HfUHWl*l(G)+Z||q>w”wl+2m*mm*1((;) , (4.10)

(N

where ®;, € W2~ (@G) is an extension of f;, € WH2m=muw=1/2(7,) to the domain G (if
[ = 0, then the term || fo|[1-1(g) on the right-hand side of (4.10) is absent).

It follows from (4.10), from the Rellich theorem, and from Lemma 2.3 that
M (¢f) = My f + Taf,

where My, Ty : SH(G, T) — SL(G, Y) are such that | My || < cgo (¢ > 0 does not depend on ) and
T, is compact. Combining this fact with relation (4.9), we obtain

L1R1 =1 +M1 +T1>
where Ty f = Tof + T (¥ f) + Tof.

The operator I + M; : SL(G,T) — SL(G, T) is invertible for ey < 1/(2¢). Therefore, denoting
R =R;(I; +M;) ! and T; = T1(I; + M;)~!, we obtain (4.3). This proves Lemma 4.1.
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4 P. L. GUREVICH

4.2. Construction of a Right Regularizer When B?M £ 0

In this subsection, we assume that e is fixed. Consider the operator L with B?M # 0. In other

words, we suppose that there are nonlocal terms supported both near the set K and outside some
neighborhood of K.

By Theorem 2.2, for any sufficiently small € > 0, there exist bounded operators

kA {0,f"} € SH(G,Y), supp f' € Oze(K)} — {u € WH(G) : supp f' € O (K)},
s Tie : {f/: {0, f'} € SL(G, ), supp f' C Os(K)} — Si(G,Y)
such that |Mjf'llwi e vy < egl{0, f'}iwi(a,r), where ¢ > 0 does not depend on ¢, the operator
T} is compact, and
L'Ricf = {0, '} + M f' + Tic f'.

Note that the diameter of the support of R} f’ depends on ¢ rather than on &.

Similarly to the proof of Lemma 4.1, we can construct a covering Oy (K), O./2(g;) (9; € 0G,
j=1,...,J,J = J(e)) of the boundary 9G. Let ¢', v € Cs°(R?), j = 1,...,J, be a partition of
unity subordinated to this covering.

According to the general theory of elliptic boundary-value problems in smooth domains (see,
e.g., [27]), there exist bounded operators

Ry, {f :{0,f'} e WG, T), supp f C O.)2(g;)} — {u € W(G) : suppu C O.(g;)}
and compact operators
T, : {f' {0, f'} e WG, Y) : supp f C O.ya(g;)} — {f € WG, Y) : supp f C Oc(g;)}
such that LORajf’ = {0, f'} + TG, f'. For any f' satisfying {0, f'} € SHG, T), write
J
R f'=Ric(¢'f) + Y _ R (451"). (411)
j=1
As in the proof of Lemma 4.1, one can show that
LR,/ = {0, '} + M, f/ + T . (4.12)
where M}, T} : {f': {0, f'} € S{(G, 1)} — S (G, Y) are bounded operators such that
M f ey < cell{0, f'HIwe e,

where ¢ > 0 does not depend on ¢, and T is a compact operator.

Using the operators Ry (see Lemma 4.1) and R/ (see (4.11)), we shall now construct a right
regularizer for the operator L with BZZ# #0.

Introduce the set

SH(G,Y) = {f € S{(G,T) : the functions ® = B*R, f and B*R/| ® satisfy relations (4.2)} .

It follows from Sobolev’s embedding theorem and from Riesz’ theorem on the general form of a
continuous linear functional on a Hilbert space that S'(G, T) is a closed subset of finite codimension
in WG, Y). Tt is also clear that S'(G,Y) C S{(G, T).
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SOLVABILITY OF NONLOCAL ELLIPTIC PROBLEMS IN SOBOLEV SPACES, II 5

Lemma 4.2. Let Condition 4.1 hold. Then there exist a bounded operator
R: WG, T) — W2 (@)
and a compact operator
T: WHG,T) — WG, T)

such that
LR=1I+T, (4.13)

where 1 stands for the identity operator in WG, T).

Proof. 1. We set ® = B2R, f, where f = {fo, f'} € SY(G,T). Then, by the definition of the
space S'(G, Y), the functions ® and B2R/® belong to the domain of the operator R}. Therefore,
we can introduce a bounded operator Rs: S!/(G,Y) — W!*2m(G) by the formula

Rsf=R.f - R|® + R|B’R/ .

Let us show that the operator Rs is a right inverse to L, up to a sum of small and compact
perturbations. For simplicity, we denote diverse operators (acting on the corresponding spaces)
whose norms are dominated by ce by the letter M and diverse compact operators by the letter T

By virtue of (4.3) and (4.12), we have

PRsf = PR, f — PR} (® — B’R/®)
= fo+Tfo— M(®—-B*R\®) —T(® - B?’R\®) = fo + Mf+Tf, (4.14)

CRsf =CR,f - CR;® + CR/B*R/®
=(f'+Tf)—(®+M®+T®)+ (B°R|® + MB°R|® + TB’R/ ) (4.15)
=f —®+B*R|®+ Mf+TFf.
Applying the operator B? to the function Rsf, we obtain
B’Rsf = ® - B°R|® + B°R|B’R/ ®. (4.16)
Summing relations (4.15) and (4.16), we obtain
BRsf = f'+ Mf+Tf+ B’R|B’R/ . (4.17)
Let us show that
B?R/B’R|® =0 (4.18)

for sufficiently small € = (51, 39, p), where 311, 309, p are the constants occurring in Condition 1.2.
(Note that € does not depend on ¢y.)

It follows from (4.11) that supp R{® C G\ G4.. Take a small number ¢ such that 4¢ < p. Then
the estimate (1.6) implies that supp B?R}® C O,,, (K).

Furthermore, take a small number ¢ such that 4e < »; and s + 3¢/2 < 5. Then, using (4.11)
again, we see that supp R1B?R/® C O, (K). Combining this fact with inequality (1.5), we ob-
tain (4.18).

It follows from relations (4.14), (4.17), and (4.18) that

LRS:IS+M+T,

where Is, M, T: S(G,T) — WG, Y) are bounded operators for which Isf = f, | M| < cs (¢ >0
does not depend on ¢), and T is compact.
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6 P. L. GUREVICH

3. Since the subspace S'(G,T) is of finite codimension in W!(G, T), the operator Is has the
Fredholm property. Therefore, by Theorems 16.2 and 16.4 in [28], the operator Is + M + T also
has the Fredholm property provided that ¢ is sufficiently small. Now it follows from Theorem 15.2

in [28] that there exists a bounded operator R and a compact operator T acting from WHG, )
to SY(G,T) and to WG, T), respectively, which satisfy the relation (Is + M + T)R = I+ T.
Denoting R = RsR : W{(G,T) — W2 (G), we obtain (4.13), which proves Lemma 4.2.

Remark 4.1. We stress that the numbers gg, 3¢1, 35, and p are fixed in the course of the proof
of Lemma 4.2.

Remark 4.2. The construction of the operator R is close to that in [18], where nonlocal prob-
lems in weighted spaces are treated for the case in which B! = 0 (i.e., the support of nonlocal terms
is disjoint from the set K).

4.3. Fredholm Solvability of Nonlocal Problems

In this subsection, we prove the following result concerning the solvability of problem (1.7), (1.8)
in a bounded domain in Sobolev spaces.

Theorem 4.1. Let Condition 4.1 hold; then the operator
L: Wm(G) — WHG, T)

has the Fredholm property, ind L = ind L!.
Conversely, let the operator

L: WGy — WHG, T)
have the Fredholm property; then Condition 4.1 holds.

We shall show below that, if Condition 4.1 fails, then the image of L is not closed (Lemma 4.5).
Combining this fact with Theorem 4.1 of this paper and with Theorem 7.1 in [28] yields the following
corollary.

Corollary 4.1. Condition 4.1 holds if and only if the following a priori estimate holds:
[ullwrem(ay < c([Lullwea ) + llull.@)),

where ¢ > 0 does not depend on u.

4.3.1. Proof of Theorem 4.1. Sufficiency. Let us show that the kernel of L is finite-dimen-
sional. To do this, we consider problem (1.7), (1.8) in weighted spaces. Denote by HY(G) the
completion of the set C§°(G \ K) with respect to the norm

1/2
s = (32 [ o)
G

o<k

where k£ > 0 is an integer, a € R, and p = p(y) = dist(y, ). For an integer & > 1, denote by
Hclf*l/Q(T) the space of traces on a smooth curve Y C G with the norm

6l sy = inf lullmay  (u € HEG) s ule = ).
Let us introduce the operator corresponding to problem (1.7), (1.8) in weighted spaces,

L, = {P, B}: H?™(G) - H.(G,Y), a>1+2m—1,
RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS Vol. 11 No. 1 2004



SOLVABILITY OF NONLOCAL ELLIPTIC PROBLEMS IN SOBOLEV SPACES, II 7

where
NQ m

Hl (G T X H H Hl+2m mw—l/Q(fr )
i=1p=1
Note that, by (1.5) and by Lemma 5.2 in [18],

B2 = Wl+2m mm—l/Q(fr ) Hl+2m m“‘_l/2(TZ)

for all u € HF?™(GQ) ¢ WiH2m(G\ O,,,(K)), a > | + 2m — 1. Since the functions BY,u and B;,u

+2m—m;, — 1/2(T)

also belong to H, , it follows that the operator L, is well defined.

Thus, the operators L and L, correspond to the same nonlocal problem (1.7), (1.8) regarded in
Sobolev spaces and in weighted spaces, respectively.

Lemma 4.3. The kernel of the operator L is finite-dimensional.

Proof. It follows from Lemma 2.1 in [15] and from Theorem 3.2 in [16]*that the operator L,
has the Fredholm property for almost all a > [ + 2m — 1. Choose some a > [ 4+ 2m — 1 for which
the operator L, has the Fredholm property. Then W'*+2™(G) C H>™(G) by Lemma 5.2 in [18],
and therefore ker L C ker L,. Since ker L, is finite-dimensional for the number a chosen above, it
follows that ker L is also finite-dimensional. This proves Lemma 4.3.

Remark 4.3. We stress that the kernel of the operator L is finite-dimensional for any arrange-
ment of the eigenvalues of the operators £,(\), p=1,..., Ny.

By Theorem 15.2 in [28] and by Lemma 4.2, the image of the operator L is a closed subspace of
finite codimension. Combining this fact with Lemma 4.3, we see that L has the Fredholm property.

Let us show that ind L = ind L'. We introduce the operator
Liu = {Pu, Cu+ (1 —t)B?u}.

Clearly, Lo = L and L; = L.
It follows from what was proved above that the operators L; have the Fredholm property for
any t. Furthermore, the following estimate holds for any t¢ and t¢:

[Lew = Legullwi ey < kot = tol - [[ullwirem(a),

where ki, > 0 does not depend on ¢. Therefore, it follows from Theorem 16.2 in [28] that we have
ind L; = ind L, for any ¢ in a sufficiently small neighborhood of the point ¢y. Since ¢ is arbitrary,
these neighborhoods cover the segment [0, 1]. Choosing a finite subcovering, we obtain the relations
ind L = ind Ly = ind L; = ind L. This proves the sufficiency of Condition 4.1 in Theorem 4.1.

4.3.2. Proof of Theorem 4.1. Necessity. Suppose that the model problem (1.18), (1.19) in
the plane angles K; = Kf with the sides v,, = ’yfa, j=1,...,N = Ny, 0 = 1,2, corresponds to
the orbit Orb,,.

For any d > 0, consider the sets K]d =K;n{y e R?: |y| < d} and 7?0 =voN{y € R?: |y| < d}
and the spaces

WHEE, v,

—s 1=

Hl N Kd H Hl Kd Wl’N(Kd,’)’d) _
J

WHES ) = WHES) < ]
o=1,2

WlN Kd Wl+2m—mjgu 1/2(7]0)

||:j2

1

m

Set dy = min{Xjaks, 1}/2, do = 2max{xjoks, 1} and d = d(g) = 2dqe.

I'Theorem 3.2 was stated in [16] for the case in which the operators Bz?u have the same specific form as in Example 1.1.
However, the proof of Theorem 3.2 in [16] is based on inequalities (1.5) and (1.6) and does not depend on the explicit
form of the operators B?ﬂ.
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3 P. L. GUREVICH

Lemma 4.4. Suppose that the image of the operator L is closed. Then the estimate

N
10l aeey < (LUl (e ey + D IPH D lwiicsy + 10 lrsamsvgiesy ) (4:19)
j=1

holds for each orbit Orb,,, for any sufficiently small €, and for all functions U € Wit2mN(gdy,

Proof. 1. Since the image of L is closed, it follows from Lemma 4.3, from the compactness of
the embedding W'+2™m(G) c Wi*H2m=1(@3), and from Theorem 7.1 in [28] that

HUHWZ+2m(G) < C(HLUHWl(G,T) + HUHWH%H(G))- (4.20)

Let us substitute functions u € W 2™ (@G) such that
Nip

suppu C U O (97)
j=1

and 2¢ < min{eg, » } into (4.20). It follows from (1.5) that B%u = 0 for these functions u. Therefore,
by using Lemma 3.2 in [22, Ch. 2], we obtain the following estimate:

[Ullwrrzm.n (1) < e(|LpUllwen (x,4) + U [wrisem-1.8 (1)) (4.21)
which holds for any U € W!*+2™N (K) with supp U C Oa.(0) if ¢ is sufficiently small.

2. Let us now get rid of the assumption suppU C O5.(0) and show that the estimate (4.19)
remains valid for any U € Wi+2m.N(Kd),

We introduce a function ¢ € C§°(R?) such that ¢(y) = 1 for |y| < e, suppy C O2.(0), and
does not depend on the polar angle w. Using inequality (4.22) and Leibniz’ formula, we obtain

U lwitzmn (ko) < QU lwirzmn gy < ka([[£p(0U) [lwin (x4) + 19U [[wisem—1.8 (1))
< k(WL Ullwin iy + Y D Wiounsllyreon-mio, -1z, ) + ||U|sz+2m71,NEK23)
Jrom (k,s)#(5,0) 4.22)
for any U € W+2m:N(Kd) where

Jiouks = (V(Gjonsy) — () (Bjouks(Dy)Uk) (gjoksy)\%-

Let us estimate the norm of Jj,.is. Note that, for (k,s) # (j,0), the operator Gj,rs maps the ray
vjo onto the ray

{yeR*:r >0, w=(—1)7b; + Wjors},
and the latter is located strictly inside the angle Kj. Therefore, there exists a function
Ejoks € Cg°(—by, by)
taking the value 1 at the point w = (—=1)7b; + wjoks-
Furthermore, the support of the function ¢ (y) — ¢(g];1k <Y) is contained in the set
{d1e < |y| < dae}.
Therefore, there exists a function ¢y € C§°(K}) which is identically equal to 1 on the support of

the function &(w) (¥ (y) — w(g];lksy)) and satisfies the condition supp; C {die < |y| < dae}. In

this case, similarly to (2.38), we obtain
[ Tjoukslpivem=—mion-1s2(,, y < EsllorUkllwirom i)

Let us estimate the norm on the right-hand side of this inequality by using Theorem 5.1 in [22,
Ch. 2] and Leibniz’ formula. Taking into account the fact that 1; is compactly supported and
vanishes both near the origin and near the sides of K}, we obtain

||']j0uksle“m*mjoufl/?(%.a) < k4(||Pk(Dy)Uk||Wl({d15/2<|y|<2dze})
+ | Ukllwitem-1({d e j2<|y|<2dse}))-  (4:23)
The estimate (4.19) follows now from (4.22) and (4.23). This proves Lemma 4.4.
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SOLVABILITY OF NONLOCAL ELLIPTIC PROBLEMS IN SOBOLEV SPACES, II 9

Lemma 4.5. Let the line Im A = 1 — [ — 2m contain an eigenvalue of the operator ENP()\) for
some p. Then the image of the operator L is not closed.

Proof. 1. Suppose that the image of L is closed. The following two cases are possible: either
(a) the line Im A\ = 1 — [ — 2m contains an improper eigenvalue, or (b) the line ImA =1 —1—2m
contains only the eigenvalue A\g = i(1 — [ — 2m), which is proper (see Definitions 3.1 and 3.2).

2. We first assume that there is an improper eigenvalue A = Ag. Let us show that the esti-
mate (4.19) does not hold in this case. Denote by ¢(9(w),...,p* D (w) an eigenvector and some
associated vectors (forming a Jordan chain of length s > 1) corresponding to the eigenvalue \g
(see [23]). According to Remark 2.1 in [29], the vectors ¢(®) (w) belong to W™ N (—p, b), and it
follows from Lemma 2.1 in [29] that

k
; 1
L,Vk =0, where VF = pito g ~ (ilog MEe*=) (W), k=0,...,—1. (4.24)
s!
s=0

Since \g is not a proper eigenvalue, it follows that the function V*(y) is not a polynomial vector

for some k > 0. For simplicity, suppose that V0 = rito(0) (w) is not a polynomial vector (the case
in which £ > 0 can be treated analogously).

We introduce the sequence U° = r®VO/|[rVO||yyit2m.n (). The denominator is finite for any
0 > 0; however,
||r5V0HWz+zm,N(KE) —o0 as 0—0

because V' is not a polynomial vector. However, ||V ||y i+2m-1.n (ay < ¢, where ¢ > 0 does not
depend on ¢ > 0; therefore,

[U°||wi+zm—1.v(ggay — 0 as & — 0. (4.25)
Moreover, it follows from relation (4.24) that

rPi(Dy)V® + 3o i1 s1=2m jalz1 PiagD1® - DIV
||T6V0HWl+27n,N(K5)

4
_ 2 al+18]=2m,|a|>1 Pias DT - DPVY
||T§VOHWI+2m,N(K5)

Pj(Dy)U6 =

)

where p;.s are some complex constants. Hence,
|DEP;(Dy)U°| < ejebr' ™ 10 /o VO [ yomon ey (1€] D),

which implies that
“PJ(DQ)USHWZ(KJ‘?) —0 as 0—0. (4.26)

Similarly, by using (4.24), one can prove that

1Bjau(Dy)U° |y lyyizmmiu-172y2) = 0 as 6= 0. (4.27)

(73

(To obtain (4.27), one must additionally estimate the expression

Z(k,s);é(j,o) ||(X?oks - 1)T6(Bj¢7ﬂk$ (y7 Dy)vo)(gjaksy)|’}’jg ||WL+2m*iju’l/2(»y]2§)

)

”T6V0||Wl+2m,N(Ks)

which also tends to zero as 0 — 0 by virtue of the inequality | X?Uk s — 1] < kgd.)
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10 P. L. GUREVICH

However, assertions (4.25)—(4.27) contradict the estimate (4.19) because ||U°||yisem.v ey = 1.
This completes the proof in the case under consideration.

3. It remains to consider the case in which the line Im A = 1 —1—2m contains only the eigenvalue
Ao = i(1 — 1 —2m) of £,()\), and this eigenvalue is proper. In this case, we cannot repeat the
above arguments because V' is a polynomial vector, and the norm |[r®V Oy is2m v (g is uniformly
bounded as § — 0.

Let us use the results in Sec. 3. By Lemma 3.2, there is a sequence f° € SI’N(K, v), 6 > 0, such
that supp f° € O.(0) and f° converges in WHY (K, ) to f9 ¢ SZ7N(K, v) as 6 — 0. By Lemma 3.5,
for each f?, there exists a function U® € W!*2mN (K4) such that

L£,U° = f9, (4.28)

”U(SHWH?T"—LN(Kd) < CHf(SHleN(K,W) (4.29)

(c > 0 does not depend on §), and U° satisfies relations (3.8). It follows from inequalities (4.19)
and (4.29), from relation (4.25), and from the convergence of f7 in WV (K, ~) that the “sequence”
U° is a Cauchy sequence in W +2™N (K<), Therefore, U° converges in W!+?™N(K¢) to some
function U as 6 — 0. Moreover, the limit function U also satisfies relations (3.8), and, since the
operator

ﬁp . Wl+2m,N(K5) N )/\}I,N(I(Zdle7 ,Ylea)

is bounded, the following relation holds:
L,U=f" for y& Oaq,(0).

Consider a function ¢ € C§°(R?) such that ¥ (y) = 1 for |y| < d3e and supp ) C Os42(0). Clearly,
YU € WH2mN(K) U satisfies relations (3.8), and supp L, (¥U) C Oa4,-(0). Therefore,

L,(pU) = f°+ f,

where f € WHN (K, 7), and the support of f is compact and does not contain the origin. Hence, the

function v f° 4 f, together with fY, does not belong to Sl’N(K, ), which contradicts Lemma 3.1.
This completes the proof of Lemma 4.5.

Now the necessity of Condition 4.1 in Theorem 4.1 follows from Lemma 4.5.
5. ASYMPTOTICS OF SOLUTIONS OF NONLOCAL PROBLEMS IN SOBOLEV SPACES

5.1. Smoothness of Solutions Outside the Set KC

In this subsection, we prove the following result on smoothness of solutions of problem (1.7),
(1.8) inside the domain and near a smooth part of the boundary.

Lemma 5.1. Let u € W'2™(Q) be a solution of problem (1.7), (1.8). Suppose that the right-
hand side f = {fo, fiu} belongs to W1 (G, Y) with Iy > 1 and Condition 1.2 holds for I, substituted
forl. Then

ue Wht?m(G\ Os(K)) for any § > 0. (5.1)

Proof. 1. We denote by W\ _(G) the space of distributions v in G such that Yo € WY(G) for
all ¥ € C3°(G). By Theorem 3.2 in [22, Ch. 2], we have

u € WhHm(@). (5.2)

loc
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Combining (5.2) with estimate (1.6) implies that

B},u € Whtrm—mu=1/2(y;\ 0,,(K)).

We fix an arbitrary point g € 1; \ O,.,(K) and choose a § > 0 such that

Os(g)NY; C 1y \ O,,(K); g€ 0, (K) = Qis(0s(9) N O, (K)) CG.

Then, in the neighborhood Os(g), the function u is a solution of the following problem:

P(y, Dy)u = fo(y) (y € Os(9) N G),
Bi,uO(y>Dy)u:fi2u(y) (yEO(;(g)ﬂTi; [LZI,...,m),
where
S;

i

W) = Fin(w) =Y (Bius(y, Dy) (Cw)) (s (y)) — B uy), v € Os(g)NTi.

s=1

It follows from relations (5.2), (5.3), and (5.4) that
2, € Whitzm=miu=12(05(g) N Ty).
Applying Theorem 5.1 in [22, Ch. 2]? to problem (5.5), (5.6), we see that
ue Wh2m(0s5(9) N G).
By using the method of partition of unity, we derive from (5.2) and (5.7) that
ue Wht?m(G\ 0,,(K)).
2. It follows from the inclusion in (5.8) and from inequality (1.5) that

B?MU e Wl1+2m_mi“_1/2(Ti).

11

(5.3)

(5.4)

(5.8)

(5.9)

Taking into account formula (5.9), we can repeat the arguments of part 1 of this proof for an

arbitrary point g € Y; and for any number 4, § > 0, such that

Os(g)NY; C Ty g€ 0,(K) = Qs (Og(g) N Ok, (IC)) C G.

As a result, we obtain relation (5.7), which thus holds for an arbitrary element g € T;. Combining
this fact with (5.2) and using the method of partition of unity, we obtain (5.1), which completes

the proof of Lemma 5.1.

2In Theorem 5.1 of [22, Ch. 2] it is also assumed in addition that the operators Bj;,o(y, Dy) are normal on T; and
their orders do not exceed 2m — 1. However, one can readily see that Theorem 5.1 of [22, Ch. 2] remains valid without

these assumptions (see [22, Ch. 2, § 8.3]).
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12 P. L. GUREVICH

5.2. Asymptotics of Solutions Near the Set K

In this subsection, we obtain an asymptotic formula for the solution u near an arbitrary orbit
Orb,, C K provided that the line Im A = 1 —I; — 2m contains no eigenvalues of the operator EP(A).

Thus, let us choose some orbit Orb, C K, and let this orbit consist of the points gf , j =
1,...,N = Ny,. Choose a number ¢, ¢ > 0, such that Og(gf) - V(g?). In this case, the function u
is a solution of the following problem in the neighborhood

N
J 0-(g%)
j=1
of the orbit Orbp:
P(y, Dy)u; = f(y)  (y € O:(g;) NG), (5.10)

S
Bio(y: Dy)uj (), + Y (Bins(y: Dy) (Cun)) (s (1) v, = fiu(w) (5.11)

(yeO(g))NTy; ie{l<i<No:g;eTi}; j=1,....,N; p=1,...,m).

Here u;(y),...,un(y) stand for the same functions as in 1.3 and f/,(y) = fi.(y) — B},u(y) for
y € O(g%) N ;. It follows from (5.9) that f;, € Wh+2m=muw=1/2(0 (%) N T;).

Let y — y’(gf) be the change of variables described in Sec. 1.1. As in 1.3, we introduce the
function Uj(y') = u;(y(y’)) and denote y' by y again. For the index p chosen above, we set b; = b7,

K; = K}, and v, = {y € R?:7r >0, w= (—1)7;} (¢ = 1,2). Then problem (5.10), (5.11)
becomes
P;(y, Dy)Uj = fi(y) (y € K3), (5.12)
Bjou(, DUz, = D (Biopks (4 DU (Giorst) e, = Fion(y) (Y € 7o) (5.13)
k,s

(cf. (1.15), (1.16)); here f = {fj, fion} € WN(K® 4%) and U € WH2mN(K) where d =
emax{Xjoks, 1} (the symbols x;,rs stand for the coefficients of the homothety operators corre-
sponding to the orbit Orb,).

To obtain the asymptotics of the solution u of problem (1.7), (1.8) near the orbit Orb,, we
preliminarily investigate the asymptotics of the solution U of problem (5.12), (5.13) near the origin.

By Lemma 4.11 in [21], the function U; € Wl+2m(KJd) can be represented in the form

Ujly) = Qi(y) + Uj (y), (5.14)

where Q;(y) is a polynomial of order [ + 2m — 2, while U} € W'*™>™(K{) n H**™(K{) for any
a > 0. By setting Q = (Q1,...,Qn), we see that the function U! = (U{,...,U%) is a solution of
the problem

P;(y, Dy)Uj = fi(y) = Pi(y. D)Q;(y) = f(y)  (y € K5), (5.15)
Biou(y, Dy)U' sz, = Fion(®) = Biou(y, Dy)Qlye, = fou(y) (¥ €75,), (5.16)
where fl = {fj17 jlcrp,} € Wll’N(K€77€)'
Using Lemma 4.11 in [21], we represent the function fj1 e Wh(K %) as follows:
i) =Pily) + f7 (), (5.17)
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SOLVABILITY OF NONLOCAL ELLIPTIC PROBLEMS IN SOBOLEV SPACES, II 13

where P;(y) is a polynomial of order I; — 2 (if I; > 2), while f7 € Wll(Kj) N Hb (K5) for any
a > 0.Ifl; <1, then we set Pj(y) = 0, in which case fj1 = fj2 € Hél(Kj) by Lemma 2.1. Note that,
on one hand, the inclusion U € H é+2m(K]€l) implies the inclusion f; € H, LK ) and, on the other
hand, f7 € H*(K$) € HL(KS). Thus, P; € H,(K?), and therefore the polynomial P; consists of
monomials whose order is greater than or equal to [ — 1.

We similarly have

jou®) = Piou(y) + fiou(¥), (5.18)

where Pj,,(y) is a polynomial of order Iy + 2m — mj,, — 2 (if l1 + 2m — mjs;, > 2), and Pjs,(y)
consists of monomials whose order is greater than or equal to [ 4+ 2m — mj,, — 1, while

fgu € Wll+2m*mj”‘l'71/2('ng) N Hél+2m*mj”“71/2('yj-a) for any a > 0.

If l1 +2m — mjo, < 1, then Pj,,(y) = 0.
By Lemma 3.1 in [14],® there exist functions

I14+2m—1 gqj

W; = Z er(i log 7)7pjsq(w) € HCILJ“Q’"(K;), a >0,
s=l+2m—1 q=0
with ¢ € C°([=bj, b;]) such that the vector W = (W1, ..., Wy) satisfies the following relations:
P;(y, D)W, — P; € H{ (K5), (5.19)
Bjou(y, Dy)W — Pjo,, € Hy 2" en =252 ), (5.20)

Further, since

F2 e WK NHI(KE), £, € Wh am—mie—1/2(ye )y flitim=mia,=1/2(yc )

for any a > 0, it follows that the functions ff and ]»20“ satisfy the relations
D*f7ly=0 =0, |af <l —2, (5.21)
o8 2
—7 =0, B<l+2m—mjs, —2. (5.22)
87}0 =0

Therefore, by virtue of Lemma 2.4 and Corollary 2.1, there exist functions

v, € W (Kd) n B (KD,

where a > 0 is arbitrary, such that the vector V = (V4,..., Vi) satisfies the relations
P;(y, D,)V; — f} € Hy' (K3), (5.23)
li+2m—mjs,—1/2
Bjoyu(ys D)V = [, € Ho 2" 2 (5, ), (5.24)

It follows from (5.15)—(5.24) that the vector

U?=U'-V —-W e H 2N (K (5.25)

3In Lemma 3.1 [14] (as well as in Lemma 3.2 [14]), it is assumed that the nonlocal terms contain rotation operators
only (rather than expansion operators). However, the corresponding results remain valid in our case (see [29]).
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is a solution of the problem

P;(y, D,)U; = (P; = Pj(y, Dy)W;) + (f} — Pi(y, D,)V;) € Hg' (K5), (5.26)
Bjou(y, y)Uz‘vj,, = (Pjou — Bjou(y, Dy)W)’vjo

Lh+2m—mjs,—1/2
+ (2~ Biouly, Dy)V1,e ) € Hy' 2(45,)-

(5.27)

Let us choose a small number a, a > 0, such that the strip 1 =/ —2m <ImA<a+1-1-2m
contains no eigenvalues of £,(\) (this is possible because the spectrum of £, () is discrete). In this
case, equalities (5.26) and (5.27) and Lemma 3.2 in [14] imply the following asymptotic formula for
U? € HPM(KY):

j J

e Y e () + U KD, (629

1—-l1—2m<Im\,<1-1—-2m s,q

where U;’ € HéﬁQm(Kj), An are the eigenvalues of EP(A), Yinsq € Cm([—bj,bj]), s=0,...,58n,
sp=[1+2m—1+ImA\,], and ¢ =0,...,¢jn, ¢jn = 0.
Formula (5.28) and relations (5.14) and (5.25) imply

U; = ZZ P (i 10g 1) 19 g (w Z (ilogr)"pjsu(w) + U (y € K5), (5.29)

where U} = U? +V; 4+ Q; € WhT2m(K?).
Note that the function

qjn

Jj = Z Z A (ilogr) ) nog(w Z 2m=1(i1og 1) ©iltam—1.kw)

Im X\,=1-1-2m ¢g=0 q=0

is a homogeneous polynomial of order [ + 2m — 1 with respect to y1,y2 (Lemma 4.20 in [21] would
otherwise imply that J; ¢ W' (K¢), while the other terms in (5.29) belong to W™ (K{)).
Thus, we finally obtain

U; = Z Z P2t (1 10g 1)1 nsq (W)

1—-1l;—2m<Im\,<1-1-2m s,q
I1+2m—1 q;

+ >0 Y rilogn)ip(w) +UP (e KS), (5.30)

s=l+2m q=0

where U? = Ui + J; € Wh+2m(Kd) and the indices in the first interior sum range as follows:
s=1,...,8,iffImX\, =1—-1-2m,s=0,...,s, f Im\, <1—-1-2m, and q =0,...,¢q;, for
qjn P 0.

Let us now derive the main result of this section from Lemma 5.1 and from the representa-
tion (5.30).

Theorem 5.1. Let u € W2™(G) be a solution of problem (1.7), (1.8), and let the conditions
of Lemma 5.1 hold. Then the solution u satisfies relations (5.1). If we additionally assume that the

line ImA =1 — 13 — 2m contains no eigenvalues of the operator Z',p()\) for some p € {1,..., N1},
then the following representation holds in the neighborhood O (g7) (j =1,..., Nip):

u = Z Z rAn s (i log r)d insq(W) + er(z’ log )9 (w) + ' (y € O:(g7) N G). (5.31)

S?q
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SOLVABILITY OF NONLOCAL ELLIPTIC PROBLEMS IN SOBOLEV SPACES, II 15

Here (w,r) are polar coordinates with origin at g?, while V5,5, and @, are infinitely differentiable
functions with respect to w which turn into the functions Vjnsq and jsk, respectively, after the
change of variables y — y'(g5), and, finally, u' € Wh+>m(O.(¢¥) N G), while the indices in (5.31)
range as in (5.30).

In particular, Theorem 5.1 means that, if u € W!+2™(Q) is a solution of problem (1.7), (1.8)
with a right-hand side f = {fo, fiu} belonging to W''(G,T) (I > 1), and if the closed strip
1—101—2m <ImA < 1—1— 2m contains no eigenvalues of the operators ﬁp(/\), p=1,...,Nq,
then u € Wh+2m(@q).

6. NONLOCAL PROBLEMS IN BOUNDED DOMAINS IN
WEIGHTED SPACES WITH SMALL WEIGHT EXPONENTS

6.1. Statement of the Main Result
In Sec. 4.3, we have introduced the operator
L, = {P, B} : H™(G) - H,(G,T), a>1+2m—1. (6.1)

As was mentioned in the proof of Lemma 4.3, the operator L, has the Fredholm property for almost
any a, a >l +2m — 1, due to Lemma 2.1 in [15] and Theorem 3.2 in [16].

In this subsection, we consider problem (1.7), (1.8) in weighted spaces with weight exponents
a > 0. In that case, we have

B},u € WHm—mu=l/2(7) for any wue HLP™(G) C WG\ 0., (K)),
as above. However, the difficulty is that the function Bfuu can now be outside the space

Hé”m*mi“*lm(Ti), in which case the operator L, given by (6.1) can be not well defined.

Introduce the set
Sir2m gy = {ue H?™(@) : the functions B?“u satisfy conditions (4.2)} .
Using inequality (1.5), we obtain
HB?MUHWl+2m7miufl/2(’ri) < leuHWHQm(G\m) < kQHUHHé"'Qm(G)

for all w € H.*?™(G). Combining this inequality with Sobolev’s embedding theorem and Riesz’
theorem on the general form of a continuous linear functional on a Hilbert space, we see that
SiH+2m (@) is a closed subspace of finite codimension in H.F2™(G).

I+2m—m;,—1/2

On the other hand, it follows from Lemma 2.1 that Bfuu € H, (Y;) for any u €

SiH2m (@), a > 0. Since the functions B?uu and B}#u belong to Hé”mfmi“*lm(Ti) for any a € R
and u € S'*2™(@G) (and even for any u € H.F2™((@)), it follows that

{Pu, Bu} € H,(G,T) for any u € S™*™(G), a > 0.

Thus, there exists a finite-dimensional space R'(G,Y) (which is naturally embedded in the

product
+2m—mg, —1/2
{0y x [T a2 2(1,),
(%

a’ > 1+ 2m — 1) such that H. (G, T) NRL(G,Y) = {0} and
{Pu, Bu} ¢ H,(G,T) & R.(G,T) forall ue HF*™G), a>0.
Therefore, we can introduce the bounded operator
L, = {P, B} : H'™™(GQ) — H.(G, 1) o RL(G, ), a>0.
Clearly, here we can set R. (G, Y) = {0} if a > [ +2m — 1.
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Theorem 6.1. Let a > 0 and let the line ImA =a+ 1 —1— 2m contain no eigenvalues of the

operators L,(\), p=1,...,Ny. In this case, the operator L, : H2™(GQ) — HL(G,T) @ RL(G,T)
has the Fredholm property.
Conversely, let the operator

L,: HP™(G) — HL(G, 1) @ RL(G, )

have the Fredholm property. In this case, the line Im A = a+1—1— 2m contains no eigenvalues of

either of the operators L,(N), p=1,..., Ny.

Note that, if f € H.L(G,Y), then 1 fll+ @ vyere @1y = [ fll# (@ x)- Combining this fact with
Theorem 6.1 and with Riesz’ theorem on the general form of continuous linear functionals on Hilbert
spaces, we obtain the following result.

Corollary 6.1. Let a > 0 and let the line ImA =a+ 1 — 1 — 2m contain no eigenvalues of the
operators L,(\), p=1,...,Ny. Then there exist functions f9 € H.(G,Y), ¢=1,...,q, such that
problem (1.7), (1.8) admits a solution u € H.F2™(G) if the right-hand side f of problem (1.7), (1.8)
belongs to H.(G,Y) and

(fs fDrer)=0, a=1,...,q1.

Corollary 6.1 shows that, generally, the inclusion u € Hf;LQm(G) for0<a<l+2m—1 does not
imply the inclusion Lou € H' (G, Y); however, if we impose finitely many orthogonality conditions
on the right-hand side f € H'(G,Y), then problem (1.7), (1.8) admits a solution u € H.F>™(G).

6.2. Proof of the Main Result

6.2.1. Proof of Theorem 6.1. Sufficiency.

Lemma 6.1. The kernel of the operator L, is finite-dimensional.

Proof. Note that H:F?"(G) ¢ H.F*™(G) for a < o/. Thus, the lemma can be proved in the
same way as Lemma 4.3.

Let us proceed by constructing a right regularizer for the operator L.

As was mentioned above, the functions B?uu and Biluu belong to Hé+2m7mi“71/2(’fi) for any

u € HF?2™(@) and a € R. Therefore, we can introduce the bounded operator
L. = (P, C}: H:™>"(G) — H.(G.Y).

In [16, § 3] it was proved that one can find a bounded operator R, 1: H,(G,Y) — HF?™(Q)
and a compact operator T, 1: H. (G, Y) — H. (G, Y) such that

LR, =1, +T,, (6.2)

where I, stands for the identity operator in H. (G, ).

Further, it follows from Theorem 2.3 that, for any sufficiently small number € > 0, there exist
bounded operators

RZL’K; {f {0, Y € HL(G, ), supp f' € Ose(K)} — {u € H2™(G) : supp f' € 04 (K)},
L Toge {1 {0, £} € HL(G, ), supp [/ C 05.(K)} — HL(G, )
such that HMZL,KJUHHL(G,T) < cg|{0, f’}HHUG,T), where ¢ > 0 does not depend on ¢, the operator
T/, x is compact, and
LR, o f =10, f'} + M, o f" + T\, i .
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For any f’ such that {0, f'} € H!(G,Y), we set

J
R, f =R, @' f)+ ) R f), (6.3)

j=1

where the functions ¢’, 1 and the operators Ry; are the same as in 4.2.
By using Theorem 2.3, one can immediately show that

LiRo 1 f' =10, f} + M o f + T, f (6.4)

Here M, |, T, : {f" : {0,f'} € HL(G, 1)} — H.L(G,T) are bounded operators such that

M, 1 'l (@ r)y < egll{0, £/}l (@, vy, where ¢ > 0 does not depend on € and the operator T, ; is
compact.

Let us construct a right regularizer for problem (1.7), (1.8) with nonzero B, in weighted spaces
by using the operators R, ; and Ry, ;.
For a > 0, we introduce the set

SLG,Y) = {f € H.L(G,Y) : the functions ® = B*R,, 1 f and B2R:1,1CI> satisfy conditions (4.2)} .

We claim that S! (G, T) is a closed subspace of finite codimension in H. (G, Y). Indeed, by using
inequality (1.5), we obtain

||(I)iu||Wl+2m*mm*1/2(ri) < kl”Ra,lf”Wle(G\m) < k2||Ra,1f||H(ll+2m(G) < k?BHfHHQ(G,T)'

(6.5)
Since the function ®;, satisfies conditions (4.2), it follows from (6.5) and from Lemma 2.1 that

o, € HLPP w20y and

(@il grv2mn -2, < Kl 1) (66)

i

Therefore, the expression B®R;, ; ® is well defined. Similarly, using (6.6) and (4.2), we obtain

ksl fll#, @) (6.7)

||[B2R;’1¢]iﬂ”Wl+2'm—7ni“71/2(’ri) <
2
B RZI,I(I)]UJ«||H(ll+2m*mz‘u*1/2(Ti) < ksl fll# ) (6.8)

where [-];, stands for the corresponding component of the vector.

It follows from (6.5) and (6.7), from Sobolev’s embedding theorem, and from Riesz’ theorem
on the general form of continuous linear functionals on Hilbert spaces that S!(G, ) is a closed
subspace of finite codimension in H!, (G, T). Hence,

HL(G,T) @ RL(G,T) =SL(G.T) & RL(G, ), (6.9)

where 7@2(6’, T) is some finite-dimensional space. We can now prove the following result.

Lemma 6.2. Let a > 0 and let the line ImA = a+ 1 — 1 — 2m contain no eigenvalues of the

operators Ly(A), p=1,...,Ny. Then one can find a bounded operator
R.: H (G, 1) ® R (G, T) — H>™(@)
and a compact operator
T.: H,(G,T) ® RL(G,T) — HL(G, T) ® RL(G, T)
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such that A
LR =1,+T,, (6.10)

where 1, stands for the identity operator in H.(G,T) & RL(G, ).

Proof. 1. Set ® = B?R, 1 f, where f € SL(G,T). It follows from (6.6) and (6.8) that the
functions {0, ®} and {0,B*R/, ;®} belong to H,(G,T). Therefore, the functions ® and B?R, ; ®

belong to the domain of the operator Ry, ;, and we can introduce the bounded operator

R,s:S,(G,T) — H™™(G) by setting Rqsf=Ra1f—R,,;®+R, ,B°R, .

As in the proof of Lemma 4.2, using relations (6.2) and (6.4), one can show that
LaRa,S = Ia,S + M + T7

where I, s, M, T : SL(G,Y) — HL(G,Y) ® RL(G,Y) are bounded operators such that I, sf = f,
|M|| < ce (¢ > 0 does not depend on ¢), and T' is compact.

2. Due to (6.9), the subspace Sk (G, T) is of finite codimension in H. (G, T)&R. (G, T). Therefore,
the operator I, s has the Fredholm property. By Theorems 16.2 and 16.4 in [28], the operator
I, s+ M +T also has the Fredholm property if € is sufficiently small. It follows from Theorem 15.2

in [28] that one can find a bounded operator R, and a compact operator T, acting from the
space H. (G, T) ® RL(G, T) to SL(G,T) and to HL(G,T) & RL(G,Y), respectively, which satisfy

(Ios+M+T)R, =1, +T,. Set
R, = R, sR, : H,(G, 1) ® RL(G,T) — H.F2™(@Q);

this yields (6.10) and completes the proof of Lemma 6.2.

By Theorem 15.2 in [28] and by Lemma 6.2, the image of the operator L,, a > 0, is closed and of
finite codimension. Combining this fact with Lemma 6.1 proves the sufficiency part of Theorem 6.1.

6.2.2. Proof of Theorem 6.1. Necessity.

Lemma 6.3. Let a > 0 and let the line ImA = a + 1 —1 — 2m contain an eigenvalue of the
operator L,(\) for some p. Then the image of L, is not closed.

Proof. 1. Assume that, to the orbit Orb,, there corresponds a model problem of the form (1.18),
(1.19) in the angles K; = Kf with the sides vj, = 7?07 j=1,...,N =Ny, 0=1,2.

For any d > 0, we introduce the spaces

m N
HL(KY v = HUKS) < [ [ HSFP e 208, HEN(ED A% = [ HLEE ).

o=1,2 p=1 j=1

Set diy = min{xjoks, 1}/2, do = 2max{xjors, 1}, and d = d(e) = 2dae.
Assume that the image of L, is closed. Then, as in the proof of Lemma 4.4, one can apply

Lemma 6.1, the compactness of the embedding H.*?™(G) ¢ H.F?m~1(G), and Theorem 7.1 in [28]
to show that

N
10 g ey < (1ERU v e ey + D WPHD) sl aety + T gramesov ey ) (6:11)
j=1

for any U € H. 2™ N (K?) and for any sufficiently small ¢.
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2. Let Ao be an eigenvalue of £,()\) lying on the line Im\ = a 4+ 1 — I — 2m, and let ¢ (w)
be an eigenvector corresponding to the eigenvalue \g. According to Remark 2.1 in [29], the vector
©(®(w) belongs to the space W™ N (—p b), and it follows from Lemma 2.1 in [29] that

L,V =0, (6.12)

where V0 = 720 5(0) ().
Substitute the sequence U° = T5VO/||T5VOHH1+2m,N(KE), 0 > 0, into (6.11). Let § tend to zero.
As in the proof of Lemma 4.5, one can use relation (6.12) to show that the right-hand side of

inequality (6.11) tends to zero while the left-hand side remains equal to one. This contradiction
proves Lemma 6.3.

The other part of Theorem 6.1 follows from Lemma 6.3.

7. NONLOCAL PROBLEMS IN BOUNDED DOMAINS WHEN THE
LINE ImA = 1 — [ — 2m CONTAINS AN EIGENVALUE OF L,(}\)

In the previous sections, we proved the Fredholm solvability and obtained the asymptotics of
solutions of problem (1.7), (1.8) for the case in which the corresponding line in the complex plane

contains no eigenvalues of the operators £,(\), p =1,..., Ny. In this section, by using the results
of Sec. 3, we study the case in which the line Im A = 1 — [ — 2m contains only the proper eigenvalue
Ao = i(1 — 1 — 2m) of the operators L,(\) for some p € {1,...,N;}. In this case, the operator
L: W2 (G) — WG, T) fails to have the Fredholm property due to Theorem 4.1 (its image is
not closed). For this reason, we assign to problem (1.7), (1.8) an operator acting on another space
and prove that this operator has the Fredholm property.

7.1. Construction of a Right Regularizer When B?M =0
We study the nonlocal elliptic problem (1.7), (1.8) under the following condition.

Condition 7.1. The number \g = i(1 — [ — 2m) is a proper eigenvalue of the operators ZP(A),
p € II, where II is a nonempty subset of the set {1,..., N1}. None of the eigenvalues A\, X\ # Ag, of
the operators £,(\), p=1,..., Ny, belongs to the line ImA =1—1—2m.

Introduce functions P € C§°(R?) such that ¢?(y) = 1 for

Nip Nip
ye | JO.2(g?) and suppy? C | O(dh).
=1 =1

Here ¢ > 0 is assumed to be so small that O.(g}) C V(g}). We also write

N1
p=1-) yr.
p=1

Let a vector f? = {f7, 7, ,} of the right-hand sides in problem (1.15), (1.16) correspond to a vector

PP f = {YP fo,¥P fiu} of the right-hand sides in problem (1.7), (1.8). Clearly, supp f? C O(0).
We introduce the space Sl(G, T) with the norm

1/2
I lsier = (105 By + 20 1 Wasiser iy + 20 W Wnacomy) - (7.1)

p€ll p¢ll
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According to Condition 7.1, the set of indices II is not empty; therefore, by Lemma 3.2, the set
SY(G, ) is not closed in the topology of W!(G, ).
On the other hand, it follows from Lemma 3.1 that, if u € W!T2™(Q) satisfies the relations

D%ul,_g» =0, |a|<I+2m—2;p=1,...,Ny; j=1,..., Ny, (7.2)
J

then {Pu, Cu} € SY(G,Y) (the operator C = BY + B! was defined in Sec. 4). Introduce the space
SH2(G) = {u € W'?™(G) : u satisfies relations (7.2)}
and consider the operator
L' ={P, C}: 58" (@G) - SY(G,T).
By Lemma 3.1, the operator L' is bounded.
Lemma 7.1. Let Condition 7.1 hold. Then there exist a bounded operator
R;: SY(G,T) — S (@)
and a compact operator o .
T:: SHG,T) = SYG,T)
such that o o
L'R, =1+Ty, (7.3)
where 1 stands for the identity operator on the space S’Z(G, 7).

Proof. The proof is similar to that of Lemma 4.1 with the following modifications: (I) Theo-
rem 2.1 (which is now applied to the orbits Orby,, p ¢ II) must be completed with Theorem 3.1
(applied to the orbits Orb,, p € IT) and (II) Remark 2.1 must be taken into account.

7.2. Construction of Right Regularizer when BZZ# # 0

Theorem 2.2, Remark 2.1, and Theorem 3.2 imply that, for any sufficiently small € > 0, there
exist bounded operators

Rjc : {f/: {0, f'} € SUG,T), supp f' € Oz (K)} — {u € S2™(G) : supp ' € Ou(K)},
VIG, T - {f": {0, f'} € SHG, ), supp f' C O (K)} — SHG, T)

such that Hl\A/I;Cf’HSZ(G vy < c€[l{0, f'}Hl (G x)» where ¢ > 0 does not depend on ¢, the operator T/
is compact, and

LR f' = {0, f'} + Micf' + T .
For any f’ such that {0, f'} € SL(G, T), we set

J
=R W) + ) R, (w5 f),
j=1
where the functions 9" and ¢; and the operators Ry, are the same as in 4.2.
By using Theorems 2.2 and 3.2, one can directly show that

L'Rif ={0,f} + My f + Ty f" (7.4)

nge M’l, T’l Af {0, f'} € Sl(G, T} — Sl(G, T) are bounded operators satisfying the inequAality
IM1f g1y < cel{0, f'}H g1 (), where ¢ > 0 does not depend on ¢, and the operator T} is
compact.

Let us construct a right regularizer for problem (1.7), (1.8) with nonzero operator B, by using

the operators Ry and ﬁ’l To this end, we need the following consistency condition.
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Condition 7.2. For any u € S't2™(@), we have {0, B%u} € §/(G,T) and

{O, BQU}HSZ(G T S < dluflwirzm gy

Remark 7.1. According to (1.5), the operator B2 corresponds to nonlocal terms whose support
is outside the set K. Therefore, if Condition 7.2 holds for the functions u € S'*2™(G), then it also
holds for the functions u € W'2™(G \ O,,, (K)).

Remark 7.2. Example 1.1 shows how to achieve the validity of Condition 7.2.

Consider problem (1.9), (1.10) and assume in addition that the transformations ;5 in this
problem satisfy condition (1.2) (which is a condition on the geometric structure of the transforma-
tions €2;5). In this case, it follows from the continuity of ;s that €24 (Og(g)) C O, /2(K) for any
g € T; N K if the number 6§, é > 0, is sufficiently small. Therefore,

B?Mu(y) =0 for yeO;K) (7.5)

for any u € W2 (G\O,,, (K)) because 1—((Q45(y)) = 0 for y € Os(K). In this case, Condition 7.2
obviously holds.

One can replace condition (1.2) by the following condition: if ;5(g) ¢ K (where g € T; N K),
then the coefficients of B;,s(y, D,) have zeros of certain orders at the points €2;5(¢g). This also

ensures that {0, B%u} € S(G,Y) for any u € W2m(G\ O,,, (K)). However, we do not study this
issue in detail in this paper.

By Lemma 3.1 and Condition 7.2, we have
{Pu, Bu} € S{G,T) for all u e S2™(G).

Therefore, the operator Lg = {P, B} : §"*2"(G) — SY(G,Y) is well defined and bounded, by
Lemma 3.1 and Condition 7.2 again.

R Lgmma 7.2. Assume that Conditions 7.1 and A7.2Ahold. Then AtheTe exist a bounded operator
R: SYG,T) — S™H2™(@Q) and a compact operator T: SY(G,T) — SYG,YT) such that

LsR=I+T. (7.6)

Proof. We set ® = B2R,f, where f = {fo, f'} € S/(G,T) and R, enters (7.3). According to
Condition 7.2, the functions ® and BZR’ ® belong to the domain of the operator R1 Therefore,
we can define the bounded operator Ry : Sl(G, T) — S (G) by the formula

Rsf=Ri.f - R|®+R,B’R,®
As in the proof of Lemma 4.2, one can use relations (7.3) and (7.4) to show that
tsf{,g = i + M + T,

where M, T: SY(G,T) — SY(G, T) are bounded operators such that | M|| < ce (where ¢ > 0 does
not depend on ¢) and the operator 1" is compact.

The operator I+ M: S{(G,YT) — SYG,T) is invertible for ¢ < 1/(2¢). Therefore, writing
R=Rs(I+ M)t and T = T(I+ M)~} one obtains (7.6) and completes the proof of Lemma 7.2.
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7.3. Fredholm Solvability of Nonlocal Problems
Since the subspace S!*2™(G) is of finite codimension in W!T2m (@), there exists a finite-dimen-
sional subspace R' (G, T) in W!(G, Y) such that
{Pu, Bu} € S{G,T) @ RYG,T) forall ue WH™(Q).
Therefore, we can introduce the bounded operator

L={P, B}: W*(@) - (G, T)® R'G,Y).

Theorem 7.1. Let Conditions 7.1 and 7.2 hold. Then the operator L has the Fredholm property.
Proof. Lemmas 4.3 and 7.2 of this paper and Theorem 15.2 in [28] imply that the operator

Lg: S72"(@) — §Y(G, T)

has the Fredholm property. Since the domain W!+2™(G) of the operator L is an extension of the
domain S'+2™ (@) of the operator Lg by a finite-dimensional subspace and the operator L coincides

with the operator Lg on Si+2m (@), it follows that L also has the Fredholm property. This proves
Theorem 7.1.

8. ELLIPTIC PROBLEMS WITH HOMOGENEOUS NONLOCAL CONDITIONS

In this section, we study the operator corresponding to problem (1.7), (1.8) with homogeneous
nonlocal conditions. By using the results of Sec. 7, we show that, if the line ImA =1 -1 — 2m
contains a proper eigenvalue only, then the operator under consideration can have the Fredholm
property, in contrast to the operator L. This turns out to depend on whether or not some algebraic
relations among the operators P, B?, and B! hold at the points of the set IC.

8.1. Case in Which the Line Im A = 1 — | — 2m Contains No Eigenvalues of L,()\)
Introduce the space
WL2™(GQ) = {u € W™(G) : Bu = 0}.

Clearly, the space W?Qm(G) is a closed subspace of W!+2™ (). Consider the bounded operator
Lp: W52™(G) — WYG) given by

Lpu = Pu, u € W5E2™(G).

To study problem (1.7), (1.8) with homogeneous nonlocal conditions, we impose the following
assumptions on the operators B;,s(y, Dy) (see, e.g., [22, Ch. 2, § 1]).

Condition 8.1. The system {Bi,0(y, Dy)}, =, is normal on Y, for any i,i = 1,..., No, and the
orders of the operators B;,s(y, Dy) (s =0,...,5;) are less than of equal to 2m — 1.

In this subsection, we prove the following result.

Theorem 8.1. Let Condition 4.1 hold. Then the operator Lip has the Fredholm property.

Let the line Im A = 1 —1—2m contain an improper eigenvalue Ay of the operator Zp()\) for some
p, and let Condition 8.1 hold. Then the image of the operator L is not closed (and therefore L
fails to have the Fredholm property).

Let a model problem (1.18), (1.19) in the angles K; = K} with the sides v;o = 7},, j =
1,...,N = Ny, 0 = 1,2, correspond to the orbit Orb,,.

The following lemma enables one to reduce nonlocal problems with nonhomogeneous nonlocal
conditions to the corresponding problems with homogeneous conditions.
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Lemma 8.1. Let Condition 8.1 hold. Then, for any fjo. € Hé+2m_mj”“_1/2(7ja) such that
supp fiop C O (0) (e1 > 0 is fized), there exists a function V. € HLP?™N(K) satisfying the
conditions supp V' C Oae, (0) and

Bj‘w(%D )V"on = fjtwv (8.1)
IVl ) < een 3 Wsonllgtsamomime-iin, (8:2)
.770-#

where cc, > 0 does not depend on fjq,.

Proof. 1. As in the proof of Lemma 3.1 in [30] (which deals with differential operators with
constant coefficients), one can construct functions Vj, € H:F?™(K;) such that

Bjrwjo(yaD )V}G"Yja = fjous (8.3)

”VJUHHHZW(K) k2ZHfJou” Lram=mjop = (Wja)‘ (8.4)

Since supp fjon C O, (0), one can assume that supp Vj, C Oz, (0).

2. Write 0 = min |[(=1)7bj + wjors £ bk|/2 (j,k = 1,...,N; 0 = 1,2; s = 1,...,Sj,%) and
introduce functions ¢j, € C§°(R?) such that (js(w) = 1 for [(—1)7b; — w| < /2 and (js(w) =0
for |(—1)°b; — w| > 4. Since the functions (;, are multipliers on the space H.™2™(Kj), it fol-

lows from (8.3) and (8.4) that the function V' = (¢11Vi1 + G12Vig, ..., (v1Vr + (veVive) satisfies
conditions (8.1) and (8.2). This completes the proof of Lemma 8.1.

Remark 8.1. One cannot use similar arguments for Sobolev spaces because the functions (j,
are not multipliers on the spaces W!2m (K j)- Moreover, it is possible to construct functions fjs, €
Whm=—men=1/2(n. ) (j =1,...,N; 0 =1,2; p=1,...,m) such that none of the functions V €
WiH2mN (K satisfy Condltlons (8.1). This explains why the problem with homogeneous nonlocal
conditions is not equivalent to the problem with nonhomogeneous conditions (i.e., the former can
have the Fredholm property in contrast to the latter, see examples in Sec. 9).

As above, for any chosen orbit Orb,,, we write di = min{xjoks,1}/2, do = 2max{x;ors, 1}, and
d = d(e) = 2dse. The following result will be used below when studying the image of the operator
Lp (cf. Lemma 4.4).

Lemma 8.2. Let Condition 8.1 hold, and let the image of Lp be closed. For each orbit Orb,, for
any sufficiently small €, and for any U € WH2mN (K 4) satisfying relations (3.8) and the conditions

BjUM(Dy)Uth;:O j=1,...,N; 0 =1,2; p=1,...,m), (8.5)

the following estimate holds:*

N
U llwszm sy < €Y (1P3(Dy)Ujllwr sy + 10 g sam- L) (8.6)
=1

Proof. 1. Since the image of Lp is closed, it follows from Lemma 4.3, from the fact that the
embedding W™ (G) ¢ W+2m=1(G) is compact, and from Theorem 7.1 in [28] that

ullwit2m (@) < e(IP(y, Dy)ullwea) + ullwivam-—1(a)) (8.7)

4Under the assumptions of this lemma, it follows from Lemma 2.1 that Uj € H(ll+2m(K;1) for any a > 0. Therefore,
U; € Hé"'zm_l(K;.l) and the estimate (8.6) is correct.
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for all u € W5™™(G). Let us substitute a function u € W5™(G) such that

Nip
suppu C U O2c, (7)), 2e1 < min{eg, 71 },
j=1

into (8.7). By (1.5), we have B2u = 0 for any function of this kind. Therefore, using Lemma 3.2
in [22, Ch. 2], we see that, if €1 is sufficiently small, then the estimate

N

U lwi+2m.n ey < k1 Y (1P (Dy)Ujllweieyy + U llwisem—1(x,)) (8.8)
j=1

holds for any U € W!*+2mN (K such that supp U C Oy, (0) and
Bjou(y, DU}, =0 (j=1,...,N; 0 =1,2; p=1,...,m). (8.9)

2. Let us show that, if e3 < e1d; is sufficiently small, then the estimate (8.8) holds for all
U € WiH2mN(K) satisfying relations (3.8) and the conditions supp U C Os.,(0) and

Bjau(Dy>U‘ng =0 (j=1,..., N;o=1,2p=1, ..., m). (8.10)
We set @5, = Bjou(y, Dy)Ul|,,,; clearly,
supp® C O, /q4,(0) C O, (0). (8.11)

Let us choose some a, 0 < a < 1, and prove that

1@jopll yreom—mgurz, < ke [|Ullwiem.n (k). (8.12)
0

(’yja)

It follows from (8.10), with regard to the fact that the trace operator in the weighted spaces in
question is bounded, that it suffices to estimate the terms of the following type:

(aa(y) = aa(0)DU;  (lal = myjo),  asy)D’U; (18] < Mjop — 1),

where a, and ag are infinitely differentiable functions. Using the assumptions concerning the sup-
port of U; and taking account of Lemma 3.3’ in [21] and Lemma 2.1, we obtain

H (aa(y) - aa<0))D U H l+27n m k3€2 (IH (aa<y) - aa(O))D U H l+27n m

) 1K)

<k452 aHDaU || z+2m m k5€2 aHUjHWH'Zm(Kj)'

jou (K )
Similarly, using Lemma 2.1, we obtain

||aﬂ( )D U || I+2m m kﬁgéia”UjHHit%m*l(Kj) <]€7€%7a||Uj||Wz+2m(Kj).

JUIJ«(K )

Thus, the estimate (8.12) is proved.
Further, by virtue of (8.11) and Lemma 8.1, there exists a function V. = (Vi,...,Vy) €
HP™ N (K) such that supp V C Oy, (0) and

Bjou(y, Dy)Vly;, = Pjop (8.13)
||VHH1+2m N(K) X C¢y Z Hq)jaﬂHH(Z)+2m_mj”“_1/2('yja)’ (8.14)

70-7“
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where c., does not depend on ;.
Estimating U — V' with the help of (8.8) and using inequalities (8.14) and (8.12), we obtain

”UHW1+2m N(K) S HU VHWl+2m N(K) + HV||Wl+2m N (K)

N
ks Z (||Pj(Dy)UjHWl(Kj) + |Ujllwitem—1(x,) + Eé_aHUijHzm(Kj))
j=1

Now, choosing a sufficiently small number e5, we obtain the estimate (8.8) for any U € W!+2m:N(K)
such that relations (3.8) and (8.10) hold and supp U C Oa.,(0).

3. Let us omit the assumption suppU C O, (0) and prove that the estimate (8.6) holds for
€ < e9d; and for any U € WH2mN (K1) satisfying (3.8) and (8.5).

Introduce a function ¢ € C§°(R?) such that ¢ (y) = 1 for |y| < &, supp ) C O2.(0), and ? does
not depend on the polar angle w.

Set Ujq, = BjUM(Dy)(¢U)|7jU; clearly,

supp Vo C Oc/q,(0) C O, (0). (8.15)
Let us show that
N
1soull yresemresonmrrn, | <ho > (IPR(Dy)Usliwr sty + 1Usl grovam- x))- (8.16)
k=1

Taking into account relations (8.5), we can represent the function V¥j,,, as follows:
]o‘u Z ‘lljouks + Z Jjap,ksa (817)
(k,8)#(5,0)

where
‘lljouks = ([BjUMkS(Dy)’ w]Uk) (gjoksy) "yja’
Jjouks = (¢(gjaksy) - w(y)) (BjUMkS (Dy)Uk) (ngksy) |’Yja

([-, ] stands for the commutator).

Since the expression for W, ,.s contains derivatives of Uy whose order is less than or equal to
Mjqu — 1, it follows that

H\I/jg“ksHHé+2m—ij#—1/2 < klOHUkHH(l;LQmA(K;j). (8.18)

(’Yj[f)
Further, repeating the arguments in part 1 of the proof of Lemma 4.5, we obtain

1 ioubsll ivammin-irz < K (Pe(Py)Ukllwi (qares2< iyl <2azeh)

+ Ukl witem-1({d e j2<|y|<2dse}))-  (8:19)

The estimate (8.16) follows now from (8.17), (8.18), and (8.19).
4. By virtue of (8.15) and Lemma 8.1 (applied to the operators B, (Dy)), there exists a function
V=(,...,Vy) € H;">™N(K) such that supp V C Os,(0) and
BjG#(Dy)V"YjU = Yjop, (8.20)
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||VHH(l)+2m’N(K) < k12 ];L ||\I}jo.'u‘|Hé+27n_mjgu_1/2(’yja)' (821)

Estimating ¢)U — V with the help of (8.8), using Leibniz’ formula and inequalities (8.21), (8.16),
we obtain

[Ullwiremn 1oy < [[9U]lwiremn (1) < [YU = Vwiszm gy + |V wiremv (1)

N
<k Y (P D) Usllwe sy + 105 gam=1 ey
j=1

This proves Lemma 8.2.

Lemma 8.2 enables us to prove that, if the line Im A = 1—]—2m contains an improper eigenvalue,
then the operator L fails to have the Fredholm property, like L.

_ Lemma 8.3. Let the line ImA =1 —1—2m contain an improper eigenvalue Ao of the operator
L,(N) for some p, and let Condition 8.1 hold. Then the image of Lp is not closed.

Proof. 1. Assume that the image of L is closed. Denote by ¢ (w), ..., 1 (w) an eigen-
vector and associated vectors corresponding to the eigenvalue Ao (see [23]). By Remark 2.1 in [29],

the vectors p(¥) (w) belong to W2™N (—p b) and satisfy the relations

Pj(Dy)ij =0, Bj0u<Dy)Vk =0, (8.22)
where i
A L. —s
Vk:r/\oz(;s!(zlogr)kgo(k ) (w), k=0,...,c—1

Since \g is not a proper eigenvalue, it follows that the function V*(y) is not a polynomial vector
for some k > 0. For simplicity, we assume that V0 = 20 (9 (w) is not a polynomial vector (the

case in which k£ > 0 can be treated in the similar way).
Let ¢ and d = d(g) be the same constants as in Lemma 8.2. Consider the sequence

U(s = T(SVO/HT(SVOHWH-zm,N(Ks).

The denominator is finite for any J > 0; however, ||7"5VOHWz+zm,N(KE) — 00 as § — 0 because V°
is not a polynomial vector. Note that

||’I”5V0HHé+zm_1,N(Kd) < ¢,
where ¢ > 0 does not depend on § > 0, and therefore
IU° | gr+2m=1.8 (jeay =0 as & — 0. (8.23)

By using (8.22), as in the proof of Lemma 4.5, one can show that

||7Dj(Dy)Uj|le(Kf) —0 as 0—0, (8.24)
1Bjou(Dy)U°| —0 asd—0. (8.25)

3 +2m—m ; —1/2
gl g momn 12 ey

2. Introduce a function 1 € C§°(R?) such that ¥ (y) = 1 for y € O2.(0) and supp ¥ C O3.(0).
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Applying Lemma 8.1 to the operators B,y (D,) and to the functions fj,, = ijgu(Dy)U‘shja

(note that supp fjo, C Os:(0)), we obtain a function W? € H(l)+2m’N(K) (6 > 0) such that
supp W C 0. (0) and

Bjau(Dy)W6|ﬁ§ = Bjau(Dy)U6|vj2.gv (8.26)
W2l tm. (geeey < b > Hng“(Dy)U‘sh?;HHéHm_mjw_l/z ey (8.27)
3,00 77

Moreover, the function U® — W? satisfies relations (3.8); therefore, we can apply Lemma 8.2 to
the function U° — W9, The estimate (8.6) and inequality (8.27), together with the fact that the
embedding Hé“m(KJGE) C Wl+2m(K]65) is bounded, implies

U |[witzmoy ey < U° = WOllwsamay (xey + [|WO [ wbzm. (5o
N
<o Y (IPADNUS Iwrieg) + 32 1Bion (DU L vam v o
Jj=1 o, 77
+|\Uj||Hé+2m,1(K?)). (8.28)
However, relations (8.23)-(8.25) contradict the estimate (8.28) because ||U° ||yyi+2m.n () = 1. This
proves Lemma 8.3.
Proof of Theorem 8.1. The first part of Theorem 8.1 follows from Theorem 4.1. The other
part follows from Lemma 8.3.
8.2. Case in Which the Line Im A = 1 — 1 — 2m Contains the Proper Figenvalue of ﬁp(/\)

It remains to study the case in which the line Im A = 1 — [ — 2m contains the proper eigenvalue
only. Let Condition 7.1 hold. We claim that the Fredholm property of the operator L, for a chosen
[ > 1, is a consequence of the following condition.

Condition 8.2. For [ > 1 and for any p € II, system (3.4) corresponding to the orbit Orb,
contains the operators DSP;(D,) (|(|=1—1,j=1,...,N = Ny,).

Theorem 8.2. Suppose Conditions 7.1 and 7.2 hold. Then

1. The operator
Lp: W3™(G) — Ly(G)

has the Fredholm property;
2. Ifl > 1 and Condition 8.2 holds, then the operator

Lp: W52™(G) — WYG)

has the Fredholm property;
2. If1 > 1 and if Condition 8.2 fails and Condition 8.1 holds, then the image of the operator

Lp: W52™(G) — WHYG)
is not closed (and, therefore, Lg fails to have the Fredholm property).

Proof. 1. By Lemma 4.3, the kernel of Ly is finite-dimensional. Let us study the image R(Lp)
of the operator L.

2. Assume first that [ > 1 and Condition 8.2 holds. We claim that the set

{fo e WHG) : {fo,0} € S (G, 1)} (8.29)
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is a closed subset of finite codimension in W!(G). Indeed, let 1P be the functions occurring in
the definition of the space S'(G,Y) (see 7.1). Then some vector {f},0} of the right-hand sides in
problem (1.15), (1.16) corresponds to the vector {¢? fo,0} of the right-hand sides in problem (1.7),
(1.8). Let p € TI; clearly, Tjo,{f],0} = 0. Moreover, by Condition 8.2, relations (3.6) are absent.
Thus, due to (7.1), the norm of the function {fy,0} € SZ(G,T) in S’l(G,T) is equivalent to the
norm of fy in W!(G), while the set (8.29) is the subspace of W!(G) consisting of the functions
satisfying relations (4.1).
Further, since S'(G,T) ¢ SH(G,Y) @ R (G, T), it follows that the set

{fo € WHG) : {fo,0} € SYG,T) ® RYG, )} (8.30)

(which contains the set (8.29)) is also a close subset in W(Q) of finite codimension. On the other
hand, fo € R(Lp) if and only if {fy,0} € R(L), where L is the operator defined in Sec. 7.3.

Combining this with the fact that the operator L has the Fredholm property, we see that the image
of Lp is closed and of finite codimension.

3. Assume now that [ > 1 and Condition 8.2 fails. Let us prove, using the results of Sec. 3, that
the image of Ly is not closed. Suppose the contrary. Let R(Lp) be closed.

Since Condition 8.2 fails, the set of conditions (3.6) is not empty. For some j, £, the norm (3.7)
contains the corresponding term ||Z;¢ f| my(r2)- Therefore, as follows from the proof of Lemma 3.2,

there is a sequence f% = {f]‘»S,O} e SN (K, ~), 6 > 0, such that supp f° € O.(0) and f converges
in WhN (K, ) to [0 ¢ SEN(K,~) as § — 0.
By Lemma 3.5, for each f°, there exists a function U® € W!*+2™N(K9) such that

PJ(D?J)U](; = ]('Sa Bjau(Dy)U6 =0, (831)
0% gmmsov oy < el f% v e (8.3

(where ¢ > 0 does not depend on §) and U? satisfies relations (3.8). By the second relation in (8.31)
and relations (3.8), we can apply Lemma 8.2 to the function U°. By using the estimate (8.6), the

convergence of f0 to fO ¢ SEN(K,~), and inequality (8.32), we arrive at a contradiction (cf. the
proof of Lemma 4.5).

4. If I = 0, then the set of conditions (3.6) is empty because these conditions occur for [ > 1
only. As in part 2 of the proof, this implies the assertion of the theorem.

9. EXAMPLES OF NONLOCAL ELLIPTIC PROBLEMS IN SOBOLEV SPACES

In this section, we consider two examples illustrating the results of the research.

9.1. Example 1

9.1.1. A Problem with Nonhomogeneous Nonlocal Conditions. Let

2
oG\ K =i,

i=1

where Y; are open (in the topology of 9G) smooth curves and K = T1N 7Yy = {g1,92}, where g

and g9 are the ends of the curves T1 and T5. We assume that, in some neighborhoods of the points
g1, 9o, the domain G coincides with the plane angles of the same aperture 2wg, 0 < 2wy < 27. We
consider the following nonlocal problem in the domain G:

Au=fo(y) (y€G), (9.1)
ulr, +biu(W)) |y, = fily) (yeTis i=1,2). (9.2)
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Here b1,b2 € R, and €; is an infinitely differentiable nondegenerate transformation taking a neigh-
borhood O; of the curve Y; onto Q(0;) in such a way that Q(T;) C G, Qi(g;) = g5, j = 1,2, and
the transformation €2; is the rotation of Y; through an angle of wy inwards G (into the domain G)
near the points g; and go (see Fig. 9.1).

According to Remark 7.2, Condition 7.2 holds. Clearly, Condition 8.1 also holds.

T,
Figure 9.1: Domain G with the boundary 0G = Y1 U Y.

One and the same model problem in the plane angle corresponds to each of the points g; and
g2:

AU = foly)  (y € K), (9.3)
Uly;, +5UGiy)ly; = fi(y) (y €55 5 =1,2),
where K ={y € R? : 7 > 0, [w|<wo}, 1, ={yeR?:r >0, w=(—1)/wy}, and
_ cos wy (—1)7 sinwg
g, = (—1

)1 sin wg cos wy

is the operator of rotation through an angle of (—1)7*!wy about the origin, j = 1, 2.
The eigenvalue problem corresponding to problem (9.3), (9.4) is

T y2pw) =0 (] <o), (95)

p(—wo) +b190(0) =0,  p(wo) + baip(0) = 0. (9.6)

Let us find the eigenvalues of problem (9.5), (9.6).

I. First, consider the case in which A # 0. Substituting the general solution ¢(w) = c;e** +coe™
of Eq. (9.5) into the nonlocal condition (9.6), we obtain the following system of equations for ¢, ca:

e~ by eMo 4y ct _ (0
( e by e 4 by ca ) \0)° (9.7)
Equating the determinant of system (9.7) with zero, we obtain

(e7Awo — Awoy(eAwo = Ao 4 p 4 b)) = 0.
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1. It follows from the equation e

2. Consider the equation e**°

P. L. GUREVICH

—Awo _ eAwo — () that
k
A="0 keZ)\ {0}
wo

+ €720 4 by + by = 0. If by + by = 0, then

2 k
A:M@ ke,
wo
If by 4+ by # 0, then
( by 4 by)?2 — 4
log _b1+b2i (1+ 2)
2 2 2mn .
+ A for b1 + by < =2,
wo wo
4 — (by + by)?
+ arctan b(llj_ 2) + 2mn
1+ 02 i for —2<by+by <0,
)\:I:: wo
4 — (by + by)?
+ arctan b(llj_ 2) +(2n+)m
1+ 02 i for 0< by +by <2,
wo
by +b2)2 — 4
log<b1;b2i (1+22) )
2 1
G P S
wo Wo

where n € Z. If |by + bs| = 2, we

obtain the eigenvalues from the series (9.8).

(9.10)

II. Similarly, one can consider the case in which A = 0 and show that A = 0 is an eigenvalue of
problem (9.5), (9.6) if and only if by + by = —2.

Let us study the special case in which wg = 7/2 (this implies that 0G € C*°).

I. Let \ # 0.

1. Relation (9.8) implies the following purely imaginary eigenvalues with integral imaginary

parts:

Aow = 2ki, ke Z\{0}.

(9.11)

2. If by + bs = 0, then we obtain the following purely imaginary eigenvalues with integral imagi-

nary parts from (9.9):

A2k+1 = (2]{7 + 1)1, ke Z.

If by + by # 0, then we obtain the following eigenvalues from (9.10):

b1 + by (b1 +b2)%2 —4
21 — +
8 ( 2 2
+ 4ns for by + by < —2,
T
4 — (b 4+ by)2
+2 arctan b( 1;_ 2)
1+ 02 1+ 4ni for —2<b+0by<0,
)\i _ e
n 4= (by + by)?
+2arctan 5 lb 2
Lt 4 (dn 4 2)i for 0<by+by<2,
T
b1 + b by +03)2 —4
2log<1;2:|: (1-1-22) )
+ (477, + 2>’L for by + by > 2,
\ T
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where n € Z. If |by + by| = 2, then we obtain the eigenvalues from the series (9.11).
II. The number Ay = 0 is an eigenvalue of problem (9.5), (9.6) if and only if b; + by = —2.
Let us consider the operator L: W!*2(G) — W!(G,Y) corresponding to problem (9.1), (9.2)

with wy = 7/2. It follows from (9.11)—(9.13) and from Theorem 4.1 that the following assertion
holds.

Theorem 9.1. Suppose that wy = w/2. Let | be even. Then the operator
L: W(G) — WHG, )

has the Fredholm property if and only if by + ba # 0.
Let | be odd. Then the operator

L: W(G) — WHG, )
fails to have the Fredholm property for any by,bs € R.

Note that, if [ is even and by = by = 0, then the operator L corresponding to the “local”
boundary-value problem fails to have the Fredholm property (its image is not closed). However, if
we add nonlocal terms with arbitrarily small coefficients by and by (such that by 4+ by # 0) to the
boundary-value conditions, then the problem obtains the Fredholm property.

9.1.2. A Problem with Homogeneous Nonlocal Conditions. Let us study problem (9.1),
(9.2) with homogeneous nonlocal conditions for the case in which wy = 7/2. Write

WE(G) = {u e WHG) : uly, + bin(Qu(w))] ¢

=0, =1, 2}
and introduce the corresponding operator Lp: W5 (G) — W' (G) given by
Lpu = Au, u € WE2(G).

The Fredholm property of the operator Lz depends only on the eigenvalues of problem (9.5), (9.6)
lying on the line Im A = —(l+ 1), > 0. Thus, we must consider only the eigenvalues (9.11), (9.12)
for k < —1 and the eigenvalues (9.13) for |b; + bs| > 2 and n < —1. Clearly, the eigenvalues (9.13)
for |by + ba| > 2 are improper because they are not purely imaginary. Let us find the values of the
coefficients by and by for which the eigenvalues (9.11) and (9.12) are proper.

1. Consider the numbers Aoy, = 2ki, &k = —1,—2,..., which are eigenvalues of problem (9.5),
(9.6) for any by and by. Let us show that Aoy is a proper eigenvalue if and only if by +by # 2(—1)*+1,

The eigenvector

@é%) (w) = ek _ e=2hw — 97 5in(2kw)

corresponds to the eigenvalue Ay (for by = by = (—1)¥*1, there is another eigenvector @bg,? (w) =

ek 1 e=12kw — 9 cos(2kw)). If an associate vector 4,0;2) exists, then it satisfies the equation

1
&? Sogk) (w)

2 1Ak () = dikply) (@) (lwl < 7/2) (9.14)

and the nonlocal conditions (9.6). Substituting the general solution

‘Pg}c) (W) = 172K 4 cpeTi2kw | (ei2kw | g—iZhw)
of Eq. (9.14) into nonlocal conditions (9.6), we obtain the following system of equations for ¢; and
(B C0een (a) (D)

(=DF+by (=1)F+by ) \c2)  \—m(=1)*)"
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Clearly, this system is incompatible if and only if by 4 by # 2(—1)*+!

. Combining this observation
with the fact that 7“_2"3(/35(,? (w) is a polynomial in y; and yo for k = —1,—2,..., we see that Ay is
a proper eigenvalue if and only if by + by # 2(—1)F*+1.
2. Consider the numbers \op11 = (2k + 1)i, & = —1,—2,..., which are eigenvalues of prob-
lem (9.5), (9.6) if and only if by 4+ by = 0. Let us prove that the eigenvalues Agp41 are proper for
A unique (up to factor) eigenvector

@é%)+1(w) — kw4 —i(2k+ 1w _ 9, sin((2k + 1)w)

corresponds to the eigenvalue Agp41. If an associate eigenvector goé}g) 1 exists, then it satisfies the
equation

dQ‘/’Sc) (W) 1 : 0

T 2k 1200, (@) = 202k + D)5y (W) (] < 7/2) (9.15)

and the nonlocal conditions (9.6). Substituting the general solution

@éﬁﬂ(w) _ clei(2k+1)w + 62€—i(2k+1)w + w(ei(2k+l)w . e—i(2k+1)w)

of (9.15) into nonlocal conditions (9.6), we obtain the following system of equations for ¢; and ca:

—i(=DF +b,  i(=1DF +by c1) _ [ —in(=1)*
i(—1)F +by  —i(=1)F+by ) \ 2 ) \—in(=1)F )~
This system is clearly incompatible for b; 4+ bs = 0. This observation, together with the fact that

r_(2k+1)gpg?€)+1(w) is a polynomial in y; and ys for k = —1,—2,..., implies that the eigenvalues
Aopy1 are proper for by + by = 0.

Remark 9.1. When finding out whether or not an eigenvalue is proper, we used first associate
vectors only. Obviously, we can continue this procedure and find an entire Jordan chain (see, e.g.,
Example 2.1 in [29]); however, we avoid this procedure here because already the existence of a first
associate vector implies that the corresponding eigenvalue is improper.

1. Consider the operator

The line Im A = —1 contains either no eigenvalues of problem (9.5), (9.6) (for by + by # 0) or only
the proper eigenvalue A\_; = —i (for b; + b2 = 0). Applying either Theorem 8.1 (for by + by # 0) or
Theorem 8.2 (for by + be = 0), we see that the operator

has the Fredholm property for any by and bs.

II. Consider the operator
Lg: W3(G) — W(Q).

(a) Let by + ba > 2. Then the line Im A = —2 contains the proper eigenvalue A_5 = —2i and the
two improper eigenvalues

210g b1 + bo 4 (b1 + b2)2 —4
2 2
2, = 2

— 2i.

s

Therefore, by Theorem 8.1, the operator L : W3 (G) — W (G) fails to have the Fredholm property.
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(b) Let by + ba = 2. Then the line Im A = —2 contains only the improper eigenvalue A_o = —2i.
Therefore, by Theorem 8.1, the operator L : Wi (G) — W(G) fails to have the Fredholm property.
(c) Let by +bo < 2. Then the line Im A = —2 contains only the proper eigenvalue A_5 = —2i. We
must verify Condition 8.2. Differentiating the expression U (y) + b;U(G;y) with respect to yo twice
and replacing the values of the corresponding function at the point G;y by the values at y, we see
that system (2.11) acquires the following form:
5 B 0*U 0*U h 0*U 0*U

Bl(Dy)U + blTﬁ, BQ(Dy)U - Ty% + bQTy%

- Oy3

(c1) Let by # by. Then the operators By (D,)U and By(D,)U are linearly independent, and
therefore both of them enter system (3.4). Clearly, the operator AU does not enter this system
because the system

Bi(D,)U,  By(D,)U, AU

is linearly dependent. Hence, Condition 8.2 fails, and Theorem 8.2 implies that the operator
Lg: W(G) — WHG)

cannot have the Fredholm property.

(ca) Let by = by (and therefore by = by < 1). Then the operators B (D, )U and By (D,,)U coincide.
Since by < 1, it follows that the system

B1(D,)U, AU

is linearly independent and forms system (3.4). Hence, Condition 8.2 holds, and, by Theorem 8.2,
the operator Lp: W3(G) — W1(G) has the Fredholm property.

Thus, we have proved that the operator Lg: W3 (G) — W(G) has the Fredholm property if and
only if by = bs < 1.

III. Consider the operator

Lp: WE2(G) — WHG) witheven [, 1>2.

(a) Let by + by # 0. Then the line Im A = —({+ 1) contains no eigenvalues of problem (9.5), (9.6).
Therefore, by Theorem 8.1, the operator Lg: W5™(G) — W!(G) has the Fredholm property.

(b) Let by + bz = 0. Then the line Im A = —(I 4 1) contains only the proper eigenvalue A_ ;1) =
—(l+ 1)i. In contrast to the case in which | = 0, we must now verify Condition 8.2. Differentiating
the expression U(y) + b;U(G;y) with respect to y2 (I + 1 times) and replacing the values of the
corresponding function at the point G;y by the values at y, we see that system (2.11) acquires the

form i+l o+l gi+1 9l+1
A U v U U
Bi(Dy)U = oy 1 oyt By(Dy)U = Byl 2 Ay

Since by = —by, only the operator B;(D,)U enters system (3.4).
Let us show that the system consisting of the operator B; (Dy)U and the operators
alfl alJrlU 8[+1U

- AU = + ) S +&E=1-1,
Oy Oys? Ayi Poyst  Oytoystt

is linearly independent. To do this, to each derivative

8l+1U
Oys 05T
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we assign the vector (0,...,0,1,0,...,0) of length [ + 2 such that its (s 4+ 1)st component is equal

to one and the other components are equal to zero. In this case, the operator By (Dy)U is assigned

to the vector
(1,0,...,0,—by), (9.16)
-1

and the operators F o E A, & =0,...,1 —1, are assigned to the vectors
0y;*0ys”
0,...,1,0,1,...,0) (9.17)

such that their (§1 4 1)st and (&; + 3)rd components are equal to one and the other components
are equal to zero. Thus, we must show that the rank of the matrix

1 0 0 O 0 0 —b
1 01 0 0 0 O
01 01 0 0 O
A= 0 z
0 0 0 0 1 0 0
0 0 0O 01 0
0 0 0 0 1 0 1

(of order (I + 1) x (I + 2)) formed by the rows (9.16), (9.17) is equal to [ + 1. Denote by A’ the
matrix obtained from A by deleting the last column of A. Expanding the determinant of A’ with
respect to the first row, we see that det A’ = det A;, where

010 ... 00O
1 01 ... 0 0O
01 0 ... 00O
A= L
0O 0 0 ... 010
0O 0 0 ... 1 01
0 0 0 ... 1 0

is a tridiagonal matrix of order [ x [. One can directly show by induction that
0 for I=2n-1,
det A4y =<1 for [=4n, (9.18)
=4
where n > 1. It follows from (9.18) that |det A’| = | det A;| = 1. Therefore, the system

R al—l

Bi(Dy)U, ———FAU, & +&=1-1,
Y 82/?83/22

is linearly independent, and Theorem 8.2 implies that the operator Lg: W5™2(G) — W!(G) has
the Fredholm property.

Thus, we have proved that the operator Lg: W5 2(G) — WYG) with even I, | > 2, has the
Fredholm property for any by and bs.
IV. Finally, consider the operator

Lp: W52(G) - WYG)  withoddl, 1>3.

Assume first that [ +1 = 4n for some n > 1.
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(a) Let by + ba < —2. Then the line ImA = —(I + 1) = —4n contains the proper eigenvalue
A_4n = —4ni and the two improper eigenvalues

2 _
210g b1 + by 4 (bl + bg) 4
2 2
)\f4n = —4

s

nt.

Therefore, by Theorem 8.1, the operator Ly W?Q(G) — W!(@G) cannot have the Fredholm prop-
erty.

(b) Let by +by = —2. Then the line Im A = —(I+1) = —4n contains only the improper eigenvalue
A_an = —4ni. Therefore, by Theorem 8.1, the operator Lg: W5 (G) — W(G) cannot have the
Fredholm property.

(c) Let by 4+ ba > —2. Then the line Im A = —(I 4+ 1) = —4n contains only the proper eigenvalue
A_g = —4ni. We must verify Condition 8.2. Differentiating the expression U(y) + b;U(G;y) with
respect to yo (I + 1 times) and replacing the values of the corresponding function at the point G;y
by the values at y, we see that system (2.11) has the form

. al+1U al+1U R al+1U al+1U
Bl(Dy)U = 8yé+1 + b 8yi+1 ) 82(Dy)U = W;—l + by ayll-‘rl :

(c1) Let by # by. Then the operators By (D,)U and By(D,)U are linearly independent, and
therefore both of them are included in system (3.4). Let us show that the system

R R 8l_1

7AU, 51 —l—fgzl—l,
8y§18y22

is linearly dependent. (Note that, unlike the case in which [ = 1, this system now contains all the

derivatives of U of order I + 1.) Since By (D,)U and By(D,)U are linearly independent, it suffices
to show that the system

8l+1U 8l+1U al—l

+17

AU S t&=10-1,
Yy

oyt aytays

is linearly dependent. Let us consider the corresponding matrix

10 0 0 0 0 0
0 00 O 0 01
101 0 0 0 0
01 01 0 0 0
A=1. . . .
0 0 00 1 0 0
0 0 0 O 010
0 0 00 1 01

of order (I 4 2) x (I 4 2). Decomposing the determinant of A with respect to the first row and then
decomposing the determinant of the resulting matrix with respect to the first row again, we see
that det A = det A;. Since [ is odd, it follows from (9.18) that det A = 0. Therefore, Condition 8.2

fails, and Theorem 8.2 implies that the operator Lg: W5(G) — W(G) is not Fredholm.
(c2) Let by = bo (and therefore by = by > —1). Then system (3.4) contains only the operator
B1(Dy)U. Let us show that the system

R al—l
Bi(D)U,  ——F
! 8y§13y22
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is linearly independent. Consider the corresponding matrix

100 0 ... 0 0 b
1010 ... 00 O
0101 ... 00 O
A= p o
o000 ... 1 0 O
0000 ... 01 0
00 00 1 0 1

of order (I + 1) x (I +2). Deleting the second column from A, decomposing the determinant of the
matrix thus obtained with respect to the first row, and using relation (9.18), we obtain

10 0 ... 0 0 b 1 10 0 0 O
110 ... 0 0 O 0 0 1 0 0 O
O 01 ... 00 O 01 0 ... 00O
s Lo Cl=1-b =1—bydetA;_1=1+b#0
O 00 ... 10 O 0O 0 0 ... 010
000 ... 01 0 0O 00 ... 1 01
O 00 ... 1 0 1 0O 0 0 ... 010

because by > —1. Therefore, Condition 8.2 holds, and Theorem 8.2 implies that the operator
Lp: W52(G) — WYG)

has the Fredholm property.

Thus, we have proved that the operator Ly : W};Q(G) — WYG) with 1 +1=4n, n > 1, has the
Fredholm property if and only if by = by > —1.
Similary, by using (9.18) and Theorem 8.2, one can show that the operator

Lp: W52(G) — WYG)

with l +1=4n+ 2, n > 1, has the Fredholm property if and only if by = by < 1.
The following theorem summarizes the results thus obtained.

Theorem 9.2. Let [ be even. Then the operator
Lp: W5(G) — WHG)

has the Fredholm property for any by, bs € R.
Let |l be odd and let | = 4n + 1, where n =0,1,2,.... Then the operator

Lp: W5(G) — WHG)

has the Fredholm property if and only if by = by < 1.
Letl be odd and | = 4n + 3, where n =0,1,2,.... Then the operator

Lp: W5(G) — WHG)
has the Fredholm property if and only if by = by > —1.

Note that, for wy = 7/2 and b; = bs = 0, we obtain the “local” Dirichlet problem in a smooth
domain with homogeneous boundary conditions. In this case, as is well known, the operator

Lp: W52(G) — WYG)

corresponding to problem (9.1), (9.2) with homogeneous boundary conditions is invertible for any
[ > 0 rather than simply an operator with the Fredholm property.
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9.2. Example 2

9.2.1. A Problem with Nonhomogeneous Nonlocal Conditions. Let G C R? be a domain
such that its boundary dG € C* coincides outside the disks By ,s((i4/3,74/3)) (i,j = 0,1) with
the boundary of the square (0,4/3) x (0,4/3). We write Y1 = {y € 0G : y1 < 1/3, y2 < 1/3},
Yo ={y €0G:y > 1, yo > 1}, T3 = G\ (¥1 UTy). Thus, K = {g1,...,94}, where g; =
(1/3,0), g2 = (0,1/3), g3 = (4/3,1), g4 = (1,4/3) (see Fig. 9.2).

Y2 A
T3 94
4/3 1 -
4 )
1+ T1—|—h1 93
g2
1/3 1 Ty + ho Y
3
N -
0 1/3 1 4/3 (1

Figure 9.2: Domain G with smooth boundary 0G = T U Ty U Y5.
We consider the following nonlocal elliptic problem in the domain G:

Au=foly) (ye@), (9.19)
u(y)lr, +ouly +hi)lr, = fily) (e Y i=12),  u@)lr,=f3(y) (y€TLs), (920
where hy = (1,1), ho = (—1,—1), and b1,by € R. Clearly, £ = Orb; UOrby, where the orbit
Orb; consists of the points g; and g3 = g1 + hqy and the orbit Orbsy consists of the points go and
ga = g2 + ho.
According to Remark 7.2, Condition 7.2 holds. Clearly, Condition 8.1 also holds.
Assume first that b3 + b3 # 0 (to be definite, we suppose that by # 0).

One and the same model problem in the plane angles corresponds to each of the orbits Orby
and Orbg,

AU; = fily) (y € K), (9.21)

Utly, = f11(y) (Y € M)y Utlay +01U2(GY) |y, = f12(y) (v € 12),
Usly, = f21(y) (w €M), Uzlqy +02U1(GY) |y = fo2(y) (y € 72).

Here K ={y e R?*:7r >0, [w|<7/2}, 7, ={yeR?*:r >0, w=(—1)/7/2}, and

T

is the operator of rotation through the angle of —7/2.

(9.22)
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The eigenvalue problem corresponding to problem (9.21), (9.22) has the following form:

’ ;Di(zw) —Npjw) =0  (jw| <7/2; j=1,2), (9.23)
901(_71-/2) =0, 901(71'/2) + blin(O) =0, (9.24)

a(—7/2) =0, 2(m/2) + bap1(0) = 0.

One can find the eigenvalues of problem (9.23), (9.24) by straightforward computations (see [19]).
They are as follows:

Aop = 2ki, keZ\{0}  (for any by, by, b] + b3 #0), (9.25)
)‘Qk—l—l = (Qk + 1)2, keZ (fOl‘ bo =0, by ;é 0), (926)

and

V=biby | V4 —bib

+
2 2

2
T
2
A= (j: arctan \/4(b1be)~1 — 1+ 2n> i for 0 <biby <4, (9.27)
2 b1b biby — 4
<\/12i\/12 >+2m’

—log +2n+1)i for byby <O,

3

—log 2 5 for biby >4

\ T
where n € Z. If b1by = 4, then there is another eigenvalue, namely, Ao = 0.
Remark 9.2. If b = 0, then we can consider another setting of a nonlocal problem which
differs from problem (9.19), (9.20), namely,
Au=fly) (WeG), u@lr, +buly+m)lr, = fily)  (yeT),
w(®)lr,ors = f2(y)  (y € T2UTs).

(9

(9.
In this case, K = {g1,92} (note that Condition 7.2 fails here). Solutions of problem (9.28), (9.29
can have singularities only near the points g; and go, while solutions of problem (9.19), (9.20) can
have singularities near the points g1,...,94.

To each of the points g; and gs, the same model “local” problem corresponds, namely,

28)
9)

l\D

AU = fily) (Y€ K), (930)
Ully, = fily) Wem),  Ully, = f2(y) (y € 12). (9.31)

The eigenvalues problem for problem (9.30), (9.31) has the following form:

d?p1(w)
dw?

=~ Noi(w) =0 (] </2), (9.32)
—1/2) = 1 (n/2) = 0. (9.33)
The eigenvalues of problem (9.32), (9.33) are as follows:

A = ki, keZ\{0}. (9.34)

They coincide with the eigenvalues of problem (9.23), (9.24) for b, = 0. Therefore, according to
Theorem 4.1, problem (9.28), (9.29) has the Fredholm property if and only if problem (9.19), (9.20)
has the Fredholm property.

Let us consider the operator
L: W'2(G) - WY(G, T)

corresponding to problem (9.19), (9.20). The following theorem results from (9.25)—(9.27) and from
Theorem 4.1.
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Theorem 9.3. Let [ be even. The operator L: W'*+2(G) — WG, Y) has the Fredholm property
if and only if bybs > 0.
Let | be odd. The operator
L: W'*2(G) - WY@, T)
fails to have the Fredholm property for any by,bs € R.

Note that Theorem 9.3 is proved under the assumption that b2 + b3 # 0; however, the operator
L: WH*2(G) — WYG, T) (with by = by = 0) corresponding to problem (9.19), (9.20) cannot have
the Fredholm property either. This follows from the fact that, to each of the points g1,...,g94 € IC,
one assigns the model problem (9.32), (9.33) with the eigenvalues (9.34) lying on the lines —(I+1),
1>0.

9.2.2. A Problem with Homogeneous Nonlocal Conditions. Let us study problem (9.19),
(9.20) with homogeneous nonlocal conditions. Write

WEG) = {ue WT2(G) :u

v, +biu(y + hi)

v, =0, i=1,2; uly, =0}
and introduce the corresponding operator Lp: W5 2(G) — W' (G) by

Lpu = Au, u € WE2(@).
Assume first that b2 4 b3 # 0 (to be definite, we again suppose that b; # 0).

Remark 9.3. Problem (9.28), (9.29) with homogeneous nonlocal conditions is equivalent to
problem (9.19), (9.20) with by = 0. Hence, one need not study problem (9.28), (9.29) independently.

The Fredholm property of the operator L is related only to the eigenvalues of problem (9.23),
(9.24) lying on the line ImA = —(I + 1), [ > 0. Thus, we must consider only the eigenvalues Aoy
and Agpy1 (for by = 0) and AF (for biby < 0 or byby > 4) for k,n < —1. Clearly, the eigenvalues
)\,ib (for byby < 0 or byby > 4) are improper because they are not purely imaginary. Let us find the
values of the coefficients b; and by for which the eigenvalues Aoy and Agg11 (if by = 0) are proper.

1. Consider the numbers Aoy, = 2ki, k = —1,—2,..., which are eigenvalues of problem (9.23),
(9.24) for any by and by. Let us show that Aoy is a proper eigenvalue.

Two linearly independent eigenvectors correspond to the eigenvalue Ao,
0 0 i2kw —i2kw .
(‘Pg,%k(w)y Sﬁé%k(w)) = (6 o gmizhe 0) = (2z sin(2kw), O),
0 0 i2kw —q ..
( g;k(w)a é%k(w)) = (0, e'?kw _ ¢ 2’“") = (0, 24 sm(2kw)).

If an associate vector ((pglgk, gpélg ) corresponding to the first of the eigenvectors exists, then it
satisfies the equations
22" (w , .
90;,2]29( ) +4k:290§1%k(w) _ 42'142(612]%) o 6—z2kw) (|w| < 7_(_/2)’
w (9.35)

dQ‘Pglgk(w) 1
I AP @) =0 (el <7/2)

and the nonlocal conditions (9.24). Substituting the general solution
soﬁlik(w) = 1€k 4 cpem 2R | y(ei2he 4 emiZhw) cpélék(w) — 362k | e 12k

of Egs. (9.35) into the nonlocal conditions (9.24), we obtain the following system of equations for
the indeterminates cq, ..., c4:

(=D* (=1)* 0 0 c1 n(—1)k
1 0F b b | e | _ | a1
0 0 (=D* (=1)* c3 | 0
by by (-1F (=1F) \@ 0
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One can readily see that this system is incompatible; therefore, the first eigenvector has no associate
vectors. One can similarly see that the second eigenvector has no associate vectors either. Combining

this observation with the fact that r—2* 4,05.?2) (w) and 7“_2’“7,/}](.?2) w(w) (j = 1,2) are polynomials in y1, y2
for k= —1,-2,..., we see that Ay is a proper eigenvalue.

2. Consider the numbers Aogy1 = (2k + 1)i, K = —1,—2,..., which are eigenvalues of prob-
lem (9.23), (9.24) with by = 0 (recall that by # 0). Let us show that Aoy is an improper eigenvalue.

The only eigenvector (up to factor) corresponding to the eigenvalue Agj41 is
0 0 % w —1 w
(P31 (@), P01 (@) = (12 4 7D 0) = (2c08((2k + 1)), 0).

If an associate eigenvector (goglg k1o @élgk +1) exists, then it satisfies the equations

1
d2<,0§7%k+1(w)
dw? +

1)
d2%02,2k+1(w) n

dw?

and the nonlocal conditions (9.24). Substituting the general solution

2k + 120, 1 (@) = 2(2k + 1)i(lCHHD 4 o= iCHDw) - (jy] < 7/2),
(9.36)

2k + 12080 (@) =0 (lw] < 7/2)

Spg%%k(w) = et PPN 4 oo emiChHDw (iRt _ o —iZht ey
‘ngk(w) = c3ethtDw 4 (o ik 1)w

of Egs. (9.36) into the nonlocal conditions (9.24), we obtain the following system of equations for
the indeterminates cq, ..., c4:

(=1 (=" 0 0 c1 mi(—1)k+1
i(=1)F (=1 b1 b1 ca | _ [ mi(=1)F+!
0 0 (=1L G (=1)F cz | 0
0 0 i(=1)F  q(—1)kH! C4 0

One can readily see that this system is compatible; therefore, Aog11 is an improper eigenvalue.

I. Consider the operator Lp: W3(G) — L2(G). The line Im A = —1 either has no eigenvalues of
problem (9.23), (9.24) (for byby > 0) or contains an improper eigenvalue A_; (for by = 0) or A%,
(for byby < 0). Therefore, by Theorem 8.1, the operator

Lp: WA(G) — La2(G)

has the Fredholm property if and only if bybs > 0.

II. Consider the operator
Lp: W3(G) — W(Q).

(a) Let biby > 4. Then the line Im A = —2 contains a proper eigenvalue A_5 and two improper
eigenvalues A% . Therefore, by Theorem 8.1, the operator Ly : W3(G) — W(G) is not Fredholm.

(b) Let b1by < 4. Then the only eigenvalue on the line ImA = —2 is the proper eigenvalue
A_o = —2i. Let us show that Condition 8.2 fails.

Differentiating the expressions U; (y) 4+ b1U2(Gy) and Us(y) + b2U1(Gy) with respect to yo twice
and replacing the values of the corresponding functions at the point Gy by the values at y, we see
that system (2.11) has the following form:

N 0*U, . 0*U, 0?Us
D = —— D = b

B ( y)U Oyg . Biaf y)U ay% + 01 Gy% )

- 02U, . 02U, 02U,
D = — D = .

Ba1 (D) U 9,2’ Bao (D) U B2 + b 0y
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Since by # 0, the operators Bll(Dy)U, Blz(Dy)U, and Bgl(Dy)U are linearly independent, and are
therefore included in system (3.4). However, the system consisting of these three operators and of
the operators AU; and AU, is linearly dependent. Therefore, Condition 8.2 fails, and it follows
from Theorem 8.2 that the operator

Lp: W3 (G) — WY(G)

cannot have the Fredholm property.
Thus, we have proved that the operator Lg: W3 (G) — W1(G) cannot have the Fredholm prop-
erty for any by, by (b? + b3 #0).
III. Consider the operator
Lp: W52(G) — WYGQ)

with even [, [ > 2. The line Imn A = —(I + 1) either has no eigenvalues of problem (9.23), (9.24)
(for biby > 0) or contains an improper eigenvalue A_¢4 1) (for by = 0) or )\fl_l/Q (for b1by < 0).
Therefore, by Theorem 8.1, the operator Lp: W52(G) — WYG) with even I, | > 2, has the
Fredholm property if and only if byby > 0.
IV. Consider the operator
Lp: W52(G) — WYG)

with odd I, [ > 3.
a) Let biby > 4. Then the line Im A = —({ + 1) contains a proper eigenvalue A_(;,1y and the
(I14+1)
two improper eigenvalues )\j_tl J2—1/2" Therefore, by Theorem 8.1, the operator

Lp: W52(G) — WYG)

cannot have the Fredholm property.

(b) Let b1ba < 4. Then the line Im A = —(I+1) contains the proper eigenvalue A_; 41y = —(I+1)i
only. Let us show that Condition 8.2 fails. Differentiating the expressions U;(y) + b1Uz2(Gy) and
Us(y) + boU1(Gy) with respect to y2 (I + 1 times) and replacing the values of the corresponding
functions at the point Gy by the values at y, we see that system (2.11) has the following form:

N alJrlUl R alJrlUl alJrle
Bi1(Dy)U = ——, Bi2(Dy)U = 1 ;
Y ale—H Y 8yé+1 ayll—i-l
. 6l+1U2 . 8l+1U2 8l+1U1
Bgl(D )U = — 75 Bgz(D )U = o .
! ays™ ! dys™! ayitt

Since by # 0, it follows that the operators Bll(Dy)U, Blz(Dy)U, and 5’21(Dy)U are linearly inde-
pendent, and therefore they are included in system (3.4). Let us show that the system consisting
of these three operators and the operators

alfl 8[+1U alJrlU
3 ;AU = £1+2 . 2 €1 521+2’ Gat&=I0-1,
dy1' 0ys dy;' " 0ys dyi 0ys3
81—1 8l+1U al-{—lU
751 2A 2 = ) 2 . o 622+2’ £1+£2:l—1,
Jy;' 0ys Oy "0y Jy;' 0y
is linearly dependent. To do this, to each derivative
8l+1U
1, s=0,...0+]1,
Y10y,
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we assign the vector (0,...,0,1,0,...,0) of length 2/ + 4 such that its (s+ 1)st component is equal
to one and the other components are equal to zero. Further, to each derivative

alJrle

Oy oYyt

we assign the vector (0,...,0,1,0,...,0) of length 2[ + 4 such that its (I + 2 + s + 1)st component
is equal to one and the other components are equal to zero. Thus, it suffices to show that the rank
of the matrix

100...0[000...0
100 . 01000 ... b
000..0[100...0
101. 0/]00O0... 0
010..0[000...0

A=
000 0 0
000 0] 101 0
000..0[010...0
000..0/000... 1

(of order (20 +3) x (21 +4)) is less than 2/ + 3. (In the matrix A, the first three rows correspond to
the operators Bi1(Dy)U, Bi2(D,)U, and Ba1(D,)U, respectively, the next [ 42 rows correspond to

-1 I—1
WAUh and the last [ + 2 rows correspond to the operators WAUQ.)

Delete the 1st column, the (I 4+ 3)rd column, or the (2] + 4)th column from the matrix A.
Then the 1st row, the 3rd row, or the difference between the 1st and 2nd rows in the resulting
matrix vanishes. Denote by A the matrix obtained from A by deleting any other column. Then,
consecutively decomposing the determinant of A with respect to the first three rows, we see that
|det A| = |by det A’|, where A’ is the matrix of order 21 x 21 obtained by deleting the corresponding
column from the matrix

the operators

01...0[00...00
10...0/00...00
|00 1{00...00
100 0/01...00
00 0/10...00
00..0[00..10

of order 21 x (21 + 1). Note that the last [ rows of A” form the matrix (0 A4;), and thus are linearly
dependent by virtue of (9.18). Therefore, after deleting any column from A”, we obtain a degenerate

matrix A’. Hence, det A = 0, and the rank of the matrix A is less than 2/ + 3. Thus, Condition 8.2
fails, and Theorem 8.2 implies that the operator

Lp: W52(G) — WYG)

cannot have the Fredholm property.
We have thus proved that the operator

Lp: W5(G) — WHG)
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with odd l, | > 3, cannot have the Fredholm property for any by and bs.

We have considered the case in which b3 4 b3 # 0. If b; = by = 0, then one can similarly show
that the corresponding operator

Lp: W52(G) — WYG)

has the Fredholm property for any { > 0. However, we omit the proof of this fact because, for
b1 = by = 0, we obtain the “local” Dirichlet problem in a smooth domain. As is well known, this
problem is uniquely solvable for any [ > 0 rather than simply have the Fredholm property.

The following theorem summarizes the results obtained in this direction.

Theorem 9.4. Let ] be even. Then the operator
Lp: W52(G) — WYG)

has the Fredholm property if and only if either bybs > 0 or by = by = 0.
Let | be odd. Then the operator

Lp: W5(G) — WHG)

has the Fredholm property if and only if by = by = 0.
The author is grateful to Professor A. L. Skubachevskii for attention to this work.
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