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Abstract. We study elliptic equations of order 2m with nonlocal boundary-value condi-
tions in plane angles and in bounded domains, dealing with the case in which the support
of nonlocal terms intersects the boundary. We establish necessary and sufficient conditions
under which nonlocal problems are Fredholm in Sobolev spaces and in weighted spaces with
small weight exponents, respectively. We also obtain an asymptotics of solutions of nonlo-
cal problems near the conjugation points on the boundary, where solutions can have power
singularities.
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INTRODUCTION

Nonlocal problems have been studied since the beginning of the 20th century, but only during
the last two decades have these problems been investigated thoroughly. On one hand, this can
be explained by significant theoretical achievements in that direction and, on the other hand, by
various applications arising in diverse areas such as biophysics, theory of multidimensional diffusion
processes [1], plasma theory [2], theory of sandwich shells and plates [3], and so on.

In the one-dimensional case, nonlocal problems were studied by Sommerfeld [4], Tamarkin [5],
Picone [6], etc. In the two-dimensional case, one of the first works was due to Carleman [7] and
treated the problem of finding a harmonic function, in a plane bounded domain, satisfying the
following nonlocal condition on the boundary Υ:

u(y) + bu
(
Ω(y)

)
= g(y), y ∈ Υ,
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where Ω: Υ → Υ stands for a transformation on the boundary such that Ω
(
Ω(y)

)
≡ y, y ∈ Υ. This

setting of the problem originated further investigation of nonlocal problems with transformations
mapping a boundary onto itself.

In 1969, Bitsadze and Samarskii [8] considered a nonlocal problem (of essentially different kind)
arising in plasma theory: to find a function u(y1, y2) harmonic on the rectangle

G = {y ∈ R2 : −1 < y1 < 1, 0 < y2 < 1},

continuous on Ḡ, and satisfying the relations

u(y1, 0) = f1(y1), u(y1, 1) = f2(y1), −1 < y1 < 1,

u(−1, y2) = f3(y2), u(1, y2) = u(0, y2), 0 < y2 < 1,

where f1, f2, f3 are given continuous functions. This problem was solved in [8] by reducing it to a
Fredholm integral equation and using the maximum principle. For arbitrary domains and general
nonlocal conditions, such a problem was formulated as an unsolved one. Different generalizations
of nonlocal problems with transformations mapping the boundary inside the closure of a domain
were studied by Eidelman and Zhitarashu [9], Roitberg and Sheftel’ [10], Kishkis [11], Gushchin
and Mikhailov [12], etc.

The most complete theory for elliptic equations of order 2m with general nonlocal conditions
in multidimensional domains was developed by Skubachevskii and his disciples, see [13–20]: a clas-
sification with respect to types of nonlocal conditions was suggested, the Fredholm solvability in
the corresponding spaces was investigated, index properties were studied, and the asymptotics of
solutions near special conjugation points was obtained. It turns out that the most difficult situa-
tion occurs if the support of nonlocal terms intersects the boundary. In that case, the generalized
solutions of nonlocal problems can have power singularities near some points even if the bound-
ary and the right-hand sides are infinitely smooth [14,19]. For this reason, to investigate such
problems, weighted spaces (introduced by Kondrat’ev for boundary-value problems in nonsmooth
domains [21]) are naturally applied.

In the present paper, we study nonlocal elliptic problems in plane domains in Sobolev spaces
W l(G) = W l

2(G) (with no weight), dealing with the case in which the support of nonlocal terms
can intersect the boundary. Let us consider the following example. Denote by G ⊂ R2 a bounded
domain with the boundary ∂G = Υ1∪Υ2∪{g1, g2}, where Υi are open sets (in the topology of ∂G)
given by C∞-curves and g1 and g2 are the endpoints of the curves Ῡ1 and Ῡ2. Let the domain G
coincide with plane angles in some neighborhoods of g1 and g2. We consider the following nonlocal
problem in G:

∆u = f0(y) (y ∈ G), (0.1)

u|Υi − biu
(
Ωi(y)

)∣∣
Υi

= fi(y) (y ∈ Υi; i = 1, 2). (0.2)

Here b1, b2 ∈ R; Ωi is an infinitely differentiable nondegenerate transformation mapping some
neighborhood Oi of the curve Υi onto Ω(Oi) in such a way that Ωi(Υi) ⊂ G and ωi(Υi)∩ ∂G �= ∅
(see Fig. 0.1). We seek a solution u ∈ W l+2(G) under the assumption that f0 ∈ W l(G), fi ∈
W l+3/2(Υi).

In this work, we obtain necessary and sufficient conditions under which a problem of type (0.1),
(0.2) is Fredholm. It is shown that the solvability of such a problem is influenced by (I) spectral
properties of model nonlocal problems with parameter and (II) the validity of some algebraic
relations between the differential operator and nonlocal boundary-value operators at the points of
conjugation of nonlocal conditions (points g1 and g2 at Fig. 0.1). We consider nonlocal problems
for both nonhomogeneous and homogeneous boundary-value conditions, which turn out to be not
equivalent with respect to Fredholm solvability. Near the conjugation points, the asymptotics of
solutions is obtained.

We note that nonlocal problems in Sobolev spaces for the case in which the support of nonlocal
terms does not intersect the boundary was thoroughly investigated by Skubachevskii [13, 17].
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However, elliptic equations of order 2m with general nonlocal conditions for the case in which the
support of nonlocal terms intersects the boundary is studied in Sobolev spaces for the first time.

Fig. 0.1: Domain G with the boundary ∂G = Ῡ1 ∪ Ῡ2.

The paper is organized as follows. The setting of the problem is presented in Sec. 1. In the same
section, we define model problems in plane angles and problems with a parameter that correspond
to the points of conjugation of nonlocal conditions. Properties of the original problem crucially
depend on whether or not some line of the form

{λ ∈ C : Imλ = Λ} (0.3)

(where Λ ∈ R is defined by the order of differential equation and the order of the corresponding
Sobolev spaces) contains eigenvalues of model problems with parameter. In Sec. 2 we study nonlocal
problems in plane angles for the case in which the line (0.3) contains no eigenvalues, and in Sec. 3
we deal with the case in which this line contains a single proper eigenvalue (see Definition 3.1). We
use the results of Sec. 2 in Sec. 4 to investigate the Fredholm solvability of the original problem in
a bounded domain, and in Sec. 5 to obtain an asymptotics of solutions of nonlocal problems near
the conjugation points.

In [14, 16, 18], the authors consider nonlocal problems in weighted spaces H l
a(G) with the norm

‖u‖Hk
a (G) =


∑
|α|�k

∫
G

ρ2(a−k+|α|)|Dαu|2



1/2

.

Here k � 0 is an integer, a ∈ R, and ρ = ρ(y) is the distance between the point y and the set of
conjugation points. For problem (0.1), (0.2), we have ρ(y) = dist(y, {g1, g2}). In [16, 18] it is proved
that, if

f0 ∈ H l
a(G), fi ∈ H l+3/2

a (Υi), a > l + 1,

and the function {f0, fi} satisfies finitely many orthogonality conditions, then problem (0.1), (0.2)
admits a solution u ∈ H l+2

a (G). If a � l + 1, then the following difficulty arises: generally, the
relation u ∈ H l+2

a (G) does not imply that u
(
Ωi(y)

)∣∣
Υi

∈ H
l+3/2
a (Υi). To avoid this difficulty, one

can introduce the spaces (for problem (0.1), (0.2)) with the weight function

ρ̂(y) = dist
(
y,
{
g1, g2,Ω1(g2),Ω1

(
Ω1(g2)

)
,Ω2(g2)

})
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and an arbitrary a ∈ R and prove the Fredholm solvability of nonlocal problems in these spaces
(see [14]). However, the presence of the weight function ρ̂(y) means that we impose a restriction
both on the right-hand side and on the solution not only near the conjugation points g1 and g2 but
also near the point Ω1(g2) lying on a smooth part of the boundary and near the points Ω1

(
Ω1(g2)

)
and Ω2(g2) lying inside the domain (see Fig. 0.1).

In Sec. 6, we prove that the following assertion holds despite the fact that, for a � l + 1, the
relation u ∈ H l+2

a (G) does not imply the relation u
(
Ωi(y)

)∣∣
Υi

∈ H
l+3/2
a (Υi). If a > 0, f0 ∈ H l

a(G),

fi ∈ H
l+3/2
a (Υi), and {f0, fi} satisfies finitely many orthogonality conditions, then problem (0.1),

(0.2) still admits a solution u ∈ H l+2
a (G). In this case, as above, the line (0.3) (with Λ depending

now on the exponent a as well) must contain no eigenvalues of model problems with parameter.
In Sec. 7, using the results of Sec. 3, we study nonlocal problems in bounded domains for the

special case in which the line (0.3) contains only a proper eigenvalue of model problems with
parameter. In this case, to ensure the existence of solutions, we impose additional consistency
conditions on the right-hand side at the conjugation points. The first part of the paper contains
Secs. 1–3.

Let us also describe the contents of the second part of the paper, which will be published in the
next issue of the Journal. The most complicated considerations in Sections 4, 6, and 7 are related
to constructing right regularizers for nonlocal problems in bounded domains. In all these sections,
to construct a regularizer, we use one and the same scheme described in detail in Sec. 4. This allows
us to dwell only on the most important points in out treatments in Sections 6 and 7.

Finally, in Sec. 8, by using the results of Sections 4 and 7, we obtain a criteria for the Fredholm
solvability of elliptic problems with homogeneous nonlocal conditions. Here algebraic relations
between the differential operator and nonlocal boundary-value operators play an essential role.
Two examples illustrating the results of this paper are given in Sec. 9.

1. SETTING OF NONLOCAL PROBLEMS IN BOUNDED DOMAINS

1.1. Setting of Nonlocal Problem

Let G ⊂ R2 be a bounded domain with boundary ∂G. We introduce a set K ⊂ ∂G consisting of
finitely many points and assume that

∂G \ K =
N0⋃
i=1

Υi,

where Υi are open C∞-curves (in the topology of ∂G). We assume that the domain G coincides
with some plane angle in some neighborhood of each of the points g ∈ K.

Denote by P(y,Dy) and Biµs(y,Dy) differential operators of orders 2m and miµ, respectively,
with complex-valued C∞-coefficients (i = 1, . . . , N0; µ = 1, . . . ,m; s = 0, . . . , Si). Throughout the
paper, we assume that the operator P(y,Dy) is properly elliptic for all y ∈ Ḡ and the system of op-
erators {Biµ0(y,Dy)}mµ=1 covers P(y,Dy) for all i = 1, . . . , N0 and y ∈ Ῡi (see, e.g., [22, Ch. 2, § 1]).

For an integer k � 0, denote by W k(G) = W k
2 (G) the Sobolev space with the norm

‖u‖Wk(G) =


∑
|α|�k

∫
G

|Dαu|2 dy




1/2

(we set W 0(G) = L2(G) for k = 0). For an integer k � 1, we introduce the space W k−1/2(Υ) of
traces on a smooth curve Υ ⊂ Ḡ with the norm

‖ψ‖Wk−1/2(Υ) = inf ‖u‖Wk(G) (u ∈ W k(G) : u|Υ = ψ). (1.1)

Consider the operators

P : W l+2m(G) → W l(G), B0
iµ : W l+2m(G) → W l+2m−miµ−1/2(Υi)
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given by Pu = P(y,Dy)u and B0
iµu = Biµ0(y,Dy)u(y)|Υi . From now on, we always assume that

l + 2m−miµ � 1. The operators P and B0
iµ will correspond to a “local” boundary-value problem.

Now we proceed by defining the operators corresponding to nonlocal conditions near the set K.
Let Ωis (i = 1, . . . , N0; s = 1, . . . , Si) be an infinitely differentiable nondegenerate transformation
mapping some neighborhood Oi of the curve Υi ∩ O2ε0(K) onto the set Ωis(Oi) in such a way that
Ωis(Υi) ⊂ G and

Ωis(g) ∈ K for ∈ Ῡi ∩ K, (1.2)

Where ε0 > 0 and O2ε0(K) = {y ∈ R
2 : dist(y,K) < 2ε0} is the 2ε0-neighborhood of the set

K. Thus, under the transformations Ωis, the curves Υi are mapped strictly inside the domain G,
whereas the set of endpoints of Υi is mapped to itself.

Let ε0 be taken so small (see Remark 1.2 below) that, in the 2ε0-neighborhood O2ε0(g) of each
point g ∈ K, the domain G coincides with a plane angle. Let us specify the structure of the
transformation Ωis near the set K.

Denote by the symbol Ω+1
is the transformation Ωis : Oi → Ωis(Oi) and by Ω−1

is the transformation
Ω−1
is : Ωis(Oi) → Oi inverse to Ωis. The set of all points

Ω±1
iqsq

(. . .Ω±1
i1s1

(g)) ∈ K (1 � sj � Sij , j = 1, . . . , q),

i.e., points which can be obtained by consecutively applying the transformations Ω+1
ijsj

or Ω−1
ijsj

(taking the points of K to K) to the point g) is called an orbit of g ∈ K and is denoted by Orb(g).
Clearly, for any g, g′ ∈ K, either Orb(g) = Orb(g′) or Orb(g) ∩Orb(g′) = ∅. Thus, we have

K =
N1⋃
p=1

Orbp, where Orbp1 ∩Orbp2 = ∅ (p1 �= p2),

and, for each p = 1, . . . , N1, the set Orbp coincides with an orbit of some point g ∈ K. Let each
orbit Orbp consist of the points gpj , j = 1, . . . , N1p.

For every point g ∈ K, consider neighborhoods

V̂(g) ⊃ V(g) ⊃ O2ε0(g) (1.3)

such that
(1) the boundary ∂G coincides with a plane angle in the neighborhood V̂(g);
(2) V̂(g) ∩ V̂(g′) = ∅ for any g, g′ ∈ K, g �= g′;
(3) if gpj ∈ Ῡi ∩Orbp and Ωis(g

p
j ) = gpk, then V(gpj ) ⊂ Oi and Ωis

(
V(gpj )

)
⊂ V̂(gpk).

For each gpj ∈ Ῡi ∩ Orbp, we fix the transformation y �→ y′(gpj ) of the argument; this transfor-

mation is the composition of the shift by the vector −
−−→
Ogpj and a rotation by some angle such that

the set V(gpj ) (V̂(g
p
j )) maps onto a neighborhood Vpj (0) (V̂

p
j (0)) of the origin, whereas the sets

G ∩ V(gpj ) (G ∩ V̂(gpj )) and Υi ∩ V(gpj ) (Υi ∩ V̂(gpj ))

are taken to the intersection of the plane angle

Kp
j = {y ∈ R2 : r > 0, |ω| < bpj < π}

with Vpj (0) (V̂
p
j (0)) and to the intersection of a side of the angle Kp

j with Vpj (0) (V̂
p
j (0)), respectively.
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Condition 1.1. The above change of variable y �→ y′(g) for y ∈ V(g), g ∈ K ∩ Ῡi, reduces
the transformation Ωis(y) (i = 1, . . . N0, s = 1, . . . , Si) to the composition of a rotation and a
homothety in the new variables y′.

Remark 1.1. In particular, Condition 1.1 combined with the assumption Ωis(Υi) ⊂ G means
that if g ∈ Ωis(Ῡi \ Υi) ∩ Ῡj ∩ K �= ∅, then the curves Ωis(Ῡi) and Ῡj are not tangent to each
other at the point g.

We introduce the bounded operators B1
iµ : W

l+2m(G) → W l+2m−miµ−1/2(Υi) by the formula

B1
iµu =

Si∑
s=1

(
Biµs(y,Dy)(ζu)

)(
Ωis(y)

)∣∣
Υi
,

where
(
Biµs(y,Dy)v

)(
Ωis(y)

)
= Biµs(y′,Dy′)v(y′)|y′=Ωis(y) and the function ζ ∈ C∞(R2) satisfies

ζ(y) = 1 (y ∈ Oε0/2(K)), ζ(y) = 0 (y /∈ Oε0(K)). (1.4)

SinceB1
iµu = 0 whenever suppu ⊂ Ḡ\Oε0(K), we say that the operator B1

iµ corresponds to nonlocal
terms with support near the set K.

We also introduce a bounded operator B2
iµ : W

l+2m(G) → W l+2m−miµ−1/2(Υi) satisfying the
following condition.

Condition 1.2. There exist numbers κ1 > κ2 > 0 and ρ > 0 such that the inequalities

‖B2
iµu‖W l+2m−miµ−1/2(Υi)

� c1‖u‖W l+2m(G\Oκ1(K))
, (1.5)

‖B2
iµu‖W l+2m−miµ−1/2(Υi\Oκ2(K))

� c2‖u‖W l+2m(Gρ), (1.6)

hold for any
u ∈ W l+2m(G \ Oκ1(K)) ∪W l+2m(Gρ),

where i = 1, . . . , N0, µ = 1, . . . ,m, c1, c2 > 0, and Gρ = {y ∈ G : dist(y, ∂G) > ρ}.

It follows from (1.5) that B2
iµu = 0 whenever suppu ⊂ Oκ1(K). For this reason, we say that the

operator B2
iµ corresponds to nonlocal terms supported outside the set K.

We will suppose throughout that Conditions 1.1 and 1.2 are satisfied.
Note that we a priori assume no connection between the numbers κ1,κ2, ρ in Condition 1.2 and

the number ε0 in Condition 1.1.
We study the following nonlocal elliptic problem:

Pu = f0(y) (y ∈ G), (1.7)

B0
iµu+B1

iµu+B2
iµu = fiµ(y) (y ∈ Υi; i = 1, . . . , N0; µ = 1, . . . ,m). (1.8)

Let us introduce the following operator corresponding to problem (1.7), (1.8):

L = {P, B0
iµ +B1

iµ +B2
iµ} : W l+2m(G) → W l(G,Υ),

where

W l(G,Υ) = W l(G) ×
N0∏
i=1

m∏
µ=1

W l+2m−miµ−1/2(Υi).

Remark 1.2. In what follows, we need the assumption that ε0 is sufficiently small (whereas
κ1,κ2, ρ can be arbitrary). Let us show that this leads to no loss of generality.
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Let us take a number ε̂0 such that 0 < ε̂0 < ε0. We consider a function ζ̂ ∈ C∞(R2) for which

ζ̂(y) = 1 (y ∈ Oε̂0/2(K)), ζ̂(y) = 0 (y /∈ Oε̂0(K))

and introduce an operator B̂1
iµ : W

l+2m(G) → W l+2m−miµ−1/2(Υi) by the formula

B̂1
iµu =

Si∑
s=1

(
Biµs(y,Dy)(ζ̂u)

)(
Ωis(y)

)∣∣
Υi
.

Clearly,
B0
iµ +B1

iµ +B2
iµ = B0

iµ + B̂1
iµ + B̂2

iµ, where B̂2
iµ = B1

iµ − B̂1
iµ +B2

iµ.

It follows from Example 1.1 (see Sec. 1.2) that the operator B1
iµ − B̂1

iµ satisfies Condition 1.2 for
some κ1,κ2, ρ. Therefore, we can always choose ε0 to be as small as necessary (possibly at the
expense of a modification of the operator B2

iµ and the values of κ1,κ2, ρ).

1.2. Example of Nonlocal Problem

In the following example we give a concrete realization for the abstract nonlocal operators B2
iµ.

Example 1.1. Let the operators P(y,Dy) and Biµs(y,Dy) be as above. Let Ωis (i = 1, . . . , N0,
s = 1, . . . , Si) be an infinitely differentiable nondegenerate transformation mapping some neighbor-
hood Oi of the curve Υi onto Ωis(Oi) in such a way that Ωis(Υi) ⊂ G. Note that it is not assumed
in this example that condition (1.2) holds for any Ωis.

Consider the following nonlocal problem:

P(y,Dy)u = f0(y) (y ∈ G), (1.9)

Biµ0(y,Dy)u(y)|Υi +
Si∑
s=1

(
Biµs(y,Dy)u

)(
Ωis(y)

)∣∣
Υi

= fiµ(y)

(y ∈ Υi; i = 1, . . . , N0; µ = 1, . . . ,m).

(1.10)

We take a small number ε0 > 0 in such a way that, for any point g ∈ K, the set Oε0(g) intersects
the curve Ωis(Υi) only for g ∈ K ∩Ωis(Υi).

Let a point g ∈ K ∩ Ῡi be such that Ωis(g) ∈ K. Then we define the orbit Orb(g) of the point g
as above and assume that Condition 1.1 holds for each point of the orbit Orb(g).

Remark 1.3. According to Remark 1.1, Condition 1.1 is a restriction upon the geometric
structure of the support of nonlocal terms near the set K. However, if Ωis(Ῡi \Υi) ⊂ ∂G \ K, then
we impose no restrictions upon the geometric structure of the curve Ωis(Ῡi) near ∂G (cf. [14, 16]).

We set

Pu = P(y,Dy)u, B0
iµu = Biµ0(y,Dy)u(y)|Υi ,

B1
iµu =

Si∑
s=1

(
Biµs(y,Dy)(ζu)

)(
Ωis(y)

)∣∣
Υi
, B2

iµu =
Si∑
s=1

(
Biµs(y,Dy)((1− ζ)u)

)(
Ωis(y)

)∣∣
Υi
,

where ζ is defined by (1.4) (see Figures 1.1 and 1.2). Then problem (1.9), (1.10) acquires the
form (1.7), (1.8).

RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS Vol. 10 No. 4 2003



SOLVABILITY OF NONLOCAL ELLIPTIC PROBLEMS IN SOBOLEV SPACES 443

Fig. 1.1: Dotted lines denote the support of nonlocal terms corresponding to the operator B2
iµ.

Fig. 1.1: Dotted lines denote the support of nonlocal terms corresponding to the operator B2
iµ.

As in the proof of Lemma 2.5 [16] (where the weighted spaces must be replaced by the cor-
responding Sobolev spaces), one can show that the operator B2

iµ satisfies Condition 1.2. For ex-
ample, let us prove inequality (1.5). Clearly, it suffices to consider an arbitrary term of the form
ψ =

(
Biµs(y,Dy)((1− ζ)u)

)(
Ωis(y)

)∣∣
Υi
. We introduce a function v ∈ C∞0

(
Ωis(Oi)

)
such that

v|Ωis(Υi) =
(
Biµs(y,Dy)((1 − ζ)u)

)∣∣
Ωis(Υi)

, (1.11)

‖v‖W l+2m−miµ (Ωis(Oi)) � 2
∥∥(Biµs(y,Dy)((1− ζ)u)

)∣∣
Ωis(Υi)

∥∥
W l+2m−miµ−1/2(Ωis(Υi))

, (1.12)

It follows from (1.11) that
v
(
Ωis(y)

)∣∣
Υi

= ψ.

Combining this condition with the boundedness of the trace operator in Sobolev spaces and with
inequality (1.12), we obtain
‖ψ‖

W l+2m−miµ−1/2(Υi)
=
∥∥v(Ωis(y))∣∣Υi

∥∥
W l+2m−miµ−1/2(Υi)

�
∥∥v(Ωis(y))∥∥W l+2m−miµ (Oi)

� k1‖v‖W l+2m−miµ (Ωis(Oi)) � 2k1‖Biµs(y,Dy)((1− ζ)u)|Υi‖W l+2m−miµ−1/2(Ωis(Υi))

� k2‖(1 − ζ)u‖W l+2m(G). (1.13)
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Thus, by setting κ1 = ε0/2, we see that relation (1.13) implies the estimate (1.5). Note that, in
this case, the numbers κ1 and ε0 turn out to be related to each other.

Similar considerations enable one to obtain the estimate (1.6). The proof is based on the bound-
edness of the trace operator, on the smoothness of the transformations Ωis, and on the relation

Ωis(Υi \ Oκ2(K)) ⊂ Gρ

(which holds for any κ2 < κ1 and for a sufficiently small ρ = ρ(κ2)). The last relation follows from
the embedding Ωis(Υi) ⊂ G and from the continuity of Ωis.

1.3. Nonlocal Problems Near the Set K

When studying problem (1.7), (1.8), one must pay special attention to the behavior of solutions in
a neighborhood of the set K which consists of conjugation points. Let us consider the corresponding
model problems in plane angles. To this end, we formally assume that

B2
iµ = 0, i = 1, . . . , N0, µ = 1, . . . ,m. (1.14)

Let us fix some orbit Orbp ⊂ K (p = 1, . . . , N1) and suppose that

suppu ⊂
(N1p⋃
j=1

V(gpj )
)
∩ Ḡ.

We denote by uj(y) the function u(y) for y ∈ V̂(gpj ) ∩G. If

gpj ∈ Ῡi, y ∈ V(gpj ), and Ωis(y) ∈ V̂(gpk),
denote u(Ωis(y)) by uk(Ωis(y)). Then, by virtue of assumption (1.14), the nonlocal problem (1.7),
(1.8) becomes

P(y,Dy)uj = f0(y) (y ∈ V(gpj ) ∩G),

Biµ0(y,Dy)uj(y)|V(gp
j

)∩Υi +
Si∑
s=1

(
Biµs(y,Dy)(ζuk)

)(
Ωis(y)

)∣∣
V(gp

j
)∩Υi

= fiµ(y)

(
y ∈ V(gpj ) ∩Υi; i ∈ {1 � i � N0 : gpj ∈ Ῡi}; j = 1, . . . , N1p; µ = 1, . . . ,m

)
.

Let y �→ y′(gpj ) be the above change of variable. Introduce the function Uj(y′) = uj(y(y′)) and
denote y′ by y again. For a chosen p, we set N = N1p, bj = bpj , Kj = Kp

j (see Sec. 1.1), and

γjσ = {y ∈ R2 : r > 0, ω = (−1)σbj} (σ = 1, 2),

where (ω, r) are polar coordinates with the pole at the origin. Now, using Condition 1.1, we can
represent problem (1.7), (1.8) as follows:

Pj(y,Dy)Uj = fj(y) (y ∈ Kj), (1.15)

Bjσµ(y,Dy)U |γjσ ≡
∑
k,s

(Bjσµks(y,Dy)Uk)(Gjσksy)|γjσ = fjσµ(y) (y ∈ γjσ). (1.16)

Here (and below unless otherwise stated)
j, k = 1, . . . , N = N1p; σ = 1, 2; µ = 1, . . . ,m; s = 0, . . . , Sjσk;

Pj(y,Dy) and Bjσµks(y,Dy) are operators of orders 2m and mjσµ, respectively, with variable C∞-
coefficients; Gjσks is the operator of rotation by an angle of ωjσks and of the homothety with the
coefficient χjσks (χjσks > 0) in the y-plane. Moreover,

|(−1)σbj + ωjσks| < bk for (j, 0) �= (k, s), ωjσj0 = 0, and χjσj0 = 1.

Since V(0) ⊃ Oε0(0) (see. (1.3)), it follows that

Bjσµks(y,Dy)v(y) = 0 for |y| � ε0, (k, s) �= (j, 0), (1.17)

for any function v (which need not be compactly supported). Moreover, since we consider prob-
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lem (1.15), (1.16) for functions U with compact support, we can assume that the coefficients of the
operators Pj(y,Dy) and Bjσµj0(y,Dy) vanish outside a disk of sufficiently large radius.

Let us introduce the following spaces of vector functions:

W l+2m,N(K) =
N∏
j=1

W l+2m(Kj), W l,N (K,γ) =
N∏
j=1

W l(Kj , γj),

W l(Kj , γj) = W l(Kj)×
∏
σ=1,2

m∏
µ=1

W l+2m−mjσµ−1/2(γjσ).

We consider the operator Lp : W l+2m,N(K) → W l,N (K,γ) corresponding to problem (1.15),
(1.16) and given by

LpU = {Pj(y,Dy)Uj , Bjσµ(y,Dy)U |γjσ}.
The subscript p means that the operator Lp is related to the orbit Orbp.

Denote by Pj(Dy) and Bjσµks(Dy) the principal homogeneous parts of the operators Pj(0,Dy)
and Bjσµks(0,Dy), respectively. Along with problem (1.15), (1.16), we study the model nonlocal
problem

Pj(Dy)Uj = fj(y) (y ∈ Kj), (1.18)

Bjσµ(Dy)U |γjσ ≡
∑
k,s

(Bjσµks(Dy)Uk)(Gjσksy)|γjσ = fjσµ(y) (y ∈ γjσ). (1.19)

Introduce the operator Lp : W l+2m,N(K) → W l,N (K,γ) corresponding to problem (1.18), (1.19)
and given by

LpU = {Pj(Dy)Uj , Bjσµ(Dy)U |γjσ}.
Let us represent the operators Pj(Dy) and Bjσµks(Dy) in polar coordinates:

Pj(Dy) = r−2mP̃j(ω,Dω , rDr), Bjσµks(Dy) = r−mjσµB̃jσµks(ω,Dω , rDr).

Introduce the following spaces of vector functions:

W l+2m,N(−b, b) =
N∏
j=1

W l+2m(−bj , bj), W l,N [−b, b] =
N∏
j=1

W l[−bj , bj ],

W l[−bj , bj ] = W l(−bj , bj)× C2m

and consider the analytic operator-valued function L̃p(λ) : W l+2m,N(−b, b) → W l,N [−b, b] given by

L̃p(λ)ϕ = {P̃j(ω,Dω, λ)ϕj ,
∑
k,s

(χjσks)iλ−mjσµB̃jσµks(ω,Dω, λ)ϕk(ω + ωjσks)|ω=(−1)σbj}.

Main definitions and facts concerning eigenvalues, eigenvectors, and associate vectors of analytic
operator-valued functions can be found in [23]. In what follows, it is fundamental that the spectrum
of the operator L̃p(λ) is discrete (see Lemma 2.1 [15]).

Below we show that the Fredholm solvability of problem (1.7), (1.8) in Sobolev spaces depends
on the location of eigenvalues of the model operators L̃p(λ) corresponding to the points of K. Note
that the solvability of the same problem in weighted spaces depends on the location of eigenvalues
of the model operators corresponding not only to the points of K but also on the validity of the
conditions Ωis(K) ⊂ Ḡ and Ωi′s′(Ωis(K)∩Υi′) ⊂ G (see [14, 16]). This can be explained as follows:
the points of the above sets are related by means of the transformations Ωis. For this reason,
the singularities of solutions occurring near the set K can be “transferred” to other points both
on the boundary and strictly inside the domain. However, in the case under consideration, we
shall prove below that, if the right-hand side of problem (1.7), (1.8) is subjected to finitely many
orthogonality conditions in the Sobolev space W l(G,Υ), then the solutions belong to the Sobolev
space W l+2m(G). Therefore, these solutions have no singularities.
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2. NONLOCAL PROBLEMS IN PLANE ANGLES FOR THE CASE IN
WHICH LINE Imλ = 1 − L − 2M CONTAINS NO EIGENVALUES OF L̃P (λ)

In this section we construct an operator acting on Sobolev spaces defined for compactly supported
functions; this operator is the right inverse for the operator Lp up to a sum of small and compact
perturbations. (Recall that Lp corresponds to the model problem (1.15), (1.16).)

2.1. Weighted Spaces Hk
a (Q)

Throughout the section, we suppose that the orbit Orbp is fixed; therefore, for brevity, we denote
the operators Lp, Lp, and L̃p(λ) by L, L, and L̃(λ), respectively.

In the investigation of the solvability of problem (1.15), (1.16) in Sobolev spaces we use the
results on the solvability of problem (1.18), (1.19) in weighted spaces. Let us introduce these spaces
and list their properties.

For any set X ∈ Rn (n � 1), denote by C∞0 (X) the set of infinitely differentiable functions on
X̄ which are compactly supported in X. Let

Q = Kj , Q = Kj ∩ {y ∈ R2 : |y| < d} (d > 0), or Q = R2.

Denote by Hk
a (Q) the completion of the set C∞0 (Q̄ \ {0}) with respect to the norm

‖w‖Hk
a (Q) =


∑
|α|�k

∫
Q

r2(a−k+|α|)|Dα
yw|2dy




1/2

,

where a ∈ R and k � 0 is an integer. For k � 1, denote by H
k−1/2
a (γ) the space of traces on a

smooth curve γ ⊂ Q̄ with the norm

‖ψ‖
H
k−1/2
a (γ)

= inf ‖w‖Hk
a (Q) (w ∈ H l

a(Q) : w|γ = ψ).

We introduce the following spaces of vector functions:

H l+2m,N
a (K) =

∏N
j=1 H

l+2m
a (Kj), Hl,N

a (K,γ) =
∏N
j=1 Hl

a(Kj , γj),

Hl
a(Kj , γj) = H l

a(Kj)×
∏
σ=1,2

∏m
µ=1 H

l+2m−mjσµ−1/2
a (γjσ).

The bounded operator La : H l+2m,N
a (K) → Hl,N

a (K,γ) given by

LaU = {Pj(Dy)Uj , Bjσµ(Dy)U |γjσ} (2.1)

corresponds to problem (1.18), (1.19) in the weighted spaces. It follows from Theorem 2.1 [15] that
the operator La has bounded inverse if and only if the line Imλ = 1− l−2m contains no eigenvalues
of the operator L̃(λ). In this section and in the next one, we study the solvability of problems (1.18),
(1.19) and (1.15), (1.16) in Sobolev spaces by using the invertibility of La. To this end, we need
some auxiliary results (Lemmas 2.1 and 2.2) concerning the relation between the spaces Hk

a (·) and
W k(·).

Lemma 2.1. Let u ∈ W k(Q) (k � 2), u(y) = 0 for |y| � 1, and Dαu|y=0 = 0 (|α| � k − 2).
Then we have

‖u‖Hk
a (Q) � ca‖u‖Wk(Q), a > 0. (2.2)

If we additionally assume that1Dk−1u ∈ H1
0 (Q), then

‖u‖Hk
0 (Q) � c

∑
|α|=k−1

‖Dαu‖H1
0 (Q). (2.3)

Here Q is the same domain as above and ca > 0 does not depend on u.

1If some assertion is stated for a function Dlu, then we mean that this assertion holds for all functions of the form

Dαu, |α| = l.
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Proof. It follows from Lemma 4.9 [21] that

‖Dk−1u‖H1
a(Q) � c‖Dk−1u‖W 1(Q) � c‖u‖Wk(Q)

for each a > 0. Combining this estimate (or the relation Dk−1u ∈ H1
0 (Q)) with Lemma 4.12

in [21]2yields inequality (2.2) for 0 < a < 1 (or inequality (2.3), respectively). Since the support of
u is compact, it follows that inequality (2.2) holds for any a > 0.

Lemma 2.2. Let u ∈ W 1(R2), and let u(y) = 0 for |y| � 1. Then

‖u(y)− u(G0y)‖H1
0 (R2) � c‖u‖W 1(R2),

where G0 is the composition of a rotation by an angle of ω0 (−π < ω0 � π) and an expansion with
some coefficient χ0 (χ0 > 0).

Proof. Writing a function u in the polar coordinates (ω, r) yields

u(y)− u(G0y) = u(ω, r)− u(ω + ω0, χ0r) = v1 + v2,

where v1(ω, r) = u(ω, r)− u(ω + ω0, r), v2(ω, r) = u(ω + ω0, r)− u(ω + ω0, χ0r).
Let us consider the function v1. By Lemma 4.15 [21], we obtain∫ ∞

0

r−1|v1(0, r)|2dr � k1‖u‖W 1(R2).

It follows from this inequality and from Lemma 4.8 in [21] that v1 ∈ H1
0 (R2) and

‖v1‖H1
0 (R2) � k2‖u‖W 1(R2). (2.4)

To prove the lemma, it remains to show that∫
R2

r−2|v2|2dy � k3‖u‖W 1(R2). (2.5)

If χ0 > 1 (the case in which 0 < χ0 < 1 can be treated similarly), then
∫
R2

r−2|v2|2dy =
∫ π

−π
dω

∫ ∞
0

r−1|v2(ω, r)|2dr =
∫ π+ω0

−π+ω0

dω

∫ ∞
0

r−1dr

∣∣∣∣
∫ χ0r

r

∂u(ω, t)
∂t

dt

∣∣∣∣
2

.

Using first the Cauchy–Schwarz inequality and then changing the limits of integration, we obtain
an estimate of the form (2.5), namely,
∫
R2

r−2|v2|2dy � (χ0 − 1)
∫ π+ω0

−π+ω0

dω

∫ ∞
0

dr

∫ χ0r

r

∣∣∣∣∂u(ω, t)∂t

∣∣∣∣
2

dt

=
(χ0 − 1)2

χ0

∫ π+ω0

−π+ω0

dω

∫ ∞
0

∣∣∣∣∂u(ω, t)∂t

∣∣∣∣
2

t dt � (χ0 − 1)2

χ0
‖u‖2

W 1(R2).

Let us prove another auxiliary result.

Lemma 2.3. Let H, H1, and H2 be Hilbert spaces, A : H → H1 a linear bounded operator, and
T : H → H2 a compact operator. Suppose that, for some ε > 0, c > 0, and f ∈ H, the following
inequality holds:

‖Af‖H1 � ε‖f‖H + c‖T f‖H2 . (2.6)
Then there exist operators M,F : H → H1 such that

A = M+ F ,

‖M‖ � 2ε, and the operator F is finite-dimensional.

2Lemma 4.12 [21] was proved by Kondrat’ev for a = 0; however, his proof remains valid for any a < 1 with minor

modifications.
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Proof. As is well known (see, e.g., [24, Ch. 5, § 85]), any compact operator is the limit of a
norm convergent sequence of finite-dimensional operators. Therefore, there exist bounded operators
M0,F0 : H → H2 such that T = M0+F0, ‖M0‖ � c−1ε, and the operator F0 is finite-dimensional.
This, together with (2.6), implies that

‖Af‖H1 � 2ε‖f‖H + c‖F0f‖H2 for any f ∈ H. (2.7)

Denote by ker(F0)⊥ the orthogonal complement in H to the kernel of the operator F0. Since
the finite-dimensional operator F0 maps ker(F0)⊥ onto its image bijectively, it follows that the
subspace ker(F0)⊥ is finite-dimensional. Let I denote the identity operator in H, and let P0 be
the orthogonal projection to ker(F0)⊥. Clearly, AP0 : H → H1 is a finite-dimensional operator.
Moreover, since I − P0 is the orthogonal projection onto ker(F0), it follows that F0(I − P0) = 0.
Therefore, substituting the function (I − P0)f for f in (2.7), we obtain

‖A(I − P0)f‖H1 � 2ε‖(I − P0)f‖H � 2ε‖f‖H for any f ∈ H.

Write M = A(I − P0) and F = AP0. This completes the proof.

2.2. Construction of the Operator R

In this subsection, we construct an operator R acting on a subspace Sl,N (K,γ) of W l,N (K,γ)
defined for compactly supported functions. This operator is a right inverse of the operator L up
to a sum of small and compact perturbations (see Theorem 2.1). To construct the operator R, we
assume that the following condition holds.

Condition 2.1. The line Imλ = 1− l − 2m contains no eigenvalues of the operator L̃(λ).

Denote by S l,N (K,γ) the subspace of W l,N (K,γ) consisting of the functions {fj , fjσµ} such that

Dαfj|y=0 = 0, |α| � l − 2, (2.8)

∂βfjσµ

∂τβjσ

∣∣∣∣∣
y=0

= 0, β � l + 2m−mjσµ − 2, (2.9)

where τjσ is the unit vector directed along the ray γjσ. If l− 2 < 0 or l+2m−mjσµ − 2 < 0, then
the corresponding conditions are absent. It follows from Sobolev’s embedding theorem and from
Riesz’ theorem on the general form of a linear continuous functional on a Hilbert space that the
set S l,N (K,γ) is closed and of finite codimension in W l,N (K,γ).

Let us consider the operators

∂l+2m−mjσµ−1

∂τ
l+2m−mjσµ−1
jσ

Bjσµ(Dy)U ≡ ∂l+2m−mjσµ−1

∂τ
l+2m−mjσµ−1
jσ

(∑
k,s

(Bjσµks(Dy)Uk)(Gjσksy)
)
.

Using the chain rule, we can write

∂l+2m−mjσµ−1

∂τ
l+2m−mjσµ−1
jσ

Bjσµ(Dy)U ≡
∑
k,s

(B̂jσµks(Dy)Uk)(Gjσksy), (2.10)

where B̂jσµks(Dy) are some homogenous differential operators of order l + 2m − 1 with constant
coefficients. In particular, we have

B̂jσµj0(Dy) =
∂l+2m−mjσµ−1

∂τ
l+2m−mjσµ−1
jσ

Bjσµj0(Dy)

because Gjσj0y ≡ y. Formally replacing the nonlocal operators in (2.10) by the corresponding local
ones, introduce the operators

B̂jσµ(Dy)U ≡
∑
k,s

B̂jσµks(Dy)Uk(y). (2.11)
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Along with system (2.11), consider the operators (for l � 1)

DξPj(Dy)Uj(y), |ξ| = l − 1. (2.12)

The system of operators (2.11) and (2.12) plays an essential role in the proof of the following lemma,
which is used below in the construction of the operator R.

Lemma 2.4. Let Condition 2.1 hold. Then, for any ε, 0 < ε < 1, there exists a bounded operator

A : {f ∈ S l,N (K,γ) : supp f ⊂ Oε(0)} → W l+2m,N(K)

such that, for any f = {fj , fjσµ} ∈ Dom(A), the function V = Af satisfies the following conditions:

V = 0 for |y| � 1,

‖LV − f‖Hl,N0 (K) � c‖f‖Wl,N (K,γ), (2.13)

‖V ‖Hl+2m,N
a (K) � ca‖f‖Wl,N (K,γ) for any a > 0. (2.14)

Proof. 1. Introduce the operator
fjσµ �→ Φjσµ (2.15)

taking each function fjσµ ∈ W l+2m−mjσµ−1/2(γjσ) to its extension Φjσµ ∈ W l+2m−mjσµ(R2) to
R

2 such that Φjσµ = 0 for |y| � 2. We also consider an extension of the function fj from Kj to
R

2 such that the extended function (which we also denote by fj) is equal to zero for |y| � 2. The
corresponding extension operators can be chosen to be linear and bounded (see [25, Ch. 6, § 3]).

Let us consider the following linear algebraic system for the partial derivatives DαWj , |α| =
l + 2m− 1, j = 1, . . . , N :

B̂jσµ(Dy)W =
∂l+2m−mjσµ−1

∂τ
l+2m−mjσµ−1
jσ

Φjσµ, (2.16)

DξPj(Dy)Wj = Dξfj (2.17)

(j = 1, . . . , N ; σ = 1, 2; µ = 1, . . . ,m; |ξ| = l−1). Recall that each of the operators B̂jσµ(Dy) given
by (2.11) is the sum of “local” operators, which enables us to regard system (2.16), (2.17) as an
algebraic system. Let us assume that system (2.16), (2.17) admits a unique solution for any right-
hand side. Denote by Wjα the solution of system (2.16), (2.17). It is obvious that Wjα ∈ W 1(R2)
and Wjα = 0 for |y| � 2. By virtue of Lemma 4.17 [21], there exists a bounded linear operator

{Wjα}|α|=l+2m−1 �→ Vj (2.18)

taking the system
{Wjα}|α|=l+2m−1 ∈

∏
|α|=l+2m−1

W 1(R2)

to a function Vj ∈ W l+2m(R2) such that

Vj = 0 for |y| � 1,

DαVj |y=0 = 0, |α| � l + 2m− 2, (2.19)

DαVj −Wjα ∈ H1
0 (R

2), |α| = l + 2m− 1. (2.20)

2. Let us show that V = (V1, . . . , VN ) is the desired function. Inequality (2.14) follows from
relations (2.19) and from Lemma 2.1 because the operator (2.18) is bounded.
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Let us prove (2.13). Since the functions Wjα are solutions of the algebraic system (2.16), (2.17)
and the functions Vj satisfy (2.20), it follows that

B̂jσµ(Dy)V − ∂l+2m−mjσµ−1

∂τ
l+2m−mjσµ−1
jσ

Φjσµ ∈ H1
0 (R

2), (2.21)

Dl−1(Pj(Dy)Vj − fj) ∈ H1
0 (R

2). (2.22)

Moreover, by (2.19) and (2.8) we have

Dα(Pj(Dy)Vj − fj)|y=0 = 0, |α| � l − 2.

Combining this with relations (2.22) and Lemma 2.1, we see that Pj(Dy)Vj − fj ∈ H l
0(Kj).

Now let us show that

Bjσµ(Dy)V |γjσ − fjσµ ∈ H
l+2m−mjσµ−1/2
0 (γjσ). (2.23)

To do this, we return in (2.21) from the “local” operators B̂jσµ(Dy) to the nonlocal ones, i.e., to
∂l+2m−mjσµ−1

∂τ
l+2m−mjσµ−1
jσ

Bjσµ(Dy). Then, using Lemma 2.2, by (2.21) we see that

∂l+2m−mjσµ−1

∂τ
l+2m−mjσµ−1
jσ

(Bjσµ(Dy)V − Φjσµ) ∈ H1
0 (R

2). (2.24)

The inclusions (2.24) and Lemma 4.18 [21] imply

∫ ∞
0

r−1

∣∣∣∣∣
∂l+2m−mjσµ−1

∂τ
l+2m−mjσµ−1
jσ

(Bjσµ(Dy)V |γjσ − fjσµ)

∣∣∣∣∣
2

dr

� k1

∥∥∥∥∥
∂l+2m−mjσµ−1

∂τ
l+2m−mjσµ−1
jσ

(Bjσµ(Dy)V − Φjσµ)

∥∥∥∥∥
2

H1
0 (Kj)

. (2.25)

It follows from inequality (2.25), from relations (2.8) and (2.19), and from Lemma 4.7 in [21] that

∫ ∞
0

r1−2(l+2m−mjσµ)|Bjσµ(Dy)V |γjσ−fjσµ|2dr � k2

∥∥∥∥∥
∂l+2m−mjσµ−1

∂τ
l+2m−mjσµ−1
jσ

(Bjσµ(Dy)V −Φjσµ)

∥∥∥∥∥
2

H1
0 (Kj)

.

(2.26)
Combining this inequality with the relation Bjσµ(Dy)V |γjσ − fjσµ ∈ W l+2m−mjσµ−1/2(γjσ) and
using (2.26) and Lemma 4.16 [21], we obtain (2.23). Using the boundedness of the operators (2.15)
and (2.18), one can easily prove the estimate (2.13) as well.

3. Now it remains to show that system (2.16), (2.17) admits a unique solution for any right-hand
side. Obviously, this system consists of (l+2m)N equations for (l+2m)N unknowns. Therefore, it
suffices to show that the corresponding homogeneous system has a trivial solution only. Assume the
contrary. Let there exist a nontrivial numerical vector {qjα} (j = 1, . . . , N , |α| = l+2m−1) such that
the right-hand side of system (2.16), (2.17) vanishes after substituting the numbers qjα for DαWj

into the left-hand side of the system. Let us consider the homogeneous polynomial Qj(y) of order
l + 2m− 1 such that DαQj(y) ≡ qjα. Then we have Pj(Dy)Qj(y) ≡ 0 (since DξPj(Dy)Qj(y) ≡ 0
for all |ξ| = l − 1), and

B̂jσµ(Dy)Q(y) ≡
∑
k,s

B̂jσµks(Dy)Qk(y) ≡ 0
(
Q = (Q1, . . . , QN )

)
. (2.27)
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Note that B̂jσµks(Dy)Qk(y) ≡ const, whereas every operator Gjσks of a rotation or an expansion
takes a constant to itself. Therefore, along with (2.27), the following identity holds:

∂l+2m−mjσµ−1

∂τ
l+2m−mjσµ−1
jσ

(
Bjσµ(Dy)Q(y)

)
≡
∑
k,s

(B̂jσµks(Dy)Qk)(Gjσksy) ≡ 0. (2.28)

Since Bjσµ(Dy)Q is a homogeneous polynomial of order l+2m−mjσµ−1, it follows from (2.28) that
Bjσµ(Dy)Q|γjσ ≡ 0. Thus, we see that the vector-valued function Q = (Q1, . . . , QN ) is a solution
of the homogeneous problem (1.18), (1.19). Therefore,

P̃j(ω,Dω , rDr)
(
rl+2m−1Q̃j(ω)

)
≡ 0,∑

k,s

(χjσks)(l+2m−1)−mjσµB̃jσµks(ω,Dω , rDr)
(
rl+2m−1Q̃k(ω + ωjσks)

)
|ω=(−1)σbj ≡ 0, (2.29)

where Qj(y) ≡ rl+2m−1Q̃j(ω). However, identities (2.29) mean that L̃(−i(l + 2m − 1))Q̃(ω) ≡ 0,
where Q̃ = (Q̃1, . . . , Q̃N ). This contradicts the assumption that the line Imλ = 1− l− 2m contains
no eigenvalues of L̃(λ).

Corollary 2.1. The function V constructed in Lemma 2.4 satisfies the following inequality :

‖LV − f‖Hl,N0 (K) � c‖f‖Wl,N (K,γ). (2.30)

Proof. By virtue of inequality (2.13), it suffices to estimate the differences

(Pj(y,Dy)− Pj(Dy))Vj , (Bjσµ(y,Dy)− Bjσµ(Dy))V |γjσ .

The former contains terms of the form

(
aα(y)− aα(0)

)
DαVj (|α| = 2m), aβ(y)DβVj (|β| � 2m− 1),

where aα and aβ are infinitely differentiable functions. Choosing some a, 0 < a < 1, taking into
account that V = 0 for |y| � 1, and using Lemma 3.3′ in [21] and inequality (2.14), we obtain

‖
(
aα(y)− aα(0)

)
DαVj‖Hl

0(Kj) � k1‖
(
aα(y)− aα(0)

)
DαVj‖Hl

a−1(Kj)

� k2‖DαVj‖Hl
a(Kj) � k3‖f‖Wl,N (K,γ).

Similarly, it follows from the definition of weighted spaces and from inequality (2.14) that

‖aβ(y)DβVj‖Hl
0(Kj) � k4‖aβ(y)DβVj‖Hl+1

a (Kj)
� k5‖Vj‖Hl+2m

a (Kj)
� k6‖f‖Wl,N (K,γ).

The expressions (Bjσµ(y,Dy)−Bjσµ(Dy))V |γjσ can be estimated in the same way.

Using Lemma 2.4, we can construct an operator R with the desired properties.

Theorem 2.1. Let Condition 2.1 hold. Then, for any ε, 0 < ε < 1, there exist bounded operators

R : {f ∈ Sl,N (K,γ) : supp f ⊂ Oε(0)} → {U ∈ W l+2m,N(K) : suppU ⊂ Oε1(0)},
M,T : {f ∈ Sl,N (K,γ) : supp f ⊂ Oε(0)} → {f ∈ Sl,N(K,γ) : supp f ⊂ O2ε1(0)}
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with3ε1 = max
{
ε, ε0/min{χjσks, 1}

}
such that ‖Mf‖Wl,N (K,γ) � cε1‖f‖Wl,N (K,γ), where c > 0

depends only on the coefficients of the operators Pj(Dy) and Bjσµks(Dy). Moreover, the operator
T is compact, and

LRf = f + Mf + Tf. (2.31)

Proof. By Lemma 2.4 we have f − LAf ∈ Hl,N
0 (K,γ). Therefore,

L−1
0 (f − LAf) ∈ H l+2m,N

0 (K),

where L0 : H l+2m,N
0 (K) → Hl,N

0 (K,γ) is the operator given by (2.1) for a = 0. Set

Rf = ψU, U = L−1
0 (f − LAf) +Af.

Here ψ ∈ C∞0 (R2) satisfies

ψ(y) = 1 for |y| � ε1 = max
{
ε, ε0/min{χjσks, 1}

}
, suppψ ⊂ O2ε1(0),

and ψ does not depend on the polar angle ω. Let us show that the operator R has the desired
properties. Since the embedding H l+2m,N

0 (K) ⊂ W l+2m,N(K) is continuous for the compactly
supported functions and the operators A are bounded, we can use inequality (2.13) and obtain

‖Rf‖W l+2m,N (K) � c‖f‖W l+2m,N (K).

Let us prove relation (2.31). Since Pj(Dy)Uj = fj and ψfj = fj , it follows that

Pj(y,Dy)(ψUj)− fj = [Pj(y,Dy), ψ]Uj + ψ(y)
(
Pj(y,Dy)− Pj(Dy)

)
Uj , (2.32)

where [·, ·] stands for the commutator.
Let b(y) be an arbitrary coefficient of the operator Bjσµks(y,Dy) with (k, s) �= (j, 0). By virtue

of (1.17) and by the choice of the function ψ, we have

b(Gjσksy) = 0 for |y| � ε0/χjσks,

(Dα
y ψ)(Gjσksy) = Dα

y ψ(y) for |y| � ε0/χjσks

(the last expression, for |y| � ε0/χjσks, is equal to 1 for |α| = 0 and to 0 for |α| � 1). Thus,

(bvDα
y ψ)(Gjσksy) ≡ Dα

yψ(y)(bv)(Gjσksy) for any v. (2.33)

Obviously, if (k, s) = (j, 0), then identity (2.33) is also true. Therefore, taking into account the
relations Bjσµ(Dy)U |γjσ = fjσµ and ψfjσµ = fjσµ, we see that

Bjσµ(y,Dy)(ψU)|γjσ−fjσµ = [Bjσµ(y,Dy), ψ]U |γjσ+ψ(y)
(
Bjσµ(y,Dy)−Bjσµ(Dy)

)
U |γjσ . (2.34)

It follows from (2.32)–(2.34) and from Leibniz’ formula that supp(LRf − f) ⊂ O2ε1(0) and

‖LRf − f‖Wl,N (K,γ) � k1ε1‖f‖Wl,N (K,γ) + k2(ε1)‖ψ1U‖W l+2m−1,N (K), (2.35)

3Recall that the number ε0 defines the diameter of the support for the function ζ occurring in the definition of
the nonlocal operator B1

iµ (see Sec. 1). In other words, the number ε0 defines the diameter for the support of the

coefficients of the model operators Bjσµks(y,Dy), (k, s) �= (j, 0) (see (1.17)).
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where ψ1 ∈ C∞0 (R2) is equal to 1 on the support of ψ. Note that the function L−1
0 (f − LAf)

belongs to H l+2m,N
0 (K), and therefore vanishes at y = 0 together with all its derivatives of order

� l + 2m − 2. By virtue of Lemma 2.4 (in particular, see (2.19)), the function Af possesses the
same property. Hence, LRf − f ∈ Sl,N (K,γ).

Moreover, by virtue of Lemma 2.4 and by the compactness of the embedding

{ψ1U : U ∈ W l+2m,N(K)} ⊂ W l+2m−1,N(K),

the operator
f �→ ψ1U

(see the second norm on the right-hand side of (2.35)) compactly maps

{f ∈ Sl,N (K,γ) : supp f ⊂ Oε(0)}

into W l+2m−1,N(K). Combining this with inequality (2.35) and Lemma 2.3, we complete the proof.

The operator R has the “demerit” that the diameter of the support of Rf depends on ε0 and
cannot be reduced by reducing the diameter of the support of f . However, to construct a right
regularizer for problem (1.7), (1.8) in the entire domain G, we need a modification R′ of R which
is free of this demerit. In the following theorem we construct such a modification R′ defined for the
functions f ′ = {fjσµ}.

Theorem 2.2. Let Condition 2.1 hold. Then, for any ε, 0 < ε < 1, there exist bounded operators

R′ : {f ′ : {0, f ′} ∈ Sl,N(K,γ), supp f ′ ⊂ Oε(0)} → {U ∈ W l+2m,N(K) : suppU ⊂ O2ε(0)},
M
′,T′ : {f ′ : {0, f ′} ∈ Sl,N(K,γ), supp f ′ ⊂ Oε(0)} → {f ∈ Sl,N (K,γ) : supp f ⊂ O2ε2(0)},

ε2 = ε/min{χjσks, 1}, such that ‖M′f ′‖Wl,N (K,γ) � cε‖{0, f ′}‖Wl,N (K,γ), where the constant c > 0
depends only on the coefficients of the operators Pj(Dy) and Bjσµks(Dy), the operator T′ is compact,
and

LR
′f ′ = {0, f ′}+ M

′f ′ + T
′f ′.

Proof. Write

R′f ′ = ψU, U = L−1
0

(
{0, f ′} − LA{0, f ′}

)
+A{0, f ′},

where ψ ∈ C∞0 (R2) is such that ψ(y) = 1 for |y| � ε, suppψ ⊂ O2ε(0), and ψ does not depend on
the polar angle ω.

The rest of the proof coincides with that of Theorem 2.1 except for one item. Namely, iden-
tity (2.33) can fail for the case in question, and therefore, instead of (2.34), we will have

Bjσµ(y,Dy)(ψU)|γjσ − fjσµ = [Bjσµ(y,Dy), ψ]U |γjσ + ψ(y)
(
Bjσµ(y,Dy)− Bjσµ(Dy)

)
U |γjσ

+
∑

(k,s)�=(j,0)

(
ψ(Gjσksy)− ψ(y)

)(
Bjσµks(y,Dy)Uk

)(
Gjσksy

)∣∣
γjσ

. (2.36)

Thus, to prove the theorem, it suffices to show that each of the operators

Uk �→ Jjσµks =
(
ψ(Gjσksy)− ψ(y)

)(
Bjσµks(y,Dy)Uk

)(
Gjσksy

)∣∣
γjσ

(2.37)

compactly maps W l+2m(Kk) into W l+2m−mjσµ−1/2(γjσ).
Note that, if (k, s) �= (j, 0), the operator Gjσks maps the ray γjσ onto the ray

{y ∈ R2 : r > 0, ω = (−1)σbj + ωjσks},
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which is strictly inside the angle Kk. Therefore, there exists a function ξ ∈ C∞0
(
(−bk, bk)

)
which

equals 1 at the point ω = (−1)σbj + ωjσks.
Moreover, note that the difference ψ(y) − ψ(G−1

jσksy) is compactly supported and vanishes near
the origin. Therefore, there exists a function ψ1 ∈ C∞0 (Kk) vanishing near the origin and equal to
1 on the support of the function ξ(ω)

(
ψ(y) − ψ(G−1

jσksy)
)
.

Thus, we have

‖Jjσµks‖W l+2m−mjσµ−1/2(γjσ)
� k1‖ξ(ω)

(
ψ(y)− ψ(G−1

jσksy)
)
Bjσµks(y,Dy)Uk‖W l+2m−mjσµ(Kk)

� k2‖ψ1Uk‖W l+2m(Kk).

(2.38)
Let us estimate the norm on the right-hand side of the last inequality by using Theorem 5.1 [22,
Ch. 2] and taking into account that (I) the function ψ1 is compactly supported and vanishes both
near the origin and near the sides of the angle Kk and (II) Pk(Dy)Uk = 0. As a result, using
Leibniz’ formula, we obtain

‖Jjσµks‖W l+2m−mjσµ−1/2(γjσ)
� k3‖ψ2Uk‖W l+2m−1(Kk), (2.39)

where ψ2 ∈ C∞0 (Kk) is equal to 1 on the support of ψ1. It follows from the estimate (2.39) and the
Rellich theorem that the operator (2.37) is compact.

Remark 2.1. It follows from the proofs of Theorems 2.1 and 2.2 that

DαRf |y=0 = 0, DαR′f ′|y=0 = 0, |α| � l + 2m− 2.

In Sec. 6 (in the second part of the paper), we study nonlocal problems in weighted spaces with
small values of the weight exponent a. The role of model operators in weighted spaces is played by
the bounded operator La : H l+2m,N

a (K) → Hl,N
a (K,γ) given by

LaU = {Pj(y,Dy)Uj , Bjσµ(y,Dy)U |γjσ}.

Let us formulate an analog of Theorem 2.2 for weighted spaces.

Theorem 2.3. Let the line Imλ = a + 1 − l − 2m contain no eigenvalues of L̃(λ). Then, for
any ε, 0 < ε < 1, there exist bounded operators

R′a : {f ′ : {0, f ′} ∈ Hl,N
a (K,γ), supp f ′ ⊂ Oε(0)} → {U ∈ H l+2m,N

a (K) : suppU ⊂ O2ε(0)},
M
′
a,T

′
a : {f ′ : {0, f ′} ∈ Hl,N

a (K,γ), supp f ′ ⊂ Oε(0)} → {f ∈ Hl,N
a (K,γ) : supp f ⊂ O2ε2(0)},

ε2 = ε/min{χjσks, 1}. such that ‖M′af ′‖Hl,Na (K,γ) � cε‖{0, f ′}‖Hl,Na (K,γ), where the positive con-
stant c depends only on the coefficients of the operators Pj(Dy) and Bjσµks(Dy), the operator T′a
is compact, and

LaR
′
af
′ = {0, f ′}+ M′af

′ + T′af
′.

Proof. It follows from Theorem 2.1 [15] that the operator La has bounded inverse. Write

R
′
af
′ = ψU, U = L−1

a {0, f ′},

where ψ is the same function as in the proof of Theorem 2.2. The remaining part of the proof is
similar to that of Theorem 2.2.
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3. NONLOCAL PROBLEMS IN PLANE ANGLES FOR THE CASE IN WHICH
LINE Imλ = 1 − L − 2M CONTAINS A PROPER EIGENVALUE OF L̃P (λ)

3.1. Spaces Ŝ l,N (K,γ)

In this section, we still denote the operators Lp, Lp, and L̃p(λ) by L, L, and L̃(λ), respectively.
Let us consider the situation in which the line Imλ = 1− l− 2m contains eigenvalues of L̃(λ). Let
λ = λ0 be one of these eigenvalues.

Definition 3.1. We say that λ = λ0 is a proper eigenvalue if (I) none of the corresponding
eigenvectors ϕ(ω) = (ϕj(ω), . . . , ϕN (ω)) has associate vectors and (II) the functions riλ0ϕj(ω),
j = 1, . . . , N , are polynomials in y1, y2.

Definition 3.2. An eigenvalue λ = λ0 which is not proper is said to be an improper eigenvalue.

Remark 3.1. The notion of proper eigenvalue was originally proposed by Kondrat’ev [21] for
“local” elliptic boundary-value problems in angular or conical domains.

Clearly, if λ0 is a proper eigenvalue, then Reλ0 = 0. Therefore, the line Imλ = 1− l − 2m can
contain at most one proper eigenvalue. In this section, we investigate the case in which the following
condition holds.

Condition 3.1. The line Imλ = 1 − l − 2m contains only the eigenvalue λ0 = i(1 − l − 2m)
and it is proper.

In this case, the conclusion of Lemma 2.4 fails because the algebraic system (2.16), (2.17) can
have no solution for some right-hand side and the system of operators (2.11), (2.12) is not linearly
independent. Indeed, let ϕ(ω) = (ϕ1(ω), . . . , ϕN (ω)) be an eigenvector corresponding to the proper
eigenvalue λ0 = i(1− l− 2m). Then, by the definition of proper eigenvalue, Qj(y) = rl+2m−1ϕj(ω)
is a polynomial (obviously homogeneous) of degree l + 2m − 1 with respect to y = (y1, y2). Re-
peating the arguments of assertion 3 in the proof of Lemma 2.4, we see that, after substituting
qjα = DαQj for DαWj in the left-hand side of system (2.16), (2.17), the right-hand side of this
system vanishes. Therefore, system (2.11), (2.12) is linearly dependent. Nevertheless, provided that
Condition 3.1 holds, it turns out to be possible to construct an operator R̂ defined for compactly
supported functions in a certain space Ŝ l,N (K,γ) so that this operator is a right inverse for L (see
Theorem 3.1). However, in contrast to Sl,N (K,γ), the set Ŝ l,N (K,γ) is not closed in the topology
of the space W l,N (K,γ).

In system (2.11) formed by homogeneous operators of order l + 2m − 1, we choose maximally
many linearly independent operators and denote them by

B̂j′σ′µ′(Dy)U. (3.1)

Any operator B̂jσµ(Dy) not included in system (3.1) can be represented in the form

B̂jσµ(Dy)U =
∑

j′,σ′,µ′

pj
′σ′µ′

jσµ B̂j′σ′µ′(Dy)U, (3.2)

where pj
′σ′µ′

jσµ are some constants.

Let us consider the functions f = {fj , fjσµ} ∈ W l,N (K,γ) satisfying the condition

Tjσµf ≡ ∂l+2m−mjσµ−1

∂τ
l+2m−mjσµ−1
jσ

Φjσµ −
∑

j′,σ′,µ′

pj
′σ′µ′

jσµ

∂l+2m−mj′σ′µ′−1

∂τ
l+2m−mj′σ′µ′−1

j′σ′

Φj′σ′µ′ ∈ H1
0 (R

2). (3.3)

Here the indices j′, σ′, µ′ correspond to the operators (3.1), whereas the indices j, σ, µ correspond
to the operators in system (2.11) which are not included in (3.1), the symbols Φjσµ stand for the
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fixed extensions of the functions fjσµ to R2 (these extensions are defined by the operator (2.15)),
and pj

′σ′µ′

jσµ for the constants appearing in relation (3.2). If system 2.11 is linearly independent, then
the set of conditions (3.3) is empty.

Note that the validity of conditions (3.3) does not depend on the choice of the extension of fjσµ
to R2. Indeed, let Φ̂jσµ be an extension distinct from Φjσµ. Then (Φjσµ− Φ̂jσµ)|γjσ = 0; therefore,

∂l+2m−mjσµ−1

∂τ
l+2m−mjσµ−1
jσ

(Φjσµ − Φ̂jσµ) ∈ H1
0 (R

2)

by Theorem 4.8 [21].
Now let us complete system (3.1) with operators of order l + 2m− 1 in system (2.12) in such a

way that the resulting system consists of linearly independent operators

B̂j′σ′µ′(Dy)U, Dξ′Pj′(Dy)Uj′ , (3.4)

and any operator DξPj(Dy)Uj not belonging to (3.4) can be represented in the following form:

DξPj(Dy)Uj =
∑

j′,σ′,µ′

pj
′σ′µ′

jξ B̂j′σ′µ′(Dy)U +
∑
j′,ξ′

pj
′ξ′

jξ Dξ′Pj′(Dy)Uj′ , (3.5)

where pj
′,σ′,µ′

jξ and pj
′,ξ′

jξ are some constants.

Let us extend the components fj ∈ W l(Kj) of the vector f to R2. The extended functions are
also denoted by fj ∈ W l(R2). We consider the functions f satisfying

Tjξf ≡ Dξfj −
∑

j′,σ′,µ′

pj
′σ′µ′

jξ

∂l+2m−mj′σ′µ′−1

∂τ
l+2m−mj′σ′µ′−1

j′σ′

Φj′σ′µ′ −
∑
j′,ξ′

pj
′ξ′

jξ Dξ′fj′ ∈ H1
0 (R

2). (3.6)

Here the indices j′, σ′, µ′ and j′, ξ′ correspond to the operators (3.4), whereas the indices j, ξ corre-
spond to the operators of system (2.12) that are not included in (3.4), and pj

′σ′µ′

jξ and pj
′ξ′

jξ stand for
constants entering relations (3.5). As above, one can show that the validity of conditions (3.6) does
not depend on the choice of the extension of fj and fjσµ to R2. Note that the set of conditions (3.6)
is empty if either l = 0 or l � 1 and system (3.4) contains all operators in (2.12).

Let us introduce an analog of the set Sl,N (K,γ) used above for the case in which Condition 3.1
holds. Denote by Ŝ l,N (K,γ) the set of functions f ∈ W l,N (K,γ) satisfying conditions (2.8), (2.9),
(3.3), and (3.6). Supplying Ŝ l,N (K,γ) with the norm

‖f‖Ŝl,N(K,γ) =
(
‖f‖2

Wl,N (K,γ) +
∑
j,σ,µ

‖Tjσµf‖2
H1

0 (R2) +
∑
j,ξ

‖Tjξf‖2
H1

0(R2)

)1/2

(3.7)

makes Ŝ l,N(K,γ) a complete space. (In the definition of the norm (3.7), the indices j, σ, µ and j, ξ
correspond to operators not occurring in system (3.4).)

Let us establish some important properties of the space Ŝ l,N(K,γ). The following lemma shows
that, if we impose finitely many orthogonality conditions of the form

DαU |y=0 = 0, |α| � l + 2m− 2, (3.8)

on a compactly supported function U ∈ W l+2m,N(K), then the right-hand side of the corresponding
nonlocal problem belongs to Ŝ l,N (K,γ).
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Lemma 3.1. Let Condition 3.1 hold. Let U ∈ W l+2m,N(K), suppU ⊂ Oεmin{χjσks,1}(0), and
let relations (3.8) hold. Then

‖LU‖Ŝl,N (K,γ) � c‖U‖W l+2m,N (K), ‖LU‖Ŝl,N (K,γ) � c‖U‖W l+2m,N (K). (3.9)

Proof. 1. Set f = {fj , fjσµ} = LU . It follows from the assumptions of the lemma that
f ∈ W l,N (K,γ), supp f ⊂ Oε(0), and the functions fj and fjσµ satisfy relations (2.8) and (2.9),
respectively.

We denote by Φjσµ ∈ W l+2m−mjσµ(R2) the extension of fjσµ defined by the operator (2.15).
Let us show that

B̂jσµ(Dy)U − ∂l+2m−mjσµ−1

∂τ
l+2m−mjσµ−1
jσ

Φjσµ ∈ H1
0 (R

2). (3.10)

By Lemma 2.2,

B̂jσµ(Dy)U − ∂l+2m−mjσµ−1

∂τ
l+2m−mjσµ−1
jσ

Bjσµ(Dy)U ∈ H1
0 (R

2);

thus, to prove (3.10), it suffices to show that

∂l+2m−mjσµ−1

∂τ
l+2m−mjσµ−1
jσ

(Bjσµ(Dy)U − Φjσµ) ∈ H1
0 (R

2). (3.11)

However,
∂l+2m−mjσµ−1

∂τ
l+2m−mjσµ−1
jσ

(Bjσµ(Dy)U − Φjσµ) ∈ W 1(R2)

and
∂l+2m−mjσµ−1

∂τ
l+2m−mjσµ−1
jσ

(Bjσµ(Dy)U − Φjσµ)
∣∣
γjσ

= 0;

hence, relation (3.11) follows from Lemma 4.8 [21]. This also proves relation (3.10).
The operators B̂jσµ(Dy)U satisfy relations (3.2); therefore, by virtue of (3.10), the functions

Φjσµ satisfy relations (3.3).
Similarly, it follows from (3.10), from equalities Pj(Dy)Uj−fj = 0, and from relations (3.5) that

the function f satisfies relations (3.6). Therefore, f ∈ Ŝ l,N (K,γ), and one can readily see that the
first inequality in (3.9) holds.

2. Now, to prove that LU ∈ Ŝ l,N (K,γ), it suffices to establish the relations

Dl−1
(
Pj(y,Dy)−Pj(Dy)

)
Uj ∈ H1

0 (R
2),

∂l+2m−mjσµ−1

∂τ
l+2m−mjσµ−1
jσ

(
Bjσµ(y,Dy)U−Bjσµ(Dy)U

)
∈ H1

0 (R
2),

where Uj ∈ W l+2m(R2) is an extension of Uj ∈ W l+2m(Kj) to R2 (which is also denoted by Uj).
These expressions consist of the terms

(
aα(y)− aα(0)

)
DαUj (|α| = l + 2m− 1), aβ(y)DβUj (|β| � l + 2m− 2),

where aα and aβ are infinitely differentiable functions.
Since Uj ∈ W l+2m(R2), it follows thatDαUj ∈ H1

1 (R
2). This property, together with Lemma 3.3′

in [21], implies that (
aα(y)− aα(0)

)
DαUj ∈ H1

0 (R
2).
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The function aβD
βUj (|β| � l + 2m− 2) belongs to W 2(R2). It follows from this fact, together

with relations (3.8) and Lemma 2.1, that

aβD
βUj ∈ H2

a(R
2) ⊂ H1

a−1(R
2), a > 0.

Let us choose some a such that 0 < a < 1. Since the supports of Uj are compact, we obtain

aβD
βUj ∈ H1

0 (R
2).

Moreover, one can readily show that the second inequality in (3.9) also holds.

The following lemma shows that the set Ŝ l,N (K,γ) is not closed in the topology of W l,N (K,γ).

Lemma 3.2. Let Condition 3.1 hold. Then there exists a family of functions f δ ∈ Ŝ l,N (K,γ),
δ > 0, such that suppf δ ⊂ Oε(0) and f δ converges in W l,N (K,γ) to a function f0 /∈ Ŝ l,N (K,γ)
as δ → 0.

Proof. 1. As was shown above, if λ0 = i(1 − l − 2m) is a proper eigenvalue of L̃(λ), then
system (2.11), (2.12) is linearly dependent. We consider the two possible cases: (a) system (2.11) is
linearly dependent or (b) system (2.11) is linearly independent but system (2.11), (2.12) is linearly
dependent.

2. Suppose first that system (2.11) is linearly dependent. Then the set of conditions (3.3) is not
empty. In this case, for some j, σ, µ, the norm (3.7) contains the corresponding term of the form
‖Tjσµf‖H1

0(R2). Let us fix the related subscripts j, σ, µ. Without loss of generality, one can assume
that γjσ coincides with the axis Oy1. We introduce some functions f δ = {0, f δj1σ1µ1

} (0 � δ � 1)
such that f δj1σ1µ1

= 0 for (j1, σ1, µ1) �= (j, σ, µ) and

f δjσµ(y1) = ψ(y1)y
l+2m−mjσµ−1+δ
1 ,

where ψ ∈ C∞0
(
[0,∞)

)
, ψ(y1) = 1 for 0 � y1 � ε/2, and ψ(y1) = 0 for y1 � 2ε/3. Clearly,

Φ̂δjσµ(y) = ψ(r)yl+2m−mjσµ−1
1 rδ

is an extension of the function f δjσµ to R2. Moreover, the extension operator defined for the functions
f δjσµ (0 � δ � 1) is bounded as an operator from W l+2m−mjσµ−1/2(γjσ) to W l+2m−mjσµ(R2) (this
holds because

‖f δjσµ‖W l+2m−mjσµ−1/2(γjσ)
� c1 and ‖Φ̂δjσµ‖W l+2m−mjσµ(R2) � c2,

where c1, c2 > 0 do not depend on 0 � δ � 1).
Thus, for 0 < δ � 1,

‖f δ‖2
Wl,N (K,γ) = ‖f δjσµ‖2

W l+2m−mjσµ−1/2(γjσ)
,

‖f δ‖2
Ŝl,N (K,γ)

≈ ‖f δjσµ‖2
W l+2m−mjσµ−1/2(γjσ)

+

∥∥∥∥∥
∂l+2m−mjσµ−1

∂y
l+2m−mjσµ−1
1

Φ̂δjσµ

∥∥∥∥∥
2

H1
0 (R2)

(3.12)

(the fact that the norms (3.12) are finite for any δ > 0 can be verified by the straightforward
calculations). Here the symbol “≈” means that the corresponding norms are equivalent. Moreover,
one can directly see that

Φ̂δjσµ → Φ̂0
jσµ in W l+2m−mjσµ(R2) as δ → 0.
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Therefore,
f δjσµ → f0

jσµ in W l+2m−mjσµ−1/2(γjσ) as δ → 0.

However, the corresponding function f0 = {0, f0
jσµ} does not belong to Ŝ l,N (K,γ). Indeed, assum-

ing the contrary, by virtue of (3.12), we have

∂l+2m−mjσµ−1

∂y
l+2m−mjσµ−1
1

Φ̂0
jσµ ∈ H1

0 (R
2),

which is wrong because, near the origin, the function

∂l+2m−mjσµ−1

∂y
l+2m−mjσµ−1
1

Φ̂0
jσµ

is equal to a nonzero constant.
3. Now let system (2.11) be linearly independent; then system (2.11), (2.12) is linearly dependent.

In this case, conditions (3.3) are absent, but the set of conditions (3.6) is not empty. Therefore, for
some j and ξ, the norm (3.7) contains the corresponding term ‖Tjξf‖H1

0 (R2). We fix these indices
j, ξ and introduce functions

f δ = {f δj1 , 0} (0 � δ � 1) such that f δj1 = 0 for j1 �= j and f δj = ψ(r)yξrδ.

One can directly see that
f δj → f0

j in W l(R2) as δ → 0;

however, f0 = {f0
j , f

0
jσµ} /∈ Ŝ l,N (K,γ) because Dξf0

j /∈ H1
0 (R2).

3.2. Construction of the Operator R̂

Let us prove an analog of Lemma 2.4 which will be used later on to construct the operator R̂

acting on the space Ŝ l,N (K,γ).

Lemma 3.3. Let Condition 3.1 hold. Then, for any ε, 0 < ε < 1, there exists a bounded operator

Â : {f ∈ Ŝ l,N (K,γ) : supp f ⊂ Oε(0)} → W l+2m,N(K)

such that, for any f = {fj , fjσµ} ∈ Dom(Â), the function V = Âf satisfies the following conditions:

V = 0 for |y| � 1,

‖LV − f‖Hl,N0 (K) � c‖f‖Ŝl,N (K,γ), (3.13)

and inequality (2.14) holds.

Proof. 1. Similarly to the proof of Lemma 2.4, we consider the following algebraic system for
all partial derivatives DαWj , |α| = l + 2m− 1, j = 1, . . . , N :

B̂j′σ′µ′(Dy)W =
∂l+2m−mj′σ′µ′−1

∂τ
l+2m−mj′σ′µ′−1

j′σ′

Φj′σ′µ′ ,

Dξ′Pj′(Dy)Wj′ = Dξ′fj′ ,

(3.14)

where Φj′σ′µ′ and fj′ are the extensions of fj′σ′µ′ and fj′ to R2 described in the proof of Lemma 2.4.
Now the left-hand side of system (3.14) contains only operators occurring in system (3.4). The ma-
trix of system (3.14) consists of (l+2m)N columns and q, q < (l+2m)N , linearly independent rows.
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Choosing q linearly independent columns and assuming that the unknowns DαWj corresponding
to the remaining (l+2m)N − q columns are equal to zero, we obtain a system of q equations for q
unknowns, and this system admits a unique solution. Thus, we defined a bounded linear operator


∂l+2m−mj′σ′µ′−1

∂τ
l+2m−mj′σ′µ′−1

j′σ′

Φj′σ′µ′ , Dξ′fj′


 �→ {DαWj} ≡ {Wjα} (3.15)

from W 1,q(R2) to W 1,(l+2m)N (R2), and Wjα(y) = 0 for |y| � 2. Using the functions DαWj and the
operator (2.18), we obtain functions Vj , j = 1, . . . , N , satisfying relations (2.19) and (2.20). Let us
show that V = (V1, . . . , VN ) is a desired function.

2. Similarly to the proof of Lemma 2.4, one can prove the estimate (2.14) for the function V . Let
us prove inequality (3.13). Since {Wjα} is a solution of system (3.14) and the functions Vj satisfy
conditions (2.20), it follows that

B̂j′σ′µ′(Dy)V − ∂l+2m−mj′σ′µ′−1

∂τ
l+2m−mj′σ′µ′−1

j′σ′

Φj′σ′µ′ ∈ H1
0 (R

2), (3.16)

Dξ′(Pj′(Dy)Vj′ − fj′) ∈ H1
0 (R

2). (3.17)

Let us consider an arbitrary operator B̂jσµ(Dy) not entering system (3.4). Using (3.2), we obtain

B̂jσµ(Dy)V − ∂l+2m−mjσµ−1

∂τ
l+2m−mjσµ−1
jσ

Φjσµ =
∑

j′,σ′,µ′

pj
′σ′µ′

jσµ


B̂j′σ′µ′(Dy)V − ∂l+2m−mj′σ′µ′−1

∂τ
l+2m−mj′σ′µ′−1

j′σ′

Φj′σ′µ′




+
∑

j′,σ′,µ′

pj
′σ′µ′

jσµ

∂l+2m−mj′σ′µ′−1

∂τ
l+2m−mj′σ′µ′−1

j′σ′

Φj′σ′µ′ −
∂l+2m−mjσµ−1

∂τ
l+2m−mjσµ−1
jσ

Φjσµ. (3.18)

However, f ∈ Ŝ l,N (K,γ); therefore, conditions (3.3) hold. These conditions, together with rela-
tions (3.16) and (3.18), imply the relations

B̂jσµ(Dy)V − ∂l+2m−mjσµ−1

∂τ
l+2m−mjσµ−1
jσ

Φjσµ ∈ H1
0 (R

2) (3.19)

for any j, σ, AND µ. Similarly, one can consider the operators DξPj(Dy) that do not occur in
system (3.4) and prove that

Dξ(Pj(Dy)Vj − fj) ∈ H1
0 (R

2) (3.20)

for all j and ξ by using relations (3.2) and (3.3), (3.5), and (3.6), as well as (3.16) and (3.17).
The estimate (3.13) follows from (3.19) and (3.20) by repeating the arguments of the proof of

Lemma 2.4.

The proof of the following corollary of Lemma 3.3 is just like that of Corollary 2.1.

Corollary 3.1. The function V constructed in Lemma 3.2 satisfies the following inequality :

‖LV − f‖Hl,N0 (K) � c‖f‖Ŝl,N (K,γ). (3.21)

Let us now use Lemma 3.3 to construct a right inverse of the operator L defined for the compactly
supported functions f ∈ Ŝ l,N (K,γ) and prove an analog of Theorem 2.1. However, we cannot
formally repeat the arguments of the proof of Theorem 2.1 because they use the invertibility of the
operator L0 given by (2.1) in weighted spaces. In the present case, by Theorem 2.1 [15], the operator
L0 is not invertible because the line Imλ = 1− l − 2m contains the eigenvalue λ0 = i(1− l − 2m)
of the operator L̃(λ). However, as was mentioned above, the spectrum of L̃(λ) is discrete; hence,
there is an a > 0 such that the line Imλ = a+ 1 − l − 2m contains no eigenvalues of L̃(λ), which
implies that the operator La is invertible. In order to pass from a > 0 to a = 0, we make use of the
following result.
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Lemma 3.4. Let W ∈ H l+2m,N
a (K) for some a > 0, and let f = LaW ∈ Hl,N

0 (K,γ). Suppose
that the closed strip 1−l−2m � Imλ � a+1−l−2m contains only the eigenvalue λ0 = i(1−l−2m)
of L̃(λ), and let this eigenvalue be proper. Then

‖Dl+2mW‖H0,N
0 (K) � c‖f‖Hl,N0 (K,γ). (3.22)

Lemma 3.4 will be proved in Sec. 3.3. Let us now study the solvability of problems (1.18), (1.19)
and (1.15), (1.16), respectively.

We write Kd
j = Kj ∩ {y ∈ R2 : |y| < d}, W k,N(Kd) =

∏N
j=1 W

k(Kd
j ), and

Hk,N
a (Kd) =

N∏
j=1

Hk
a (K

d
j ).

Lemma 3.5. Let Condition 3.1 hold. Then, for any f ∈ Ŝ l,N (K,γ) with supp f ⊂ Oε(0), there
exists a solution U of problem (1.18), (1.19) such that U ∈ W l+2m,N(Kd) for any d > 0 and U
satisfies relations (3.8) and the inequalities

‖U‖W l+2m,N (Kd) � cd‖f‖Ŝl,N(K,γ), (3.23)

‖U‖Hl+2m−1,N
0 (Kd) � cd‖f‖Wl,N (K,γ). (3.24)

Proof. 1. Choose an a, 0 < a < 1, such that the strip 1− l−2m < Imλ � a+1− l−2m contains
no eigenvalues of L̃(λ). (Such a value a exists because the spectrum of L̃(λ) is discrete.) It follows
from the definition of the space Ŝ l,N (K,γ) that relations (2.8) and (2.9) hold for any function
f = {fj , fjσµ} satisfying the assumptions of the lemma. Combining this fact with Lemma 2.1, we
obtain

‖f‖Hl,Na (K,γ) � k1‖f‖Wl,N (K,γ). (3.25)

Let us consider the function f −LV , where V = Âf ∈ W l+2m,N(K)∩H l+2m,N
a (K) is the function

defined in Lemma 3.2. It follows from inequalities (2.14) and (3.25) that

‖f − LV ‖Hl,Na (K,γ) � k2‖f‖Wl,N (K,γ). (3.26)

Therefore, the function f − LV ∈ Hl,N
a (K,γ) belongs to the domain of the operator L−1

a . Writing
W = L−1

a (f − LV ), we see that U = V +W is a solution of problem (1.18), (1.19).
2. Let us prove (3.24). Since the operator L−1

a is bounded, it follows from inequality (3.26) that

‖W‖Hl+2m
a (K) � k3‖f‖Wl,N (K,γ). (3.27)

Now the estimate (3.24) follows from inequalities (3.27) and (2.14) and from the fact that the
embedding H l+2m,N

a (K) ⊂ H l+2m−1,N
0 (Kd) is bounded.

3. Let us prove (3.23). Since the operator

Â : Ŝ l,N(K,γ) → W l+2m,N(K)

is bounded and inequality (3.27) holds, it suffices to estimate the functions Dl+2mW . It follows
from Lemma 3.2 that f − LV ∈ Hl,N

0 (K,γ) and the estimate (3.13) is valid. Therefore, applying
Lemma 3.4 to the function W = L−1

a (f − LV ) and using the estimate (3.13), we obtain

‖Dl+2mW‖H0,N
0 (K) � k4‖f − LV ‖Hl,N0 (K,γ) � k5‖f‖Ŝl,N (K,γ).

We now note that H0
0 (Kj) = L2(Kj) and thus complete the proof of (3.23).

4. The validity of relations (3.8) follows from the relation

U = V +W ∈ W l+2m,N(Kd) ∩H l+2m,N
a (K), a < 1,

and from Sobolev’s embedding theorem.

We can now construct an operator R̂ with the desired properties.
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Theorem 3.1. Let Condition 3.1 hold. Then, for any ε, 0 < ε < 1, there exist bounded operators

R̂ : {f ∈ Ŝ l,N (K,γ) : suppf ⊂ Oε(0)} → {U ∈ W l+2m,N(K) : suppU ⊂ O2ε1(0)},
M̂, T̂ : {f ∈ Ŝ l,N (K,γ) : suppf ⊂ Oε(0)} → {f ∈ Ŝ l,N (K,γ) : supp f ⊂ O2ε1(0)},

with4 ε1 = max
{
ε, ε0/min{χjσks, 1}

}
such that ‖M̂f‖Ŝl,N(K,γ) � cε1‖f‖Ŝl,N(K,γ), where c > 0

depends only on the coefficients of the operators Pj(Dy) and Bjσµks(Dy), the operator T̂ is compact,
and

LR̂f = f + M̂f + T̂f. (3.28)

Proof. Let us consider a function ψ ∈ C∞0 (R2) satisfying the following conditions:

ψ(y) = 1 for |y| � ε1 = max
{
ε, ε0/min{χjσks, 1}

}
, suppψ ⊂ O2ε1(0),

and such that ψ does not depend on the polar angle ω. Introduce the operator R̂ by the formula

R̂f = ψU
(
f ∈ Ŝ l,N (K,γ), supp f ⊂ Oε(0)

)
,

where U ∈ W l+2m,N(K2ε1) is a solution of problem (1.18), (1.19) with right-hand side f (see
Lemma 3.5).

Let us prove (3.28). Relation 2.33 and Leibniz’ formula imply that supp(LR̂f − f) ⊂ O2ε1(0)
and

‖LR̂f − f‖Ŝl,N(K,γ) � k1ε1‖f‖Ŝl,N (K,γ) + k2(ε1)‖ψ1U‖Hl+2m−1,N
0 (K)), (3.29)

where ψ1 ∈ C∞0 (R2) is equal to 1 on the support of ψ. It follows from the proof of Lemma 3.2
that the operator f �→ ψU from {f ∈ Ŝ l,N (K,γ) : suppf ⊂ Oε(0)} to H l+2m,N

a (K), 0 < a < 1, is
bounded. Since the embedding

{ψ1V : V ∈ H l+2m,N
a (K)} ⊂ H l+2m−1,N

0 (K), a < 1,

is compact (see Lemma 3.5 [21]), this implies that the operator f �→ ψ1U compactly maps the
space {f ∈ Ŝ l,N (K,γ) : supp f ⊂ Oε(0)} into H l+2m−1,N

0 (K). Thus, using Lemma 2.3 and the
estimate (3.29), we complete the proof.

Let us state an analog of Theorem 2.2.

Theorem. Let Condition 3.1 hold. Then, for any ε, 0 < ε < 1, there exist bounded operators

R̂
′ : {f ′ : {0, f ′} ∈ Ŝ l,N (K,γ), suppf ′ ⊂ Oε(0)} → {U ∈ W l+2m,N(K) : suppU ⊂ O2ε(0)},

M̂′, T̂′ : {f ′ : {0, f ′} ∈ Ŝ l,N (K,γ), suppf ′ ⊂ Oε(0)} → {f ∈ Ŝ l,N (K,γ) : suppf ⊂ O2ε2(0)},

ε2 = ε/min{χjσks, 1}, such that ‖M̂′f ′‖Ŝl,N (K,γ) � cε‖{0, f ′}‖Ŝl,N (K,γ), where c > 0 depends only

on the coefficients of the operators Pj(Dy) and Bjσµks(Dy), the operator T̂′ is compact, and

LR̂′f ′ = {0, f ′}+ M̂′f ′ + T̂′f ′.

The proof of Theorem 3.2 is similar to that of Theorem 2.2.

4See footnote 3 on p. 16.
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3.3. Proof of Lemma 3.4

Assume first that

W ∈
N∏
j=1

C∞0 (K̄j \ {0});

then fj ∈ C∞0 (K̄j \ {0}) and fjσµ ∈ C∞0 (γjσ), where f = {fj , fjσµ} = LW . We denote by Wj(ω, r)
and fj(ω, r) the functionsWj(y) and fj(y), respectively, written in polar coordinates. Let W̃j(ω, λ),
f̃j(ω, λ), and f̃jσµ(λ) be the Fourier transforms with respect to τ of the functions Wj(ω, eτ ),
e2mτfj(ω, eτ ), and emjσµτfjσµ(eτ ), respectively. Write f̃ = {f̃j , f̃jσµ}. Under our assumptions,
the function λ �→ f̃(λ) is analytic in the entire complex plane; moreover, for | Imλ| � const, this
function tends to zero uniformly with respect to ω and λ, more rapidly than any power of |λ| as
|Reλ| → ∞ .

By virtue of Lemma 2.1 in [15], there exists a finite-meromorphic operator-valued function R̃(λ)
such that R̃(λ) =

(
L̃(λ)

)−1 for any λ which is not an eigenvalue of L̃(λ). Moreover, if the line
Imλ = a+ 1− l − 2m contains no eigenvalues of L̃(λ), then, by the proof of Theorem 2.1 in [15],
the solution W is given by

W (ω, eτ ) =
∫ +∞+i(a+1−l−2m)

−∞+i(a+1−l−2m)

eiλτ R̃(λ)f̃(λ) dλ. (3.30)

Let us consider an arbitrary derivative Dl+2mW (y) of order l + 2m of the function W with
respect to y1 and y2. Suppose that the operator Dl+2m can be represented in polar coordinates
in the form r−(l+2m)M̃(ω,Dω , rDr). After the substitution r = eτ , the operator Dl+2m becomes
e−(l+2m)τM̃(ω,Dω ,Dτ ), where Dτ = −i∂/∂τ . Combining this fact with (3.30), we see that the
function Dl+2mW (y) can be obtained from the function

e−(l+2m)τ

∫ +∞+i(a+1−l−2m)

−∞+i(a+1−l−2m)

eiλτM̃(ω,Dω , λ)R̃(λ)f̃(λ) dλ (3.31)

by the substitution τ = log r followed by the passage from polar to Cartesian coordinates. Let us
show that the operator-valued function M̃(ω,Dω , λ)R̃(λ) is analytic near the point λ0 = i(1− l −
2m). Since λ0 is an eigenvalue of L̃(λ), it follows from [23] that

R̃(λ) =
A−1

λ− λ0
+ Γ(λ),

where Γ(λ) is an analytic operator-valued function near λ0 and the image of A−1 coincides with
the linear span of the eigenvectors corresponding to λ0. Therefore,

M̃(ω,Dω , λ)R̃(λ)f̃ =
M̃(ω,Dω, λ)A−1f̃

λ− λ0
+ M̃(ω,Dω , λ)Γ(λ)f̃

for any f̃ ∈ W l,N [−b, b]. By the definition of a proper eigenvalue, the function rl+2m−1A−1f̃ is a
vector Q(y) = (Q1(y), . . . , QN (y)), where Qj(y) are some polynomials of degree l + 2m − 1 in y1

and y2. Hence,

M̃(ω,Dω , λ)A−1f̃ = r1−l−2mM̃(ω,Dω, rDr)(rl+2m−1A−1f̃) = rDl+2mQ(y) = 0.

Thus, the operator-valued function M̃(ω,Dω , λ)R̃(λ) is analytic near λ0 = i(1 − l − 2m), and
therefore in the closed strip 1− l − 2m � Imλ � a+ 1− l − 2m.
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Moreover, for | Imλ| � const, the growth of the norm ‖M̃(ω,Dω , λ)R̃(λ)‖Wl,N [−b,b]→W 0,N(−b,b)
is at most power-law with respect to |λ| (see Lemma 2.1 in [15]), whereas ‖f̃(λ)‖Wl,N [−b,b] tends to
zero more rapidly than any power of |λ| as |Reλ| → ∞. Therefore, we can replace the integration
line Imλ = a+ 1− l− 2m in (3.31) by the line Imλ = 1− l− 2m. Thus, the function Dl+2mW (y)
can be obtained from the function

e−(l+2m)τ

∫ +∞+i(1−l−2m)

−∞+i(1−l−2m)

eiλτM̃(ω,Dω, λ)R̃(λ)f̃(λ) dλ (3.32)

by the substitution τ = log r followed by the passage from the polar coordinates to the Cartesian
coordinates. Let us estimate the norm of Dl+2mW ,

‖Dl+2mW‖2
H0,N

0 (K)
=
∑
j

∫
Kj

|Dl+2mWj |2dy

=
∑
j

∫ bj

−bj
dω

∫ +∞

−∞
e−2(l+2m−1)τ

∣∣∣∣∣
∫ +∞+i(1−l−2m)

−∞+i(1−l−2m)

eiλτM̃(ω,Dω , λ)R̃(λ)f̃(λ) dλ

∣∣∣∣∣
2

dτ.

Combining this with the complex analog of Parseval’s equality, we obtain

‖Dl+2mW‖2
H0,N

0 (K)
=
∫ +∞+i(1−l−2m)

−∞+i(1−l−2m)

‖M̃ (ω,Dω , λ)R̃(λ)f̃(λ)‖2
W 0,N (−b,b)dλ. (3.33)

Let us estimate the norm in the integrand on the right-hand side. To do this, we introduce equivalent
norms depending on parameter λ �= 0 as follows:

|||Ũj |||2Wk(−bj ,bj) = ‖Ũj‖2
Wk(−bj ,bj) + |λ|2k‖Ũj‖2

L2(−bj ,bj),

|||f̃ |||2Wl,N [−b,b] =
∑
j

{|||f̃j |||2W l(−bj ,bj) +
∑
σ,µ

|λ|2(l+2m−mjσµ−1/2)|f̃jσµ|2}.

By virtue of the interpolation inequality

|λ|l+2m−k‖Ũj‖Wk(−bj ,bj) � ck|||Ũj |||W l+2m(−bj ,bj), 0 < k < l + 2m

(see. [25, Ch. 1]) and by Lemma 2.1 in [15], there exists C > 0 such that the following estimate
holds for all λ ∈ C satisfying Imλ = 1− l − 2m and |Reλ| > C:

‖M̃ (ω,Dω, λ)R̃(λ)f̃(λ)‖2
W 0,N (−b,b) � k1|||f̃(λ)|||2Wl,N [−b,b]. (3.34)

Since the operator-valued function

M̃(ω,Dω, λ)R̃(λ) : W l,N [−b, b] → W 0,N(−b, b)

is analytic on the segment {λ ∈ C : Imλ = 1− l−2m, |Reλ| � C}, it follows that inequality (3.34)
holds on the entire line Imλ = 1− l − 2m. By (3.33) and (3.34) we obtain

‖Dl+2mW‖2
H0,N

0 (K)
� k1

∫ +∞+i(1−l−2m)

−∞+i(1−l−2m)

|||f̃(λ)|||2Wl,N [−b,b]dλ.

Combining this fact with inequalities (1.9) and (1.10) in [21] yields the estimate (3.22). Since
C∞0 (K̄j \ {0}) is dense in Hk

a (Kj) for any a and k, it follows that the estimate (3.22) holds for any
W ∈ H l+2m,N

a (K) and f ∈ Hl,N
0 (K,γ).

To be continued.
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