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Abstract—We study the existence of Feller semigroups arising in the theory of multidimensional
diffusion processes. We study bounded perturbations of elliptic operators with boundary conditions
containing an integral over the closure of the domain with respect to a nonnegative Borel measure
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1. INTRODUCTION AND PRELIMINARIES

In [1], [2], Feller studied the general form of the generator of strongly continuous contraction
nonnegative semigroup of operators acting in spaces of continuous functions on the interval, half-line,
or the line. Such semigroups correspond to one-dimensional diffusion processes and are called Feller
semigroups. In the multidimensional case, the general form of the generator of a Feller semigroup
was obtained by Venttsel′ [3]. Under some additional assumptions, he proved that the generator of the
corresponding Feller semigroup is an elliptic differential operator of second order (possibly, with de-
generacy), whose domain of definition consists of continuous (once or twice continuously differentiable,
depending on the process) functions satisfying nonlocal boundary conditions. The nonlocal summand
is the integral of a function over the closure of the domain with respect to a nonnegative Borel measure
µ(y, dη). The following problem still remains unsolved. Suppose that we are given an elliptic integro-
differential operator whose domain of definition is described by nonlocal boundary conditions. Is such an
operator (or its closure) the generator of a Feller semigroup?

There are two classes of nonlocal boundary conditions: the so-called transversal and nontransver-
sal conditions. In the transversal case, the order of nonlocal terms is less than that of local ones, while,
in the nontransversal case, the orders coincide (see [4], where a rigorous definition and a probabilistic
interpretation are given). The transversal case was studied in [4], [5]–[9]. The more complicated
nontransversal case was studied in [9]–[12].

In [11], [12], it was assumed that the coefficients of nonlocal terms decrease as the argument tends to
the boundary of the domain. The papers [6], [10], deal with the boundary condition for the case in which
the coefficients of nonlocal terms are less than 1. It was shown that a nonlocal problem (after reduction
to the boundary) can be regarded, in a certain sense, as the perturbation of a “local” Dirichlet problem.

In the present paper, we study nontransversal nonlocal conditions on the boundary of a plane do-
main G, admitting the “limiting case” whenever the measure µ(y,G) is equal to 1 after the corresponding
normalization (the measure cannot be greater than 1 [3]). We assume that if, for some point y ∈ ∂G, the
support of the measure µ(y, dη) is “close” to the point y and µ(y,G) = 1, then the measure µ(y, dη) is
atomic.
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Using the Hille–Yosida theorem and results on the solvability of elliptic equations with nonlocal con-
ditions near the boundary [13], we isolate a class of Borel measures µ(y, dη) for which the corresponding
nonlocal operator is the generator of a Feller semigroup.

In conclusion of this section, let us recall the notion of a Feller semigroup and of its generator and
state the Hille–Yosida theorem in convenient form.

Suppose that G ⊂ R
2 is a bounded domain with piecewise smooth boundary ∂G. Suppose that X is

a closed subspace in C(G) containing at least one nonnegative function.

A strongly continuous semigroup of operators Tt : X → X is called a Feller semigroup X if

1) ‖Tt‖ ≤ 1, t ≥ 0;

2) Ttu ≥ 0 for all t ≥ 0 and u ∈ X, u ≥ 0.

A linear operator P : D(P) ⊂ X → X is called the generator (infinitesimal generating operator)
of a strongly continuous semigroup {Tt} if

Pu = lim
t→+0

Tu − u

t
, D(P) = {u ∈ X : the limit in X exists}.

Theorem 1.1 (the Hille–Yosida theorem; see Theorem 9.3.1 in [9]). 1. Let P : D(P) ⊂ X → X be
the generator of a Feller semigroup on X. Then the following assertions hold:

(a) the domain of definition D(P) is dense in X;

(b) for any q > 0, the operator qI − P has the bounded inverse (qI − P)−1 : X → X and
‖(qI − P)−1‖ ≤ 1/q;

(c) the operator (qI − P)−1 : X → X, q > 0, is nonnegative.

2. If P is a linear operator from X to X satisfying condition (a) and there exists a constant
q0 ≥ 0 such that conditions (b) and (c) hold for q > q0, then P is the generator of a Feller
semigroup on X which is uniquely defined by the operator P.

2. NONLOCAL CONDITIONS NEAR THE POINTS OF CONJUGATION

Consider a set K ⊂ ∂G consisting of a finite number of points. Suppose that

∂G \ K =
N⋃

i=1

Γi,

where the Γi are open (in the topology of ∂G) curves of class C∞. We assume that the domain G
coincides with the plane angle in some neighborhood of each point g ∈ K .

For integer k ≥ 0, denote by W k
2 (G) the Sobolev space. By W k

2,loc(G) we denote the set of functions u

such that u ∈ W k
2 (G′) for any domain G′, G′ ⊂ G.

Consider the differential operator

P0u =
2∑

j,k=1

pjk(y)uyjyk
(y) +

2∑

j=1

pj(y)uyj (y) + p0(y)u(y),

where the pjk, pj ∈ C∞(R2) are real-valued functions, with pjk = pkj, j, k = 1, 2.

Condition 2.1. The following assertions hold:
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1) there exists a constant c > 0 such that

2∑

j,k=1

pjk(y)ξjξk ≥ c|ξ|2

for y ∈ G and ξ = (ξ1, ξ2) ∈ R
2;

2) p0(y) ≤ 0, y ∈ G.

In what follows, we shall need the maximum principle, which will be stated as follows.

Maximum Principle 2.1 (see Theorem 9.6 in [14]). Suppose that D ⊂ R
2 is a bounded or un-

bounded domain, and suppose that condition 2.1 holds for the domain D. If the function
u ∈ C(D) attains a positive maximum at a point y0 ∈ D and, moreover,1 P0u ∈ C(D), then
P0u(y0) ≤ 0.

We introduce operators corresponding to nonlocal terms with support near the set K . For any
set M , let Oε(M ) denote its ε-neighborhood. Suppose that Ωis, i = 1, . . . , N , s = 1, . . . , Si, are
diffeomorphisms of class C∞ mapping a neighborhood Oi of the curve Γi ∩ Oε(K ) onto the set Ωis(Oi)
so that

Ωis(Γi ∩ Oε(K )) ⊂ G and Ωis(g) ∈ K for g ∈ Γi ∩ K .

Thus, the transformations Ωis map the curves Γi ∩Oε(K ) strictly into the domain G and the set of their
endpoints Γi ∩ K into itself.

Denote by Ω+1
is the transformation Ωis : Oi → Ωis(Oi), and by Ω−1

is : Ωis(Oi) → Oi its inverse
transformation. The set of point

Ω±1
iqsq

(. . . (Ω±1
i1s1

(g))) ∈ K , 1 ≤ sj ≤ Sij , j = 1, . . . , q,

is called the orbit of a point g ∈ K . In other words, the orbit of the point g consists of points (from the
set K ) that can be obtained by successive application of the transformations Ω±1

ijsj
to the point g. The

set K consists of a finite number of nonintersecting orbits, which are denoted by Kν , ν = 1, . . . , N0.
Consider a sufficiently small ε > 0 for which there exist neighborhoods Oε1(gj), Oε1(gj) ⊃ Oε(gj)

satisfying the following conditions:

1) the domain G coincides with the plane angle in the neighborhood Oε1(gj);

2) Oε1(g) ∩ Oε1(h) = ∅ for all g, h ∈ K , g 	= h;

3) if gj ∈ Γi and Ωis(gj) = gk,, then Oε(gj) ⊂ Oi and Ωis(Oε(gj)) ⊂ Oε1(gk).

For each point gj ∈ Γi ∩ Kν , let us fix a linear transformation Yj : y 
→ y′(gj) (the composition of

operators of translation by the vector −−−→
Ogj and of rotation) mapping the point gj into the origin so that

Yj(Oε1(gj)) = Oε1(0), Yj(G ∩ Oε1(gj)) = Kj ∩ Oε1(0),
Yj(Γi ∩ Oε1(gj)) = γjσ ∩ Oε1(0) (σ = 1 or 2)

where Kj is a plane nonzero angle with sides γjσ.

Condition 2.2. Suppose that gj ∈ Γi ∩ Kν and Ωis(gj) = gk ∈ Kν ; then the transformation

Yk ◦ Ωis ◦ Y −1
j : Oε(0) → Oε1(0)

is the composition of operators of rotation and homothety centered at the origin.

1Here and elsewhere, the operator P0 acts in the sense of distributions.
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We introduce the nonlocal operators Bi defined by the formulas

Biu =
Si∑

s=1

bis(y)u(Ωis(y)), y ∈ Γi ∩ Oε(K ), Biu = 0, y ∈ Γi \ Oε(K ), (2.1)

where bis ∈ C∞(R2) are real-valued functions, supp bis ⊂ Oε(K ).

Condition 2.3. The following estimates hold:

1) bis(y) ≥ 0,
∑Si

s=1 bis(y) ≤ 1, y ∈ Γi;

2)
∑Si

s=1 bis(g) +
∑Sj

s=1 bjs(g) < 2, g ∈ Γi ∩ Γj ⊂ K , if i 	= j and Γi ∩ Γj 	= ∅.

Let us state some auxiliary results which will be needed in the following sections.

For all closed sets Q ⊂ G and K ⊂ G such that Q ∩ K 	= ∅, we introduce the space

CK(Q) = {u ∈ C(Q) : u(y) = 0, y ∈ Q ∩ K} (2.2)

with a maximum norm. Consider the space of vector functions

CK (∂G) =
N∏

i=1

CK (Γi)

with norm

‖ψ‖CK (∂G) = max
i=1,...,N

max
y∈Γi

‖ψi‖C(Γi)
, where ψ = {ψi}, ψi ∈ CK (Γi).

Consider the nonlocal problem

P0u − qu = f0(y), y ∈ G, u|Γi − Biu = ψi(y), y ∈ Γi, i = 1, . . . , N. (2.3)

Theorem 2.1 (see Theorem 4.1 in [13]). Let conditions 2.1–2.3 hold. Then one can find a number
q1 > 0 such that, for all f0 ∈ C(G), ψ = {ψi} ∈ CK (∂G), and q ≥ q1, there exists a unique solution
u ∈ CK (G) ∩ W 2

2,loc(G) of problem (2.3). Besides, if f0 = 0, then u ∈ CK (G) ∩ C∞(G) and the
following estimate holds:

‖u‖CK (G) ≤ c1‖ψ‖CK (∂G), (2.4)

where c1 > 0 is independent of ψ and q.

Suppose that u ∈ C∞(G) ∩ CK (G) is a solution of problem (2.3) with f0 = 0 and ψ = {ψi} ∈
CK (∂G). Denote u = Sqψ. By Theorem 2.1, the operator

Sq : CK (∂G) → CK (G), q ≥ q1,

is bounded and ‖Sq‖ ≤ c1, where c1 > 0 is independent of q.

Lemma 2.1. Let conditions 2.1–2.3 hold; let Q1 and Q2 be closed sets such that Q1 ⊂ ∂G, Q2 ⊂ G,
and Q1 ∩ Q2 = ∅, and let q ≥ q1. Then, for all ψ ∈ CK (∂G) such that supp(Sqψ)|∂G ⊂ Q1, the
following inequality holds:

‖Sqψ‖C(Q2) ≤
c2

q
‖ψ‖CK (∂G), q ≥ q1,

where c2 > 0 is independent of ψ and q.
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Proof. Using2 Lemma 1.3 from [2] and Theorem 2.1, we obtain

‖Sqψ‖C(Q2) ≤
k

q
‖(Sqψ)|∂G‖C(∂G) ≤

k

q
‖Sqψ‖C(G) ≤

kc1

q
‖ψ‖CK (∂G), q ≥ q1, (2.5)

where the number q1 from Theorem 2.1 is assumed sufficiently large (so that Lemma 1.3 from [10] holds
for q ≥ q1) and the number k = k(q1) is independent of ψ and q.

Lemma 2.2. Let conditions 2.1–2.3 hold, let Q1 and Q2 be the same as in Lemma 2.1, and let
q ≥ q1. Also let Q2 ∩ K = ∅. Then, for all ψ ∈ CK (∂G) such that suppψ ⊂ Q1, the following
inequality holds:

‖Sqψ‖C(Q2) ≤
c3

q
‖ψ‖CK (Q1), q ≥ q1,

where c3 > 0 is independent of ψ and q.

Proof. 1. Consider a number σ > 0 such that

dist(Q1, Q2) > 3σ, dist(K , Q2) > 3σ. (2.6)

We introduce a function ξ ∈ C∞(R2) such that 0 ≤ ξ(y) ≤ 1, ξ(y) = 1 if dist(y,Q2) ≤ σ, and ξ(y) = 0
if dist(y,Q2) ≥ 2σ.

Consider the auxiliary problem

P0v − qv = 0, y ∈ G, v(y) = ξ(y)u(y), y ∈ ∂G, (2.7)

where u = Sqψ ∈ CK (G). Applying Theorem 2.1 (with Bi = 0), we see that there exists a unique
solution v ∈ C∞(G) ∩ CK (G) of problem (2.7). The maximum principle 2.1 and the definition of the
function ξ imply

‖v‖C(G) ≤ ‖ξu‖C(∂G) ≤ max
i=1,...,N

‖u|Q2,2σ∩Γi
‖C(Q2,2σ∩Γi)

, (2.8)

where Q2,2σ = {y ∈ ∂G : dist(y,Q2) ≤ 2σ}.
Since suppψ ∩ Q2,2σ = ∅, we have

u − Biu = 0, y ∈ Q2,2σ ∩ Γi. (2.9)

Since Biu = 0 for y /∈ Oε(K ), it follows from (2.9) that

u(y) = 0, y ∈ [Q2,2σ ∩ Γi] \ Oε(K ). (2.10)

Using (2.8)–(2.10), the definition of the operators Bi, and condition 2.3, we obtain

‖v‖C(G) ≤ max
i=1,...,N

‖u|
Q2,2σ∩Γi∩Oε(K )

‖
C(Q2,2σ∩Γi∩Oε(K ))

≤ max
i=1,...,N

max
s=1,...,Si

‖u|
Ωis(Q2,2σ∩Γi∩Oε(K ))

‖
C(Ωis(Q2,2σ∩Γi∩Oε(K )))

. (2.11)

Since Q2,2σ ∩ K = ∅ (see (2.6)), it follows from the definition of the transformations Ωis that

Ωis(Q2,2σ ∩ Γi ∩ Oε(K ))) ⊂ G.

Therefore, using inequalities (2.11) and Lemma 2.1 in which the role of Q1 and Q2 is played by the
sets ∂G and Ωis(Q2,2σ ∩ Γi ∩ Oε(K ))), we obtain

‖v‖C(G) ≤
c2

q
‖ψ‖CK (∂G). (2.12)

2In Lemma 1.3 from [10], it is assumed that the boundary of the domain is infinitely smooth. This assumption is used to
prove the existence of classical solutions of elliptic equations with inhomogeneous boundary conditions. However, if it is
known that a classical solution exists, then, in the proof of of the first inequality in (2.5), the assumption on the smoothness
of the boundary can be dropped.
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2. Set w = u − v. Obviously, the function w satisfies the relations

P0w − qw = 0, y ∈ G, w(y) = u(y) − v(y) = 0, y ∈ Q2,σ.

Applying Lemma 2.1 (with Bi = 0) in which the role of Q1 is played by the set ∂G \ Q2,σ, and taking the
relation w|∂G = (1 − ξ)u|∂G into account, we obtain

‖w‖C(Q2) ≤
c2

q
‖w|∂G‖C(∂G) ≤

c2

q
‖u‖C(G).

The last inequality and Theorem 2.1 imply

‖w‖C(Q2) ≤
c2c1

q
‖ψ‖CK (∂G).

Combining this estimate with (2.12), we obtain the proof.

3. BOUNDED PERTURBATIONS OF ELLIPTIC OPERATORS AND THEIR PROPERTIES

Consider a linear operator P1 satisfying the following property.

Condition 3.1. The operator P1 : C(G) → C(G) is bounded, and if the function u ∈ C(G) attains a
positive maximum at a point y0 ∈ G, then P1u(y0) ≤ 0.

The operator P1 plays the role of a bounded perturbation of unbounded elliptic operators in spaces of
continuous functions (see [10], [6]).

The following result is a consequence of conditions 2.1 and 3.1 and the maximum principle 2.1.

Lemma 3.1. Let conditions 2.1 and 3.1 hold. If the function u ∈ C(G) attains a positive maximum
at a point y0 ∈ G and P0u ∈ C(G), then

P0u(y0) + P1u(y0) ≤ 0.

In the present paper, we consider the following nonlocal conditions in the nontransversal case:

b(y)u(y) +
∫

G
[u(y) − u(η)]µ(y, dη) = 0, y ∈ ∂G, (3.1)

where b(y) ≥ 0 and µ(y, · ) is a nonnegative Borel measure on G.

Set N = {y ∈ ∂G : µ(y,G) = 0} and M = ∂G \ N . We assume that N and M are Borel sets.

Condition 3.2. The set K is contained in N .

We introduce the function b0(y) = b(y) + µ(y,G).

Condition 3.3. The estimate b0(y) > 0 holds for y ∈ ∂G.

In view of conditions 3.2 and 3.3, relation (3.1) can be written as

u(y) −
∫

G
u(η)µi(y, dη) = 0, y ∈ Γi, u(y) = 0, y ∈ K , (3.2)

where µi(y, · ) = µ(y, · )/b0(y), y ∈ Γi. By the definition of the function b0(y), we have

µi(y,G) ≤ 1, y ∈ Γi. (3.3)

For any set Q, denote by χQ(y) the function, equal to one on Q and zero on R
2 \ Q.

Suppose that bis(y) and Ωis are the same as above. We introduce the measures δis as follows:

δis(y,Q) =

{
bis(y)χQ(Ωis(y)), y ∈ Γi ∩ Oε(K ),
0, y ∈ Γi \ Oε(K ),
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where Q is an arbitrary Borel set.
We study the measures µi(y, · ) expressible as

µi(y, · ) =
Si∑

s=1

δis(y, · ) + αi(y, · ) + βi(y, · ), y ∈ Γi, (3.4)

where αi(y, · ) and βi(y, · ) are nonnegative Borel measures satisfying the conditions given below
(see [10], [6]).

For any Borel measure µ(y, · ), the closed set

sptµ(y, · ) = G \
⋃

V ∈T

{V ∈ T : µ(y, V ∩ G) = 0}

(where T is the set of all open sets in R
2) is called the support of the measure µ(y, · ).

Condition 3.4. There exist numbers κ1 > κ2 > 0 and σ > 0 such that

1) sptαi(y, · ) ⊂ G \ Oκ1(K ) for y ∈ Γi,

2) sptαi(y, · ) ⊂ Gσ for y ∈ Γi \ Oκ2(K ),

where Oκ1(K ) = {y ∈ R
2 : dist(y,K ) < κ1} and Gσ = {y ∈ G : dist(y, ∂G) < σ}.

Condition 3.5. The estimate βi(y,M ) < 1 holds for y ∈ Γi ∩ M , i = 1, . . . , N .

Remark 3.1. Condition 3.5 is weaker than similar conditions 2.2 in [10] and 3.2 in [6] in which it is
required that µi(y,M ) < 1 for y ∈ Γi ∩ M .

Remark 3.2. We can show that if conditions 3.3–3.5 hold, then

b(y) + µ(y,G \ {y}) > 0, y ∈ ∂G,

i.e., the boundary condition (3.1) is defined at each point of the boundary.

Using relations (3.4), we write the nonlocal conditions (3.2) in the form

u(y) − Biu(y) − Bαiu(y) − Bβiu(y) = 0, y ∈ Γi, u(y) = 0, y ∈ K , (3.5)

where the operators Bi are defined in (2.1),

Bαiu(y) =
∫

G
u(η)αi(y, dη), Bβiu(y) =

∫

G
u(η)βi(y, dη), y ∈ Γi.

We introduce the space3

CB(G) = {u ∈ C(G) : u satisfy (3.1)}.

The definition of the space CB(G) and condition 3.2 imply4

CB(G) ⊂ CN (G) ⊂ CK (G). (3.6)

Lemma 3.2. Let conditions 2.1–2.3 and 3.1–3.5 hold. Let the function u ∈ CB(G) attain a positive
maximum at a point y0 ∈ G, and let P0u ∈ C(G). Then there exists a a point y1 ∈ G such that

u(y1) = u(y0) and P0u(y1) + P1u(y1) ≤ 0.

3Obviously, in the definition of the space CB(G), we can also use conditions (3.2) or (3.5).
4The spaces CN ( · ) and CK ( · ) are defined in (2.2).
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Proof. 1. If y0 ∈ G, then the assertion of the lemma follows from Lemma 3.1. Let y0 ∈ ∂G. Suppose
that the lemma is false, i.e., u(y0) > u(y) for all y ∈ G.

Since u(y0) > 0 and u ∈ CB(G) ⊂ CN (G), it follows that y0 ∈ M . Suppose that y0 ∈ Γi ∩ M for
some i. If µi(y0, G) > 0, then, taking (3.3) into account, we obtain

u(y0) −
∫

G
u(η)µi(y0, dη) ≥

∫

G
[u(y0) − u(η)]µi(y0, dη) > 0,

which contradicts (3.2). Therefore, sptµi(y0, · ) ⊂ ∂G. Hence it follows from (3.4) and condition 3.4
(part 1) that

bis(y0) = 0, sptαi(y0, · ) ⊂ ∂G \ Oκ1(K ), sptβi(y0, · ) ⊂ ∂G. (3.7)

2. Suppose that αi(y0, ∂G \ Oκ1(K )) = 0. In this case, by (3.7),

αi(y0, G) = 0. (3.8)

Further, from (3.4), (3.7), (3.8) and condition 3.5, we obtain

µi(y0, · ) = βi(y0, · ), sptβi(y0, · ) ⊂ ∂G, βi(y0,M ) < 1.

Therefore, for u ∈ CB(G) ⊂ CN (G) the following relations hold:

u(y0) −
∫

G
u(η)µi(y0, dη) = u(y0) −

∫

M
u(η)βi(y0, dη) ≥ u(y0) − u(y0)βi(y0,M ) > 0,

which contradicts (3.2).

The resulting contradiction implies αi(y0, ∂G \ Oκ1(K )) > 0. Thus, taking condition 3.4 (part 2)
into account, we obtain y0 ∈ Oκ2(K ).

3. Let us show that there exists a point

y′ ∈ ∂G \ Oκ1(K ) (3.9)

such that u(y′) = u(y0). Assume the converse: u(y0) > u(y) for y ∈ ∂G \ Oκ1(K ). Then, us-
ing (3.3), (3.4), and (3.7), we obtain

u(y0) −
∫

G
u(η)µi(y0, dη) ≥

∫

G
[u(y0) − u(η)]µi(y0, dη)

≥
∫

∂G\Oκ1(K )
[u(y0) − u(η)]αi(y0, dη) > 0, (3.10)

because αi(y0, ∂G \Oκ1(K )) > 0. Inequality (3.10) contradicts (3.2). Therefore, the function u attains
a positive maximum at some point y′ ∈ ∂G \ Oκ1(K ). Repeating the arguments from parts 1 and 2 of
the proof, we find y′ ∈ Oκ2(K ). But this contradicts (3.9).

Thus, we have proved the existence of a point y1 ∈ G such that u(y1) = u(y0). Applying Lemma 3.1,
we obtain P0u(y1) + P1u(y1) ≤ 0.

Corollary 3.1. Let conditions 2.1–2.3 and 3.1–3.5 hold. Let u ∈ CB(G) be the solution of the
equation

qu(y) − P0u(y) − P1u(y) = f0(y), y ∈ G,

where q > 0 and f0 ∈ C(G). Then

‖u‖C(G) ≤
1
q
‖f0‖C(G). (3.11)
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Proof. Suppose that

max
y∈G

|u(y)| = u(y0) > 0

for some y0 ∈ G. Then, by Lemma 3.2, there exists a point y1 ∈ G such that

u(y1) = u(y0) and P0u(y1) + P1u(y1) ≤ 0.

Therefore,

‖u‖C(G) = u(y0) = u(y1) =
1
q
(P0u(y1) + P1u(y1) + f0(y1)) ≤ 1

q
‖f0‖C(G).

4. REDUCTION TO AN OPERATOR EQUATION ON THE BOUNDARY

In this section, we impose some additional constraints on nonlocal operators that reduce nonlocal
elliptic problems to operator equations on the boundary.

Note that if u ∈ CN (G), then the function Biu is continuous on Γi and can be continued to a
continuous function on Γi belonging to CN (Γi) (this function will also be denoted by Biu). Suppose
that the operators Bαi and Bβi possess a similar property.

Condition 4.1. For any u ∈ CN (G), the functions Bαiu and Bβiu can be continued to Γi so that the
extended functions (also denoted by Bαiu and Bβiu, respectively,) belong to CN (Γi).

The following lemma immediately follows from the definition of nonlocal operators.

Lemma 4.1. Let conditions 2.2, 2.3, 3.2, 3.3, and 4.1 hold. Then the operators

Bi, Bαi, Bβi : CN (G) → CN (Γi)

are bounded and
‖Biu‖CN (Γi)

≤ ‖u‖CN (G), ‖Bαiu‖CN (Γi)
≤ ‖u‖CN (G\Oκ1(K )), ‖Bβiu‖CN (Γi)

≤ ‖u‖CN (G),

‖Bαiu + Bβiu‖ ≤ ‖u‖CN (G), ‖Biu + Bαiu + Bβiu‖ ≤ ‖u‖CN (G).

Consider the space of vector functions

CN (∂G) =
N∏

i=1

CN (Γi)

with norm

‖ψ‖CN (∂G) = max
i=1,...,N

max
y∈Γi

‖ψi‖C(Γi)
, ψ = {ψi}, ψi ∈ CN (Γi).

We introduce the operators

B = {Bi} : CN (G) → CN (∂G), Bαβ = {Bαi + Bβi} : CN (G) → CN (∂G). (4.1)

Using the operator Sq defined in Sec. 2, we introduce the bounded operator

I − BαβSq : CN (∂G) → CN (∂G), q ≥ q1. (4.2)

Since Sqψ ∈ CN (G) for ψ ∈ CN (∂G), the operator in (4.2) is well defined.
Further, we state sufficient conditions guaranteeing the existence of the bounded operator

(I − BαβSq)−1 : CN (∂G) → CN (∂G).

Let us express the measures βi(y, · ) as

βi(y, · ) = β1
i (y, · ) + β2

i (y, · ), (4.3)
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where β1
i (y, · ) and β2

i (y, · ) are nonnegative Borel measures. Let us describe them. For each p > 0,
consider the covering of the set M by p-neighborhoods of all of its points. Denote by Mp some finite
subcovering. Obviously, Mp is an open Borel set. Further, for each p > 0, consider a cut-off function
ζ̂p ∈ C∞(R2) such that 0 ≤ ζ̂p(y) ≤ 1, ζ̂p(y) = 1 if y ∈ Mp/2 and ζ̂p(y) = 0 if y /∈ Mp. Set ζ̃p = 1 − ζ̂p.
We introduce the operators

B̂1
βiu(y) =

∫

G
ζ̂p(η)u(η)β1

i (y, dη), B̃1
βiu(y) =

∫

G
ζ̃p(η)u(η)β1

i (y, dη),

B2
βiu(y) =

∫

G
u(η)β2

i (y, dη).

Condition 4.2. For all i = 1, . . . , N , we have

1) the operators B̂1
βi, B̃

1
βi : CN (G) → CN (Γi) are bounded;

2) there exists a number p > 0 such that5

‖B̂1
βi‖ <

⎧
⎪⎪⎨

⎪⎪⎩

1
c1

if αj(y,G) = 0 ∀ y ∈ Γj, j = 1, . . . , N,

1
c1(1 + c1)

otherwise,

where c1 is the constant from Theorem 2.1.

Remark 4.1. The operators B̂1
βi, B̃

1
βi : CN (G) → CN (Γi) are bounded if and only if the operator

B̂1
βi + B̃1

βi : CN (G) → CN (Γi) is bounded. This it follows from the relations

B̂1
βiu = (B̂1

βi + B̃1
βi)(ζ̂pu) and B̃1

βiu = (B̂1
βi + B̃1

βi)(ζ̃pu)

and the continuity of the functions ζ̂p and ζ̃p.

Condition 4.3. The operators

B2
βi : CN (G) → CN (Γi), i = 1, . . . , N,

are compact.

It follows from (3.4) and (4.3) that the measures µi(y, · ) can be expressed as

µi(y, · ) =
Si∑

s=1

δis(y, · ) + αi(y, · ) + β1
i (y, · ) + β2

i (y, · ), y ∈ Γi.

The measures δis(y, · ) correspond to nonlocal terms with support near the set K of points of con-
jugation. The measures αi(y, · ) correspond to nonlocal terms with support outside the set K . The
measures β1

i (y, · ) and β2
i (y, · ) correspond to nonlocal terms whose support has an arbitrary geometric

structure (in particular, it can intersect with the set K ); however, for small p, the measure β1
i (y,Mp) of

the set Mp must be small (condition 4.2) and the measure β2
i (y, · ) must generate a compact operator

(condition 4.3).

Lemma 4.2. Let conditions 2.1–2.3, 3.1–3.5, and 4.1–4.3 hold. Then there exists a bounded
operator

(I − BαβSq)−1 : CN (∂G) → CN (∂G), q ≥ q1,

where q1 > 0 is sufficiently large.

5Part 2 of condition 4.2 can be replaced by the stronger assumption: “‖B̂1
βi‖ → 0 as p → 0,” which is simpler to verify in

specific examples.
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Proof. 1. Consider the bounded operators

B̂1
β = {B̂1

βi}, B̃1
β = {B̃1

βi}, B2
β = {B2

βi}, and Bα = {Bαi},

acting from CN (G) to CN (∂G) (see (4.1)).
Let us prove that the operator

I− BαSq : CN (∂G) → CN (∂G)

has a bounded inverse.
We introduce a function ζ ∈ C∞(G) such that 0 ≤ ζ(y) ≤ 1, ζ(y) = 1 for y ∈ Gσ and ζ(y) = 0 for

y /∈ Gσ/2, where σ > 0 is a number from condition 3.4.
We have

I − BαSq = I − Bα(1 − ζ)Sq − BαζSq. (4.4)

1a. First, let us show that the operator I− Bα(1 − ζ)Sq has a bounded inverse. By Lemma 4.1 and
Theorem 2.1, we have

‖Bα(1 − ζ)Sq‖ ≤ c1. (4.5)

Further, (1 − ζ)Sqψ = 0 in Gσ for any ψ ∈ CN (∂G). Therefore, by condition 3.4, we have

suppBα(1 − ζ)Sqψ ⊂ ∂G ∩ Oκ2(K ). (4.6)

Let us show that

‖[Bα(1 − ζ)Sq]2‖ ≤ c

q
, q ≥ q1, (4.7)

where q1 > 0 is sufficiently large and c > 0 is independent of q. Successively applying

(I) Lemma 4.1;

(II) Lemma 2.2 and relation (4.6);

(III) Lemma 4.1 and Theorem 2.1,

we obtain
‖Bα(1 − ζ)SqBα(1 − ζ)Sqψ‖CN (∂G) ≤ ‖SqBα(1 − ζ)Sqψ‖CN (G\Oκ1 (K ))

≤ c3

q
‖Bα(1 − ζ)Sqψ‖CN (∂G∩Oκ2 (K ))

≤ c3c1

q
‖ψ‖CN (∂G).

This implies (4.7) with c = c3c1.
If q ≥ 2c, then the operator I − [Bα(1 − ζ)Sq]2 has a bounded inverse. In that case, the operator

I − Bα(1 − ζ)Sq also has a bounded inverse and

[I − Bα(1 − ζ)Sq]−1 = [I + Bα(1 − ζ)Sq][I − (Bα(1 − ζ)Sq)2]−1. (4.8)

Relation (4.8), Lemma 4.1, Theorem 2.1, and relations (4.5) and (4.7) imply

‖[I − Bα(1 − ζ)Sq]−1‖ = 1 + c1 + O(q−1), q → +∞. (4.9)

1b. Let us now estimate the norm of the operator BαζSq. From Lemma 4.1 and 2.2, we obtain

‖BαζSqψ‖CN (∂G) ≤ ‖Sqψ‖C(Gσ/2)
≤ c2

q
‖ψ‖CN (∂G). (4.10)

Therefore, using expression (4.4), we see that the operator I − BαSq has a bounded inverse for all
sufficiently large q and

(I − BαSq)−1 = [I − (I − Bα(1 − ζ)Sq)−1BαζSq]−1[I − Bα(1 − ζ)Sq]−1. (4.11)
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From (4.9)–(4.11), we obtain

‖(I − BαSq)−1‖ = 1 + c1 + O(q−1), q → +∞. (4.12)

2. Let us prove that the operator I − (Bα + B̂1
β + B̃1

β)Sq : CN (∂G) → CN (∂G) has a bounded
inverse.

2a. It follows from the definition of the operator B̃1
β and Lemma 2.1 (with Q1 = M and Q2 =

G \ Mp/2) that

‖B̃1
βiSqψ‖CN (Γi)

≤ ‖Sqψ‖C(G\Mp/2)
≤ c2

q
‖ψ‖CN (∂G), (4.13)

because (G \ Mp/2) ∩ M = ∅ and supp(Sqψ)|∂G ⊂ M for ψ ∈ CN (∂G).

2b. Suppose that αj(y,G) 	= 0 for some j and y ∈ Γj . By condition 4.2 (part 2) and Theorem 2.1,
there exists a number d such that 0 < 2d < 1/(1 + c1) and

‖B̂1
βiSqψ‖CN (Γi)

≤
(

1
c1(1 + c1)

− 2d
c1

)
‖Sqψ‖CN (G) ≤

(
1

1 + c1
− 2d

)
‖ψ‖CN (∂G). (4.14)

From inequalities (4.13) and (4.14), we obtain

‖(B̂1
β + B̃1

β)Sq‖ ≤ 1
1 + c1

− d (4.15)

for all sufficiently large q. From (4.12) and (4.15), we obtain

‖(I −BαSq)−1(B̂1
β + B̃1

β)Sq‖ < 1

for sufficiently large q. Therefore, the bounded inverse operator

[I − (Bα + B̂1
β + B̃1

β)Sq]−1 = [I − (I − BαSq)−1(B̂1
β + B̃1

β)Sq]−1[I − BαSq]−1 (4.16)

exists.
2c. If αj(y,G) = 0 for y ∈ Γj , j = 1, . . . , N , then, in view of condition 4.2 (part 1), inequality (4.14)

takes the form

‖B̂1
βiSqψ‖CN (Γi)

≤
(

1
c1

− 2d
c1

)
‖Sqψ‖CN (G) ≤ (1 − 2d)‖ψ‖CN (∂G).

Therefore, inequality (4.15) can be written as

‖(B̂1
β + B̃1

β)Sq‖ ≤ 1 − d. (4.17)

Since, in this case, Bα = 0, it follows from (4.17) that the operator

I − (Bα + B̂1
β + B̃1

β)Sq = I − (B̂1
β + B̃1

β)Sq

has a bounded inverse.
3. It remains to to prove that the operator I − BαβSq also has a bounded inverse. By condition 4.3,

the operator B2
β is compact. Therefore, the operator B2

βSq is also compact. Since the index of a
Fredholm operator is stable with respect to compact perturbations it follows that the operator I−BαβSq

is Fredholm and ind(I−BαβSq) = 0. To prove that I−BαβSq has a bounded inverse, it suffices to show
that

dimker(I − BαβSq) = 0.

Suppose that ψ ∈ CN (∂G) and (I−BαβSq)ψ = 0. Then the function u = Sqψ ∈ C∞(G)∩CN (G)
is a solution of the problem

P0u − qu = 0, y ∈ G,

u(y) − Biu(y) − Bαiu(y) − Bβiu(y) = 0, y ∈ Γi, u(y) = 0, y ∈ K .

By Corollary 3.1, we have u = 0. Hence

ψ = BαβSqψ = Bαβu = 0.
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5. EXISTENCE OF FELLER SEMIGROUPS

In this section, we prove that bounded perturbations of elliptic operators with nonlocal terms
satisfying conditions of Secs. 2–4, are the generators of Feller semigroups.

Reducing nonlocal problems to the boundary and using Lemma 4.2, we can prove that nonlocal
problems are solvable in spaces of continuous functions.

Lemma 5.1. Let conditions 2.1–2.3, 3.2–3.5, and 4.1–4.3 hold, and let q1 > 0 be sufficiently large.
Then, for all q ≥ q1 and f0 ∈ C(G), the problem

qu(y) − P0u(y) = f0(y), y ∈ G, (5.1)

u(y) − Biu(y) − Bαiu(y) − Bβiu(y) = 0, y ∈ Γi, u(y) = 0, y ∈ K , (5.2)

has a unique solution u ∈ CB(G) ∩ W 2
2,loc(G).

Proof. 1. Consider the auxiliary problem

qv(y) − P0v(y) = f0(y), y ∈ G, v(y) − Biv(y) = 0, y ∈ Γi, i = 1, . . . , N. (5.3)

Since f0 ∈ C(G), it follows from Theorem 2.1 that there exists a unique solution v ∈ CK (G) of
problem (5.3). Therefore, v ∈ CN (G).

2. Set w = u − v. The unknown function w belongs to CN (G) and, by (5.1)–(5.3), satisfies the
relations

qw(y) − P0w(y) = 0, y ∈ G,

w(y) − Biw(y) − Bαiw(y) − Bβiw(y) = Bαiv(y) + Bβiv(y), y ∈ Γi, i = 1, . . . , N,

w(y) = 0, y ∈ K .

(5.4)

In view of condition 4.1, problem (5.4) is equivalent to the operator equation

ψ − BαβSqψ = Bαβv

with respect to the unknown function ψ ∈ CN (∂G). By Lemma 4.2, this equation has a unique solution
ψ ∈ CN (∂G). Then problem (5.1), (5.2) also has a unique solution, namely,

u = v + w = v + Sqψ = v + Sq(I − BαβSq)−1Bαβv ∈ CB(G).

Moreover, u ∈ W 2
2,loc(G) by the theorem on the inner smoothness of solutions of elliptic equations.

Using Lemma 5.1 and condition 3.1, we can prove that problems with bounded perturbations are also
solvable in spaces of continuous functions.

Lemma 5.2. Let conditions 2.1–2.3, 3.1–3.5, and 4.1–4.3 hold, and let q1 > 0 be sufficiently large.
Then, for all q ≥ q1 and f0 ∈ C(G), the problem

qu − (P0 + P1)u = f0(y), y ∈ G, (5.5)

u(y) − Biu(y) − Bαiu(y) − Bβiu(y) = 0, y ∈ Γi, u(y) = 0, y ∈ K , (5.6)

has a unique solution u ∈ CB(G) ∩ W 2
2,loc(G).

Proof. Consider the operator qI − P0 as an operator acting from C(G) to C(G) whose domain of
definition is

D(qI − P0) = {u ∈ CB(G) ∩ W 2
2,loc(G) : P0u ∈ C(G)}.

By Lemma 5.1 and Corollary 3.1, there exists a bounded operator

(qI − P0)−1 : C(G) → C(G)
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and, moreover,

‖(qI − P0)−1‖ ≤ 1
q
.

We introduce the operator

qI − P0 − P1 : C(G) → C(G)

whose domain of definition is

D(qI − P0 − P1) = D(qI − P0).

Since

qI − P0 − P1 = (I − P1(qI − P0)−1)(qI − P0),

it follows that, for q ≥ q1, the operator

qI − P0 − P1 : C(G) → C(G)

has a bounded inverse; here q1 is so large that

‖P1‖ · ‖(qI − P0)−1‖ ≤ 1/2, q ≥ q1.

Consider the unbounded operator

PB : D(PB) ⊂ CB(G) → CB(G)

defined by the formula

PBu = P0u + P1u, u ∈ D(PB) = {u ∈ CB(G) ∩ W 2
2,loc(G) : P0u + P1u ∈ CB(G)}. (5.7)

Lemma 5.3. Let conditions 2.1–2.3, 3.1–3.5, and 4.1–4.3 hold. Then D(PB) is dense in CB(G).

Proof. We shall carry out the proof using the scheme proposed in [9].

1. Suppose that u ∈ CB(G). Since CB(G) ⊂ CN (G) by (3.6), it follows that, for all ε > 0 and
q ≥ q1, there exists a function

u1 ∈ C∞(G) ∩ CN (G)

such that

‖u − u1‖C(G) ≤ min
(

ε,
ε

2c1kq

)
, (5.8)

where kq = ‖(I − BαβSq)−1‖.
Set

f0(y) ≡ qu1 − P0u1, y ∈ G,

ψi(y) ≡ u1(y) − Biu1(y) − Bαiu1(y) − Bβiu1(y), y ∈ Γi, i = 1, . . . , N.
(5.9)

Since u1 ∈ CN (G), by condition 4.1, we have {ψi} ∈ CN (∂G). Using the relation

u(y) − Biu(y) − Bαiu(y) − Bβiu(y) = 0, y ∈ Γi,

inequality (5.8), and Lemma 4.1, we obtain

‖{ψi}‖CN (∂G) ≤ ‖u − u1‖C(G) + ‖(B + Bαβ)(u − u1)‖CN (∂G) ≤
ε

c1kq
. (5.10)

Consider the auxiliary nonlocal problem

qu2 − P0u2 = f0(y), y ∈ G,

u2(y) − Biu2(y) − Bαiu2(y) − Bβiu2(y) = 0, y ∈ Γi, u2(y) = 0, y ∈ K .
(5.11)
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Since f0 ∈ C∞(G), by Lemma 5.1, problem (5.11) has the unique solution

u2 ∈ CB(G) ⊂ CN (G).

Using (5.9), (5.11), and the relations u1(y) = u2(y) = 0, y ∈ K , we see that the function w1 =
u1 − u2 satisfies the relations

qw1 − P0w1 = 0, y ∈ G,

w1(y) − Biw1(y) − Bαiw1(y) − Bβiw1(y) = ψi(y), y ∈ Γi, w1(y) = 0, y ∈ K .
(5.12)

It follows from condition 4.1 that problem (5.12) is equivalent the operator equation

φ − BαβSqφ = ψ

in CN (∂G), where w1 = Sqφ. By Lemma 4.2, this equation has a unique solution φ ∈ CN (∂G). Thus,
using Theorem 2.1 and inequality (5.10), we obtain

‖w1‖C(G) ≤ c1‖(I − BαβSq)−1‖ · ‖{ψi}‖CN (∂G) ≤ c1
kqε

c1kq
= ε. (5.13)

2. Finally, consider the problem

λu3 − P0u3 − P1u3 = λu2, y ∈ G,

u3(y) − Biu3(y) − Bαiu3(y) − Bβiu3(y) = 0, y ∈ Γi, u3(y) = 0, y ∈ K .
(5.14)

Since u2 ∈ CB(G), by Lemma 5.2, problem (5.14) has a unique solution u3 ∈ D(PB) for all sufficiently
large λ.

Denote w2 = u2 − u3. It follows from (5.2) that

λw2 − P0w2 − P1w2 = −P0u2 − P1u2 = f0 − qu2 − P1u2.

Using Corollary 3.1, we find

‖w2‖C(G) ≤
1
λ
‖f0 − qu2 − P1u2‖C(G).

Choosing a sufficiently large λ, we obtain

‖w2‖C(G) ≤ ε. (5.15)

It follows from inequalities (5.8), (5.13), and (5.15) that

‖u − u3‖C(G) ≤ ‖u − u1‖C(G) + ‖u1 − u2‖C(G) + ‖u2 − u3‖C(G) ≤ 3ε.

Let us now prove the main result of this paper.

Theorem 5.1. Let conditions 2.1–2.3, 3.1–3.5, and 4.1–4.3 hold. Then the operator

PB : D(PB) ⊂ CB(G) → CB(G)

is the generator of a Feller semigroup.

Proof. 1. By Lemma 5.2 and Corollary 3.1, for all sufficiently large q > 0, there exists a bounded
operator

(qI − PB)−1 : CB(G) → CB(G)

such that

‖(qI − PB)−1‖ ≤ 1
q
.
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2. Since the operator (qI − PB)−1 is bounded and defined on the whole space CB(G), it is closed.
Therefore, the operator

qI − PB : D(PB) ⊂ CB(G) → CB(G)

is closed. Hence the operator

PB : D(PB) ⊂ CB(G) → CB(G)

is also closed.

3. Let us prove that the operator (qI − PB)−1 is nonnegative. Assume the converse; then there
exists a function f0 ≥ 0 such that the solution u ∈ D(PB) of the equation qu − PBu = f0 attains a
negative minimum at some point y0 ∈ G. In this case, the function v = −u attains a positive maximum
at the point y0. By Lemma 3.2, there exists a point y1 ∈ G such that v(y1) = v(y0) and PBv(y1) ≤ 0.
Therefore,

0 < v(y0) = v(y1) = (PBv(y1) − f0(y1))/q ≤ 0.

The resulting contradiction proves that u ≥ 0.
Thus, all the assumptions of the Hille–Yosida theorem (Theorem 1.1) hold, and the operator

PB : D(PB) ⊂ CB(G) → CB(G)

is the generator of a Feller semigroup.

In conclusion, let us present an example of nonlocal operators satisfying the assumptions of the
present paper.

Suppose that G ⊂ R
2 is a bounded domain with boundary

∂G = Γ1 ∪ Γ2 ∪ K ,

where Γ1 and Γ2 are open connected (in the topology of ∂G) curves of the class C∞; moreover,
Γ1 ∩Γ2 = ∅ and Γ1 ∩Γ2 = K ; the set K consists of two points: g1 and g2. Suppose that the domain G
coincides with a plane angle in an ε-neighborhood of the points gi, i = 1, 2. Let Ωj , j = 1, . . . , 4, be
continuous transformations defined on Γ1 and satisfying the following conditions (see the figure):

Figure.

1) Ω1(K ) ⊂ K , Ω1(Γ1 ∩ Oε(K )) ⊂ G, Ω1(Γ1 \ Oε(K )) ⊂ G ∪ Γ2, and Ω1(y) is the composition
of operators of translation of the argument, of rotation, and of homothety for y ∈ Γ1 ∩ Oε(K );

2) there exist numbers κ1 > κ2 > 0 and σ > 0 such that

Ω2(Γ1) ⊂ G \ Oκ1(K ) and Ω2(Γ1 \ Oκ2(K )) ⊂ Gσ;

besides, Ω2(g1) ∈ Γ1 and Ω2(g2) ∈ G;

3) Ω3(Γ1) ⊂ G ∪ Γ2 and Ω3(K ) ⊂ Γ2;
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4) Ω4(Γ1) ⊂ G ∪ Γ2 and Ω4(K ) ⊂ K .

Suppose that b1 ∈ C(Γ1) ∩ C∞(Γ1 ∩ Oε(K )), b2, b3, b4 ∈ C(Γ1), and bj ≥ 0, j = 1, . . . , 4.

Suppose that G1 is a bounded domain, G1 ⊂ G, and Γ ⊂ G is a curve of class C1. We introduce
continuous nonnegative functions c(y, η), y ∈ Γ1, η ∈ G1, and d(y, η), y ∈ Γ1, η ∈ Γ.

Consider the following nonlocal conditions:

u(y) −
4∑

j=1

bj(y)u(Ωj(y)) −
∫

G1

c(y, η)u(η) dη −
∫

Γ
d(y, η)u(η) dΓη = 0, y ∈ Γ1,

u(y) = 0, y ∈ Γ2.

(5.16)

Suppose that Q ⊂ G is an an arbitrary Borel set; let us introduce the measures µ(y, · ), y ∈ ∂G:

µ(y,Q) =
4∑

j=1

bj(y)χQ(Ωj(y)) +
∫

G1∩Q
c(y, η) dη +

∫

Γ∩Q
d(y, η)u(η) dΓη , y ∈ Γ1,

µ(y,Q) = 0, y ∈ Γ2.

Suppose that N and M are defined as above. Suppose that

µ(y,G) =
4∑

j=1

bj(y) +
∫

G1

c(y, η) dη +
∫

Γ
d(y, η) dΓη ≤ 1, y ∈ ∂G,

∫

Γ∩M
d(y, η) dΓη < 1, y ∈ M ;

b2(g1) = 0 or µ(Ω2(g1), G) = 0, b2(g2) = 0, b4(gj) = 0;
c(gj , · ) = 0, d(gj , · ) = 0.

Setting b(y) = 1 − µ(y,G), we can rewrite (5.16) as (see (3.1))

b(y)u(y) +
∫

G
[u(y) − u(η)]µ(y, dη) = 0, y ∈ ∂G.

We introduce a cut-off function ζ ∈ C∞(R2) with support in Oε(K ) equal to 1 on Oε/2(K ) and such
that 0 ≤ ζ(y) ≤ 1 for y ∈ R

2. Suppose that y ∈ Γ1 and Q ⊂ G is an an arbitrary Borel set; denote

δ(y,Q) = ζ(y)b1(y)χQ(Ω1(y)), α(y,Q) = b2(y)χQ(Ω2(y)),

β1(y,Q) = (1 − ζ(y))b1(y)χQ(Ω1(y)) +
∑

j=3,4

bj(y)χQ(Ωj(y)),

β2(y,Q) =
∫

G1∩Q
c(y, η) dη +

∫

Γ∩Q
d(y, η)u(η) dΓη

(for simplicity, we omit the subscript “1” in the notation of the measures). It is readily verified that these
measures satisfy conditions 2.2, 2.3, 3.2–3.5, and 4.1–4.3.
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