
Generalized Solutions
of Nonlocal Elliptic Problems

Pavel Gurevich∗

Abstract

An elliptic equation of order 2m with general nonlocal boundary-value conditions, in a
plane bounded domain G with piecewise smooth boundary, is considered. Generalized solutions
belonging to the Sobolev space Wm

2 (G) are studied. The Fredholm property of the unbounded
operator corresponding to the elliptic equation, acting on L2(G), and defined for functions from
the space Wm

2 (G) that satisfy homogeneous nonlocal conditions is proved.

Introduction

In the one-dimensional case, nonlocal problems were studied by A. Sommerfeld [1], J. D. Tamarkin [2],
M. Picone [3]. T. Carleman [4] considered the problem of finding a function harmonic on a two-
dimensional bounded domain and subjected to a nonlocal condition connecting the values of this
function at different points of the boundary. A. V. Bitsadze and A. A. Smarskii [5] suggested
another setting of a nonlocal problem arising in plasma theory: to find a function harmonic on a
two-dimensional bounded domain and satisfying nonlocal conditions on shifts of the boundary that
can take points of the boundary inside the domain. Different generalizations of the above nonlocal
problems were investigated by many authors [6, 7, 8, 9, 10, 11, 12].

It turns out that the most difficult situation occurs if the support of nonlocal terms intersects
the boundary. In that case, solutions of nonlocal problems can have power-law singularities near
some points even if the boundary and the right-hand sides are infinitely smooth [13, 14]. For this
reason, such problems are naturally studied in weighted spaces (introduced by V. A. Kondrat’ev
for boundary-value problems in nonsmooth domains [15]). The most complete theory of nonlocal
problems in weighted spaces is developed by A. L. Skubachevskii [13, 16, 17, 18, 19].

Note that the investigation of nonlocal problems is motivated both by significant theoretical
progress in that direction and important applications arising in biophysics, theory of diffusion pro-
cesses [20], plasma theory [21], and so on.

In the present paper, we study generalized solutions of an elliptic equation of order 2m in a two-
dimensional bounded domain G, satisfying nonlocal boundary-value conditions that are set on parts
Γj of the boundary ∂G =

⋃
j Γj. By generalized solutions, we mean functions from the Sobolev space

Wm(G) = Wm
2 (G). We prove that an unbounded operator acting on L2(G) and corresponding to

the above nonlocal problem has the Fredholm property.
Note that solutions of nonlocal problems can be sought on the space of “smooth” functions,

namely, on the Sobolev space W 2m(G) (see [22, 23]) or on weighted spaces H2m
a (G), where

‖u‖Hk
a (G) =

( ∑
|α|≤k

∫
G

ρ2(a−k+|α|)|Dαu|2
)1/2

,
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k ≥ 0 is an integer, a ∈ R, ρ = ρ(y) = dist(y,K), and K =
⋃

j Γj \ Γj is the set formed by finitely
many points of conjugation of nonlocal conditions (see [13, 17]). In both cases, a bounded operator
corresponds to the nonlocal problem. Whether or not this operator has the Fredholm property
depends on spectral properties of some auxiliary problems with a parameter. In turn, these spectral
properties are affected by the values of the coefficients in nonlocal conditions and by a geometrical
structure of the support of nonlocal terms and the boundary near the set K. However, if we consider
generalized solutions (i.e., functions from Wm(G)), then the corresponding unbounded operator turns
out to have the Fredholm property irrespective of the above factors.

Earlier the Fredholm property of an unbounded nonlocal operator on L2(G) was studied either
for the case in which nonlocal conditions were set on shifts of the boundary [19] or in the case of a
nonlocal perturbation of the Dirichlet problem for a second-order elliptic equation [11, 12]. Elliptic
equations of order 2m with general nonlocal conditions are investigated for the first time.

1 Setting of Nonlocal Problems in Bounded Domains

1.1 Setting of Problem

Let G ⊂ R
2 be a bounded domain with boundary ∂G. Consider a set K ⊂ ∂G consisting of finitely

many points. Let ∂G\K =
N⋃

i=1

Γi, where Γi are open (in the topology of ∂G) C∞-curves. We assume

that, in a neighborhood of each point g ∈ K, the domain G is a plane angle.
Denote by P(y,Dy) = P(y,Dy1 , Dy2) and Biµs(y,Dy) = Biµs(y,Dy1 , Dy2) differential operators

of order 2m and miµ (miµ ≤ m − 1), respectively, with complex-valued C∞ coefficients, and let
P0(y,Dy) and B0

iµs(y,Dy) denote their principal homogeneous parts (i = 1, . . . , N ; µ = 1, . . . ,m;
s = 0, . . . , Si). Here Dy = (Dy1 , Dy2), Dyj

= −i∂/∂yj.
Now we formulate conditions on the operators P(y,Dy) and Biµ0(y,Dy) (these operators will

correspond to a “local” elliptic problem). We assume that the operator P(y,Dy) is properly elliptic
on G; in particular, the following estimate holds for all θ ∈ R

2 and y ∈ G:

A−1|θ|2m ≤ |P0(y, θ)| ≤ A|θ|2m, A > 0. (1.1)

Further, let y ∈ Γi. One may assume with no loss of generality that the curve Γi is defined by
the equation y2 = 0 near the point y. We suppose that the system {Biµ0(y,Dy)}m

µ=1 satisfies the
Lopatinsky condition with respect to the operator P(y,Dy) for all i = 1, . . . , N . In other words, let
the polynomial

B′
iµ0(y, τ) ≡

m∑
ν=1

biµν(y)τ ν−1 ≡ B0
iµ0(y, 1, τ)

(
modM+(y, τ)

)

be the residue of dividing B0
iµ0(y, 1, τ) by M+(y, τ), where

M+(y, τ) =
m∏

ν=1

(τ − τ+
ν (y)),

while τ+
1 (y), . . . , τ+

m(y) are the roots of the polynomial P0(y, 1, τ) with positive imaginary parts (note
that P0(y, 1, τ), B0

iµ0(y, 1, τ), and M+(y, τ) are considered as polynomials in τ). In this case, the
validity of the Lopatinsky condition means that

di(y) = det ‖biµν(y)‖m
µ,ν=1 �= 0.

Since each of the curves Γi, i = 1, . . . , N , is a compact, it follows that

D = min
i=1,...,N

inf
y∈Γi

|di(y)| > 0. (1.2)
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We emphasize that the operators Biµ0(y,Dy) are not necessarily normal on Γi.

For an integer k ≥ 0, denote by W k(G) = W k
2 (G) the Sobolev space with the norm

‖u‖W k(G) =


 ∑

|α|≤k

∫
G

|Dαu|2 dy




1/2

(we set W 0(G) = L2(G) for k = 0). For an integer k ≥ 1, we introduce the space W k−1/2(Γ) of traces
on a smooth curve Γ ⊂ G with the norm

‖ψ‖W k−1/2(Γ) = inf ‖u‖W k(G) (u ∈ W k(G) : u|Γ = ψ). (1.3)

Denote B0
iµu = Biµ0(y,Dy)u(y)|Γi

. As we have mentioned above, the operators P(y,Dy) and B0
iµ

will correspond to a “local” boundary-value problem.

Now we define operators corresponding to nonlocal conditions near the set K. Let Ωis (i =
1, . . . , N ; s = 1, . . . , Si) be C∞-diffeomorphisms taking some neighborhood Oi of the curve Γi ∩ Oε(K)
onto the set Ωis(Oi) in such a way that

Ωis(Γi ∩ Oε(K)) ⊂ G,

Ωis(g) ∈ K for g ∈ Γi ∩ K. (1.4)

Here ε > 0, Oε(K) = {y ∈ R
2 : dist(y,K) < ε} is the ε-neighborhood of the set K. Thus, under the

transformations Ωis, the curves Γi ∩Oε(K) are mapped strictly inside the domain G, whereas the set
of end points Γi ∩ K is mapped to itself.

Let us specify the structure of the transformations Ωis near the set K. Denote by the symbol Ω+1
is

the transformation Ωis : Oi → Ωis(Oi) and by Ω−1
is the transformation Ω−1

is : Ωis(Oi) → Oi inverse to
Ωis. The set of all points

Ω±1
iqsq

(. . . Ω±1
i1s1

(g)) ∈ K (1 ≤ sj ≤ Sij , j = 1, . . . , q),

i.e., the set of all points that can be obtained by consecutively applying the transformations Ω+1
ijsj

or Ω−1
ijsj

(taking the points of K to K) to the point g ∈ K is called an orbit of g and is denoted by
Orb(g).

Clearly, for any g, g′ ∈ K either Orb(g) = Orb(g′) or Orb(g) ∩ Orb(g′) = ∅. In what follows,
we suppose that the set K consists of a unique orbit. (All results can be directly generalized for the
case in which K consists of finitely many mutually disjoint orbits.) The set (orbit) K consists of N
points, which we denote by gj, j = 1, . . . , N .

Take a small number ε (see Remark 1.3 below) such that there exist neighborhoods Oε1(gj) of
the points gj ∈ K satisfying the following conditions:

1. Oε1(gj) ⊃ Oε(gj);

2. in the neighborhood Oε1(gj), the boundary ∂G is a plane angle;

3. Oε1(gj) ∩ Oε1(gk) = ∅ for any gj, gk ∈ K, k �= j;

4. if gj ∈ Γi and Ωis(gj) = gk, then Oε(gj) ⊂ Oi and Ωis

(Oε(gj)
) ⊂ Oε1(gk).

For each point gj ∈ Γi∩K, we fix a transformation y �→ y′(gj) of the argument; this transformation

is the composition of the shift by the vector −−−→
Ogj and a rotation by some angle such that the set

Oε1(gj) is mapped onto the neighborhood Oε1(0) of the origin, while the sets

G ∩ Oε1(gj) and Γi ∩ Oε1(gj)
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are mapped onto the intersection of a plane angle

Kj = {y ∈ R
2 : r > 0, |ω| < ωj}

with the neighborhood Oε1(0) and the intersection of the side

γjσ = {y ∈ R
2 : ω = (−1)σωj}

(σ = 1 or σ = 2) of the angle Kj with the neighborhood Oε1(0), respectively. Here (ω, r) are the
polar coordinates of the point y and 0 < ωj < π.

Condition 1.1. The above change of variables y �→ y′(gj) for y ∈ Oε(gj), gj ∈ Γi ∩ K, reduces the
transformation Ωis(y) (i = 1, . . . , N, s = 1, . . . , Si) to the composition of a rotation and a homothety
in the new variables y′.

Remark 1.1. In particular, Condition 1.1 combined with the assumption Ωis(Γi) ⊂ G means that,
if g ∈ Ωis(Γi ∩K)∩ Γj ∩K �= ∅, then the curves Ωis(Γi) and Γj are not tangent to each other at the
point g.

Consider a number ε0, 0 < ε0 ≤ ε, satisfying the following condition: if gj ∈ Γi and Ωis(gj) = gk,
then Oε0(gk) ⊂ Ωis

(Oε(gj)
)
. Introduce a function ζ ∈ C∞(R2) such that

ζ(y) = 1 for y ∈ Oε0/2(K), supp ζ ⊂ Oε0(K). (1.5)

Now we define nonlocal operators B1
iµ by the formula

B1
iµu =

Si∑
s=1

(
Biµs(y,Dy)(ζu)

)(
Ωis(y)

)
for y ∈ Γi ∩ Oε(K),

B1
iµu = 0 for y ∈ Γi \ (Γi ∩ Oε(K)),

where
(
Biµs(y,Dy)u

)(
Ωis(y)

)
= Biµs(x,Dx)u(x)|x=Ωis(y). Since B1

iµu = 0 whenever supp u ⊂ G \
Oε0(K), we say that the operators B1

iµ correspond to nonlocal terms supported near the set K.

For any ρ > 0, we denote Gρ = {y ∈ G : dist(y, ∂G) > ρ}. Consider operators B2
iµ satisfying the

following condition (cf. [13, 18, 22]).

Condition 1.2. There exist numbers κ1 > κ2 > 0 and ρ > 0 such that the inequalities

‖B2
iµu‖W 2m−miµ−1/2(Γi)

≤ c1‖u‖W 2m(G\Oκ1 (K)), (1.6)

‖B2
iµu‖W 2m−miµ−1/2(Γi\Oκ2 (K))

≤ c2‖u‖W 2m(Gρ) (1.7)

hold for any
u ∈ W 2m(G \ O

κ1(K)) ∩ W 2m(Gρ),

where i = 1, . . . , N , µ = 1, . . . , m, and c1, c2 > 0.

It follows from (1.6) that B2
iµu = 0 whenever supp u ⊂ O

κ1(K). For this reason, we say that the
operators B2

iµ correspond to nonlocal terms supported outside the set K.

We will suppose throughout that Conditions 1.1 and 1.2 hold.

We study the following nonlocal elliptic problem:

P(y,Dy)u = f0(y) (y ∈ G), (1.8)

Biµu ≡ B0
iµu + B1

iµu + B2
iµu = 0 (y ∈ Γi; i = 1, . . . , N ; µ = 1, . . . ,m), (1.9)

where f0 ∈ L2(G). Introduce the space Wm
B (G) consisting of functions u ∈ Wm(G) that satisfy

homogeneous nonlocal conditions (1.9): Biµu = 0.
Consider the unbounded operator P : Dom (P) ⊂ L2(G) → L2(G) given by

Pu = P(y,Dy)u, u ∈ Dom (P) = {u ∈ Wm
B (G) : P(y,Dy)u ∈ L2(G)}.
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Definition 1.1. A function u is called a generalized solution of problem (1.8), (1.9) with right-hand
side f0 ∈ L2(G) if u ∈ Dom (P) and Pu = f0.

One can give another (equivalent) definition for a generalized solution. To do so, we write the
operator P(y,Dy) in the divergent form,

P(y,Dy) =
∑

0≤|ξ|,|β|≤m

Dβpξβ(y)Dξ,

where pξβ are infinitely differentiable functions.
For any set X ∈ R

2 having a nonempty interior, denote by C∞
0 (X) the set of functions infinitely

differentiable on X and compactly supported on X.

Definition 1.2. A function u is called a generalized solution of problem (1.8), (1.9) with right-hand
side f0 ∈ L2(G) if u ∈ Wm

B (G) and the integral identity

∑
0≤|ξ|, |β|≤m

∫
G

pξβ(y)DξuDβv dy =

∫
G

f0v dy

holds for any v ∈ C∞
0 (G).

Remark 1.2. Generalized solutions a priori belong to the space Wm(G), whereas Condition 1.2 is
formulated for functions belonging to the space W 2m inside the domain and near the smooth part of
the boundary. Such a formulation can be justified by the fact that any generalized solution belongs
to W 2m outside an arbitrarily small neighborhood of the set K (see Lemma 2.1 below).

Remark 1.3. We have supposed above that the number ε is small (whereas κ1, κ2, ρ can be arbi-
trary). Let us show that this leads to no loss of generality. Let us have a number ε̂, 0 < ε̂ < ε.
Take a number ε̂0, 0 < ε̂0 ≤ ε̂, satisfying the following condition: if gj ∈ Γi and Ωis(gj) = gk, then

Oε̂0(gk) ⊂ Ωis

(Oε̂(gj)
)
. Consider a function ζ̂ ∈ C∞(R2) such that ζ̂(y) = 1 for y ∈ Oε̂0/2(K) and

supp ζ̂ ⊂ Oε̂0(K). Introduce the operators B1
iµ as follows:

B1
iµu =

Si∑
s=1

(
Biµs(y,Dy)(ζu)

)(
Ωis(y)

)
for y ∈ Γi ∩ Oε(K),

B1
iµu = 0 for y ∈ Γi \ (Γi ∩ Oε(K)).

Clearly,
B0

iµ + B1
iµ + B2

iµ = B0
iµ + B̂1

iµ + B̂2
iµ,

where B̂2
iµ = B1

iµ − B̂1
iµ + B2

iµ. Since B1
iµu − B̂1

iµu = 0 near the set K, it follows that the operator

B1
iµ − B̂1

iµ satisfies Condition 1.2 for some suitable κ1, κ2, ρ (see [22, § 1] for more details). Thus,
we can always choose ε to be as small as necessary (possibly at the expense of a modification of the
operator B2

iµ and the values of κ1, κ2, ρ).

1.2 Example of Nonlocal Problem

One can consider the following example as a model one.

Example 1.1. Let P(y,Dy) and Biµs(y,Dy) be the same operators as above. Let Ωis (i = 1, . . . , N ;
s = 1, . . . , Si) be C∞-diffeomorphisms taking some neighborhood Oi of the (whole) curve Γi to the
set Ωis(Oi) in such a way that Ωis(Γi) ⊂ G. Consider the following nonlocal problem:

P(y,Dy)u = f0(y) (y ∈ G), (1.10)
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Biµ0(y,Dy)u(y)|Γi
+

Si∑
s=1

(
Biµs(y,Dy)u

)(
Ωis(y)

)∣∣
Γi

= 0

(y ∈ Γi; i = 1, . . . , N ; µ = 1, . . . ,m).

(1.11)

We emphasize that a priori the transformations Ωis are not supposed to satisfy condition (1.4);
however, we further represent the nonlocal operators as the sum of the operators B0

iµ, B1
iµ, and B2

iµ,
and the transformations occurring in the definition of the operators B1

iµ will satisfy condition (1.4).

To obtain this representation, we take a small ε such that, for any point g ∈ K, the set Oε(g)
intersects the curve Ωis(Γi) only if g ∈ Ωis(Γi). If g ∈ Γi ∩ K and Ωis(g) ∈ K, then we assume that
the transformation Ωis(y) satisfies Condition 1.1 for y ∈ Oε(g).

Remark 1.4. By Remark 1.1, Condition 1.1 is a restriction on the geometrical structure of the
support of nonlocal terms near the set K. However, if Ωis(Γi ∩ K) ⊂ ∂G \ K, then we impose no
restrictions on the geometrical structure of the curve Ωis(Γi) near the boundary ∂G (cf. [13, 17]).

Let ζ ∈ C∞(R2) be a function satisfying relations (1.5). Introduce the operators

B0
iµu = Biµ0(y,Dy)u(y)|Γi

,

B1
iµu =

Si∑
s=1

(
Biµs(y,Dy)(ζu)

)(
Ωis(y)

)∣∣
Γi

,

B2
iµu =

Si∑
s=1

(
Biµs(y,Dy)((1 − ζ)u)

)(
Ωis(y)

)∣∣
Γi

(see figures 1.1 and 1.2). Since the support of the function ζ is concentrated near the set K, one may
assume that the transformations Ωis occurring in the definition of the operator B1

iµ are defined on
some neighborhood of the set K and satisfy condition (1.4). Moreover, it follows from [22, Sec. 1.2]
that the operator B2

iµ satisfies Condition 1.2. Therefore, problem (1.10), (1.11) can be represented
in the form (1.8), (1.9).

1.3 Nonlocal Problems near the Set K
When studying problem (1.8), (1.9), one must pay special attention to the behavior of solutions near
the set K of conjugation points. Now we consider the corresponding model problems.

Denote by uj(y) the function u(y) for y ∈ Oε1(gj). If gj ∈ Γi, y ∈ Oε(gj), and Ωis(y) ∈ Oε1(gk),
then we denote the function u(Ωis(y)) by uk(Ωis(y)). In this notation, nonlocal problem (1.8), (1.9)
acquires the following form in the ε-neighborhood of the set (orbit) K:

P(y,Dy)uj = f0(y) (y ∈ Oε(gj) ∩ G),

Biµ0(y,Dy)uj(y)|Oε(gj)∩Γi
+

Si∑
s=1

(
Biµs(y,Dy)(ζuk)

)(
Ωis(y)

)∣∣
Oε(gj)∩Γi

= fiµ(y)

(
y ∈ Oε(gj) ∩ Γi; i ∈ {1 ≤ i ≤ N : gj ∈ Γi}; j = 1, . . . , N ; µ = 1, . . . ,m

)
,

where fiµ = −B2
iµu.

Let y �→ y′(gj) be the change of variables described in Sec. 1.1. Denote Kε
j = Kj ∩ Oε(0) and

γε
jσ = γjσ ∩ Oε(0). Introduce the functions

Uj(y
′) = uj(y(y′)), fj(y

′) = f0(y(y′)), y′ ∈ Kε
j ,

fjσµ(y′) = fiµ(y(y′)), y′ ∈ γε
jσ,
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Figure 1.1: To problem (1.10), (1.11)

Figure 1.2: To problem (1.10), (1.11)
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where σ = 1 (σ = 2) if, under the transformation y �→ y′(gj), the curve Γi is mapped to the side γj1

(γj2) of the angle Kj. Denote y′ by y again. Then, by virtue of Condition 1.1, problem (1.8), (1.9)
acquires the form

Pj(y,Dy)Uj = fj(y) (y ∈ Kε
j ), (1.12)∑

k,s

(Bjσµks(y,Dy)Uk)(Gjσksy) = fjσµ(y) (y ∈ γε
jσ). (1.13)

Here (and below unless otherwise stated) j, k = 1, . . . , N ; σ = 1, 2; µ = 1, . . . ,m; s = 0, . . . , Sjσk;
Pj(y,Dy) and Bjσµks(y,Dy) are differential operators of order 2m and mjσµ (mjσµ ≤ m− 1), respec-
tively, with C∞ complex-valued coefficients, i.e.,

Pj(y,Dy) =
∑

|α|≤2m

pjα(y)Dα
y , Bjσµks(y,Dy) =

∑
|α|≤mjσµ

bjσµksα(y)Dα
y ;

Gjσks is the operator of rotation by an angle ωjσks and of the homothety with a coefficient χjσks

(χjσks > 0) in the y-plane. Moreover,

|(−1)σbj + ωjσks| < bk for (k, s) �= (j, 0)

(cf. Remark 1.1) and
ωjσj0 = 0, χjσj0 = 1

(i.e., Gjσj0y ≡ y).

2 The Fredholm Property of Nonlocal Problems

In this section, we prove the following result.

Theorem 2.1. Let the operator P(y,Dy) be properly elliptic on G, and let the system
{Biµ0(y,Dy)}m

µ=1 satisfy the Lopatinsky condition on the curve Γi with respect to P(y,Dy) for all
i = 1, . . . , N . Assume that Conditions 1.1 and 1.2 are fulfilled. Then the operator P has the Fred-
holm property.

Remark 2.1. One can assign a bounded operator (acting from W 2m(G) to L2(G)) to problem (1.8),
(1.9). Such an operator is studied in [22, 23]; it is proved that, unlike the case treated in the present
paper, whether or not the bounded operator has the Fredholm property depends both on spectral
properties of auxiliary nonlocal problems with a parameter and on the validity of some algebraic
relations between the operators P(y,Dy), B0

iµ, and B1
iµ at the points of the set K.

2.1 Finite Dimensionality of the Kernel

In this subsection, we prove that the kernel of the operator P is of finite dimension. To do this, we
preliminarily study the smoothness of generalized solution of problem (1.8), (1.9). We first study the
smoothness outside a neighborhood of the set K and then near K. The following lemma generalizes
part 1 of Theorem 5 in [24].

Lemma 2.1. Let Condition 1.2 hold, and let u ∈ Wm(G) be a generalized solution of problem (1.8),
(1.9) with right-hand side f0 ∈ L2(G). Then

u ∈ W 2m
(
G \ Oδ(K)

)
for any δ > 0. (2.1)
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Proof. 1) Denote by W k
loc(G) the set of distributions v on G such that ψv ∈ W k(G) for all ψ ∈ C∞

0 (G).
It follows from Theorem 3.2 in [25, Chap. 2] that

u ∈ W 2m
loc (G). (2.2)

This relation and estimate (1.7) imply that

B2
iµu ∈ W 2m−miµ−1/2(Γi \ Oκ2(K)). (2.3)

Fix an arbitrary point g ∈ Γi \ Oκ2(K). Take a number δ > 0 such that

Oδ(g) ∩ Γi ⊂ Γi \ Oκ2(K). (2.4)

Then the function u is a solution of the following “local” problem in the neighborhood Oδ(g):

P(y,Dy)u = f0(y) (y ∈ Oδ(g) ∩ G), (2.5)

Biµ0(y,Dy)u = f ′
iµ(y) (y ∈ Oδ(g) ∩ Γi; µ = 1, . . . ,m), (2.6)

where f ′
iµ(y) = −B1

iµu(y)−B2
iµu(y) for y ∈ Oδ(g)∩Γi. It follows from relations (2.2), (2.3), and (2.4)

and from the definition of the operator B1
iµ that f ′

iµ ∈ W 2m−miµ−1/2(Oδ(g) ∩ Γi).
Applying Theorem 8.2 in [25, Chap. 2]1 to problem (2.5), (2.6), we obtain

u ∈ W 2m(Oδ/2(g) ∩ G). (2.7)

By using a partition of unity, we infer from (2.2) and (2.7) that

u ∈ W 2m
(
G \ O

κ1(K)
)
. (2.8)

2) It follows from the belonging (2.8) and from inequality (1.6) that

B2
iµu ∈ W 2m−miµ−1/2(Γi). (2.9)

Taking into account (2.9), we can repeat the arguments of part 1) of this proof for arbitrary
g ∈ Γi and δ > 0 such that

Oδ(g) ∩ Γi ⊂ Γi.

As a result, we obtain the belonging (2.7) valid for an arbitrary point g ∈ Γi. Combining this fact
with relation (2.2) and using a partition of unity, we deduce (2.1).

Now we study the smoothness of solutions of problem (1.8), (1.9) in a neighborhood of the set K.
Since generalized solutions can have power-law singularities near the set K (see [13]), it is natural to
consider these solutions in weighted spaces. Let us introduce these spaces.

Assume that either Q = {y ∈ R
2 : r > 0, |ω| < b} or Q = {y ∈ R

2 : 0 < r < d, |ω| < b},
0 < b < π, d > 0, or Q = G. In the first and second cases, we set M = {0}, while in the third case
we set M = K. Introduce the space Hk

a (Q) as the completion of the set C∞
0 (Q \M) with respect to

the norm

‖w‖Hk
a (Q) =


 ∑

|α|≤k

∫
Q

ρ2(a−k+|α|)|Dα
y w|2dy




1/2

,

1It is additionally supposed in Theorem 8.2 in [25, Chap. 2] that the operators Biµ0(y,Dy) are normal on Γi, while
their orders are not equal to one another. However, it is easy to check that the theorem mentioned remains valid
without these assumptions (see [25, Chap. 2, Sec. 8.3]).
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where a ∈ R, k ≥ 0 is an integer, and ρ = ρ(y) = dist(y,M). For integer k ≥ 1, denote by H
k−1/2
a (γ)

the space of traces on a smooth curve γ ⊂ Q with the norm

‖ψ‖
H

k−1/2
a (γ)

= inf ‖w‖Hk
a (Q) (w ∈ Hk

a (Q) : w|γ = ψ). (2.10)

Let u be a generalized solution of problem (1.8), (1.9), and let Uj(y
′) = uj(y(y′)), j = 1, . . . , N , be

the functions corresponding to the set (orbit) K and satisfying problem (1.12), (1.13) with right-hand
side {fj, fjσµ} (see Sec. 1.3).

Set
d1 = min{χjσks, 1}/2, d2 = 2 max{χjσks, 1}.

Take a sufficiently small ε such that d2ε < ε1. It follows from Lemma 2.1 that

Uj ∈ W 2m(Kd2ε
j ∩ {|y| > δ}) for any δ > 0. (2.11)

Further, it follows from the belonging Uj ∈ Wm(Kd2ε
j ) and from Lemma 5.2 in [26] that

Uj ∈ Hm
a−m(Kd2ε

j ) ⊂ H0
a−2m(Kd2ε

j ), a > 2m − 1. (2.12)

Finally, fj ∈ L2(K
ε
j ) and, by virtue of Lemma 2.1 and estimate (1.6), fjσµ ∈ W 2m−mjσµ−1/2(γε

jσ).
Therefore, by Lemma 5.2 in [26],

fj ∈ H0
a(Kε

j ), fjσµ ∈ H2m−mjσµ−1/2
a (γε

jσ), a > 2m − 1. (2.13)

The following two lemmas enable us to prove that Uj ∈ H2m
a (K

ε/d3
2

j ) whenever relations (2.11)–
(2.13) hold.

Set
Kjq = Kj ∩ {εd−3

2 d4−q
1 /2 < |y| < εd−3

2 d4−q
2 }, q = 0, . . . , 4.

Lemma 2.2. Let Condition 1.1 hold. Then the estimate

∑
j

‖Uj‖W 2m(Kj4) ≤ c
∑

j

{‖Pj(y,Dy)Uj‖L2(Kj1)

+
∑
σ,µ

‖Bjσµ(y,Dy)U |γjσ∩Kj1
‖

W 2m−mjσµ−1/2(γjσ∩Kj1)
+ ‖Uj‖L2(Kj1)

}
(2.14)

holds for any U ∈ ∏
j

W 2m(Kj0), where c > 0 does not depend on U .

Proof. It follows from the general theory of elliptic problems that

‖Uj‖W 2m(Kj4) ≤ k1

(‖Pj(y,Dy)Uj‖L2(Kj3)

+
∑
σ,µ

‖Bjσµj0(y,Dy)Uj|γjσ∩Kj3
‖

W 2m−mjσµ−1/2(γjσ∩Kj3)
+ ‖Uj‖L2(Kj3)). (2.15)

Let (k, s) �= (j, 0); then the set Gjσks(γjσ)∩Kk2 lies strictly inside the domain Kk1. Therefore, using
the boundedness of the trace operator on the corresponding Sobolev spaces, we obtain (similarly
to (2.15))

‖Bjσµks(y,Dy)Uk(Gjσksy)|γjσ∩Kj3
‖

W 2m−mjσµ−1/2(γjσ∩Kj3)

≤ k2‖Bjσµks(y,Dy)Uk|Gjσks(γjσ)∩Kk2
‖

W 2m−mjσµ−1/2(Gjσks(γjσ)∩Kk2)

≤ k3(‖Pj(y,Dy)Uk‖L2(Kk1) + ‖Uk‖L2(Kk1)). (2.16)

Estimates (2.15) and (2.16) imply (2.14).
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Remark 2.2. Assume that the norm (in C0(Kj1)) of the coefficients pjα of the operators Pj(y,Dy)
and the norms (in C2m−mjσµ(Kj0)) of the coefficients bjσµksα of the operators Bjσµks(y,Dy) do not
exceed some constant C. Let the norms (in C1(Kj1)) of the coefficients pjα, |α| = 2m, at senior terms
of the operators Pj(y,Dy) not exceed the same constant C. In that case, the constant c occurring
in inequality (2.14) depends only on C, on the constant A in (1.1), and on the constant D in (1.2).

Lemma 2.3. Let Condition 1.1 hold. Assume that a function U satisfies relations (2.11) and (2.12)
and is a solution of problem (1.12), (1.13) with right-hand side {fj, fjσµ} satisfying relations (2.13).

Then U ∈ ∏
j

H2m
a (K

ε/d3
2

j ) and

∑
j

‖Uj‖
H2m

a (K
ε/d3

2
j )

≤ c
∑

j

{‖fj‖H0
a(Kε

j ) +
∑
σ,µ

‖fjσµ‖
H

2m−mjσµ−1/2
a (γε

jσ)
+ ‖Uj‖H0

a−2m(Kε
j )

}
, (2.17)

where c > 0 does not depend on U .

Proof. Set
Ks

jq = Kj ∩ {εd−3
2 d4−q

1 2−s−1 < |y| < εd−3
2 d4−q

2 2−s}, s = 0, 1, 2, . . . .

Clearly,
∞⋃

s=0

Ks
j1 = Kε

j ,

∞⋃
s=0

Ks
j4 = K

ε/d3
2

j . (2.18)

Set U s
j (y′) = Uj(2

−sy′) and make the change of variables y = 2−sy′ in the equation

Pj(y,Dy)Uj ≡
∑

|α|≤2m

pjα(y)Dα
y Uj(y) = fj(y) (y ∈ Ks

j1)

and in the nonlocal conditions

∑
k,s

∑
|α|≤mjσµ

bjσµksα(x)Dα
xUj(x)|x=Gjσksy = fjσµ(y) (y ∈ γjσ ∩ Ks

j1);

multiplying the first equation obtained by 2−s·2m and the second one by 2−s·mjσµ , we have

∑
|α|≤2m

ps
jα(y′)2s(|α|−2m)Dα

y′U s
j (y′) = 2−s·2mf s

j (y′) (y′ ∈ K0
j1), (2.19)

∑
k,s

∑
|α|≤mjσµ

bs
jσµksα(x′)2s(|α|−mjσµ)Dα

x′U s
j (x′)|x′=Gjσksy′ = 2−s·mjσµf s

jσµ(y′) (y′ ∈ γjσ ∩ K0
j1), (2.20)

where
ps

jα(y′) = pjα(2−sy′), bs
jσµksα(x′) = bjσµksα(2−sx′),

f s
j (y′) = fj(2

−sy′), f s
jσµ(y′) = fjσµ(2−sy′).

Applying Lemma 2.2 to problem (2.19), (2.20), we obtain

∑
j

‖U s
j ‖W 2m(K0

j4) ≤ k1

∑
j

{‖2−s·2mf s
j ‖L2(K0

j1)

+
∑
σ,µ

‖2−s·mjσµf s
jσµ‖W 2m−mjσµ−1/2(γjσ∩K0

j1)
+ ‖U s

j ‖L2(K0
j1)

}
, (2.21)

where k1 > 0 does not depend on s due to Remark 2.2.
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Consider a function Φjσµ ∈ H
2m−mjσµ
a (Kj) satisfying the following conditions: Φjσµ|γε

jσ
= fjσµ

and
‖Φjσµ‖H

2m−mjσµ
a (Kε

j )
≤ 2‖fjσµ‖

H
2m−mjσµ−1/2
a (γε

jσ)
(2.22)

(the existence of such a function follows from (2.10)). Then Φs
jσµ|γjσ∩K0

j1
= f s

jσµ, where Φs
jσµ(y′) =

Φjσµ(2−sy′). Therefore, relations (2.21) and (1.3) imply
∑

j

‖U s
j ‖W 2m(K0

j4) ≤ k1

∑
j

{‖2−s·2mf s
j ‖L2(K0

j1) +
∑
σ,µ

‖2−s·mjσµΦs
jσµ‖W 2m−mjσµ(K0

j1) + ‖U s
j ‖L2(K0

j1)

}
.

(2.23)
Making the inverse change of variables y′ = 2sy in inequality (2.23), we obtain

∑
j

∑
|α|≤2m

‖2−s|α|Dα
y Uj‖L2(Ks

j4) ≤ k1

∑
j

{‖2−s·2mfj‖L2(Ks
j1)

+
∑
σ,µ

∑
|α|≤2m−mjσµ

‖2−s(|α|+mjσµ)Φjσµ‖L2(Ks
j1) + ‖Uj‖L2(Ks

j1)

}
. (2.24)

Multiplying inequality (2.24) by 2−s(a−2m), summing with respect to s, and taking into account (2.22)
and (2.18), we deduce (2.17).

Combining Lemma 2.3 with Lemma 2.1 yields u ∈ H2m
a (G), a > 2m − 1, where u is an arbitrary

generalized solution of problem (1.8), (1.9) with the right-hand side f0 ∈ L2(G).
It follows from Lemma 2.1 in [16] and from Theorem 3.2 in [17] that the set of solutions from

H2m
a (G) of problem (1.8), (1.9) with right-hand side f0 = 0 is of finite dimension for almost all

a > 2m − 1. Thus, we have proved the following result.

Lemma 2.4. Let Conditions 1.1 and 1.2 hold. Then the kernel of the operator P is of finite dimen-
sion.

2.2 Closedness of the Operator and its Image. Finite Dimensionality of
the Cokernel

To prove that the operator P has the Fredholm property, we need to consider problem (1.8), (1.9)
on weighted spaces with weight a such that 0 < a ≤ m. Now the difficulty is that the belonging

u ∈ H2m
a (G) does not imply that B2

iµu ∈ H
2m−miµ−1/2
a (Γi); therefore, the sum

Biµu = B0
iµu + B1

iµu + B2
iµu

does not necessarily belong to H
2m−miµ−1/2
a (Γi). One can only guarantee that Biµu ∈

H
2m−miµ−1/2
a′ (Γi), where a′ > 2m − 1 (which follows from the fact that Biµu ∈ W 2m−miµ−1/2(Γi)

and from Lemma 5.2 in [26]). However, it is proved in [23, Sec. 6] that

{P(y,Dy)u, Biµu} ∈ H0
a(G, Γ) � R0

a(G, Γ) for all u ∈ H2m
a (G), a > 0,

where H0
a(G, Γ) = H0

a(G) × ∏
i,µ

H
2m−miµ−1/2
a (Γi) and R0

a(G, Γ) is some finite-dimensional space nat-

urally embedded in {0} × ∏
i,µ

H
2m−miµ−1/2
a′ (Γi) for any a′ > 2m − 1. In particular, this means that

the space R0
a(G, Γ) contains only functions of the form {0, fiµ}, where fiµ ∈ H

2m−miµ−1/2
a′ (Γi) and

fiµ /∈ H
2m−miµ−1/2
a (Γi). Fix some a′ > 2m − 1. Then any function

{f0, fiµ} ∈ H0
a(G, Γ) � R0

a(G, Γ)
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can be represented as follows:
{f0, fiµ} = {f0, f

1
iµ} + {0, f 2

iµ},
where {f0, f

1
iµ} ∈ H0

a(G, Γ) and {0, f 2
iµ} ∈ R0

a(G, Γ), and its norm is given by

‖{f0, fiµ}‖H0
a(G,Γ)�R0

a(G,Γ) =
(
‖{f0, f

1
iµ}‖2

H0
a(G,Γ) +

∑
i,µ

‖f 2
iµ‖2

H
2m−miµ−1/2

a′ (Γi)

)1/2

.

Furthermore, it follows from Theorem 6.1 in [23] that the operator

La = {P(y,Dy), Biµ} : H2m
a (G) → H0

a(G, Γ) � R0
a(G, Γ), a > 0,

has the Fredholm property for almost all a > 0. In other words, if u ∈ H2m
a (G), then Lau “belongs”

to the space H0
a(G, Γ) up to a function of the form {0, fiµ} from the finite-dimensional space R0

a(G, Γ).
Using the Fredholm property of the operator La, we prove the following result.

Lemma 2.5. Let Conditions 1.1 and 1.2 hold. Then the operator P is closed, its image R(P) is
closed, and codimR(P) < ∞.

Proof. 1) Let 0 < a ≤ m. We consider the auxiliary unbounded operator

Pa : Dom (Pa) ⊂ L2(G) → L2(G)

given by

Pau = P(y,Dy)u, u ∈ Dom (Pa) = {u ∈ H2m
a (G) : Biµu = 0, P(y,Dy)u ∈ L2(G)}.

Fix a number a, 0 < a ≤ m, such that the operator La has the Fredholm property. Let us show that
the operator Pa also has the Fredholm property.

Since La has the Fredholm property, it follows from the compactness of the embedding H2m
a (G) ⊂

H0
a(G) (see Lemma 3.5 in [15]) and from Theorem 7.1 in [27] that

‖u‖H2m
a (G) ≤ k1(‖Lau‖H0

a(G,Γ)�R0
a(G,Γ) + ‖u‖H0

a(G)) (2.25)

for all u ∈ H2m
a (G).

Now we take a function u ∈ Dom (Pa). Then Lau = {P(y,Dy)u, 0}, P(y,Dy)u ∈ L2(G) ⊂ H0
a(G),

and hence
‖Lau‖H0

a(G,Γ)�R0
a(G,Γ) = ‖P(y,Dy)u‖H0

a(G).

Combining this relation with (2.25) and taking into account the boundedness of the embedding
L2(G) ⊂ H0

a(G) for a > 0, we obtain

‖u‖H2m
a (G) ≤ k2(‖P(y,Dy)u‖H0

a(G) + ‖u‖H0
a(G)) ≤ k3(‖P(y,Dy)u‖L2(G) + ‖u‖L2(G)), (2.26)

where u ∈ Dom (Pa). It follows from inequality (2.26) that the operator Pa is closed. Therefore,
using (2.26) and applying Lemma 7.1 in [27] again, we obtain that dim kerPa < ∞ (clearly, kerPa =
kerLa) and the image R(Pa) is closed.

Consider an arbitrary function f0 ∈ L2(G). Clearly, f0 ∈ H0
a(G). By Corollary 6.1 in [23], there

exist functionals F1, . . . , Fq0 from the adjoint space H0
a(G, Γ)∗ such that problem (1.8), (1.9) admits

a solution u ∈ H2m
a (G) whenever

〈{f0, 0}, Fq〉 = 0, q = 1, . . . , q0.

Since
|〈{f0, 0}, Fq〉| ≤ k4‖f0‖H0

a(G) ≤ k5‖f0‖L2(G),
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it follows from Riesz’ theorem on the general form of a continuous linear functional on a Hilbert
space that there exist functions f1, . . . , fq0 ∈ L2(G) such that

〈{f0, 0}, Fq〉 = (f0, fq)L2(G), q = 1, . . . , q0.

Therefore, codimR(Pa) ≤ q0.
Thus, we have proved that the operator Pa has the Fredholm property.
2) Since H2m

a (G) ⊂ Hm
a−m(G) ⊂ Wm(G) for a ≤ m, it follows that

Pa ⊂ P. (2.27)

In particular, relation (2.27) implies that the image R(P) is closed and

codimR(P) ≤ codimR(Pa) ≤ q0.

It remains to prove that the operator P is closed.2 Denote by h1, . . . , hk some basis of the space

R(Pa)
⊥ = R(P) �R(Pa).

Then there exist functions v1, . . . , vk ∈ Dom (P) such that Pvj = hj, j = 1, . . . , k. Since hj /∈ R(Pa),
it follows that vj /∈ Dom (Pa). It is also clear that the functions v1, . . . , vk are linearly independent
because the functions h1, . . . , hk have this property.

Consider the finite-dimensional space

N = span(v1, . . . , vk, kerP) � kerPa.

It is easy to see that N ∩ DomPa = {0}. Indeed, if u ∈ N ∩ DomPa, then

u =
k∑

i=1

αivi + v,

where αi are some constants and v ∈ kerP. Therefore, taking into account (2.27), we have

k∑
i=1

αihi = Pu = Pau ∈ R(Pa).

Hence, αi = 0, i = 1, . . . , k, which implies that u = v. Using (2.27) again, we see that u = v ∈ kerPa.
Combining this fact with the definition of the space N yields u = 0.

Let GrP (GrPa) denote the graph of the operator P (Pa). As is known, the operator P (Pa) is
closed if and only if its graph GrP (GrPa) is closed in L2(G) × L2(G).

Note that GrPa is closed (as the graph of the closed operator) and GrPa ⊂ GrP, while the
spaces N and R(Pa)

⊥ are of finite dimension. Therefore, to prove that the operator P is closed, it
suffices to show that

GrP ⊂ GrPa � (N ×R(Pa)
⊥). (2.28)

Clearly, the sum in (2.28) is direct. Indeed, if

(u, f) ∈ GrPa ∩ (N ×R(Pa)
⊥),

then u ∈ DomPa ∩N = {0}, and hence (u, f) = (u,Pau) = (0, 0).

2Note that the closedness of the image of some operator P on a Hilbert space and the finite dimensionality of its
kernel and cokernel do not imply the closedness of P itself; this can be shown by using arguments close to that in [28,
Chap. 2, Sec. 18]. However, if we additionally suppose that the operator P is an extension of a Fredholm operator,
then we prove that P is closed.
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Further, let (u, f) ∈ GrP, i.e., u ∈ DomP and f = Pu. We represent the function f as follows:

f = f1 + f2,

where f1 ∈ R(Pa) and f2 ∈ R(Pa)
⊥. Take an element u1 ∈ Dom (Pa) such that Pau1 = f1. Then

u2 = u − u1 ∈ Dom (P) and Pu2 = f2. Without loss of generality, one can assume that

u2 ⊥ kerPa; (2.29)

if this relation fails, one must take the projection u2a of the element u2 to kerPa and replace u1 by
u1 + u2a and u2 by u2 − u2a. Clearly, (u1, f1) ∈ GrPa and, due to (2.29), (u2, f2) ∈ N ×R(Pa)

⊥.
Thus, we have proved relation (2.28), and the lemma is true.

Lemmas 2.4 and 2.5 imply Theorem 2.1.

Remark 2.3. Using results in [29], one can prove that Theorem 2.1 remains valid if the transforma-
tions Ωis are nonlinear near the points of the set K, while the linear parts of Ωis satisfy Condition 1.1
at the points of K.

The author is grateful to Professor A. L. Skubachevskii for attention to this work.
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