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Abstract

An elliptic equation of order 2m with general nonlocal boundary-value conditions, in a
plane bounded domain G with piecewise smooth boundary, is considered. Generalized solutions
belonging to the Sobolev space W3 (G) are studied. The Fredholm property of the unbounded
operator corresponding to the elliptic equation, acting on Lo(G), and defined for functions from
the space W3"(G) that satisfy homogeneous nonlocal conditions is proved.

Introduction

In the one-dimensional case, nonlocal problems were studied by A. Sommerfeld [1], J. D. Tamarkin [2],
M. Picone [3]. T. Carleman [4] considered the problem of finding a function harmonic on a two-
dimensional bounded domain and subjected to a nonlocal condition connecting the values of this
function at different points of the boundary. A. V. Bitsadze and A. A. Smarskii [5] suggested
another setting of a nonlocal problem arising in plasma theory: to find a function harmonic on a
two-dimensional bounded domain and satisfying nonlocal conditions on shifts of the boundary that
can take points of the boundary inside the domain. Different generalizations of the above nonlocal
problems were investigated by many authors [6, 7, 8, 9, 10, 11, 12].

It turns out that the most difficult situation occurs if the support of nonlocal terms intersects
the boundary. In that case, solutions of nonlocal problems can have power-law singularities near
some points even if the boundary and the right-hand sides are infinitely smooth [13, 14]. For this
reason, such problems are naturally studied in weighted spaces (introduced by V. A. Kondrat’ev
for boundary-value problems in nonsmooth domains [15]). The most complete theory of nonlocal
problems in weighted spaces is developed by A. L. Skubachevskii [13, 16, 17, 18, 19].

Note that the investigation of nonlocal problems is motivated both by significant theoretical
progress in that direction and important applications arising in biophysics, theory of diffusion pro-
cesses [20], plasma theory [21], and so on.

In the present paper, we study generalized solutions of an elliptic equation of order 2m in a two-
dimensional bounded domain G, satisfying nonlocal boundary-value conditions that are set on parts
I'; of the boundary 0G = |J ; T';. By generalized solutions, we mean functions from the Sobolev space
W™(G) = W3*(G). We prove that an unbounded operator acting on Lo(G) and corresponding to
the above nonlocal problem has the Fredholm property.

Note that solutions of nonlocal problems can be sought on the space of “smooth” functions,
namely, on the Sobolev space W?™(G) (see [22, 23]) or on weighted spaces H>"(G), where
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k > 0 is an integer, a € R, p = p(y) = dist(y, K), and K = U]F_] \ ['; is the set formed by finitely
many points of conjugation of nonlocal conditions (see [13, 17]). In both cases, a bounded operator
corresponds to the nonlocal problem. Whether or not this operator has the Fredholm property
depends on spectral properties of some auxiliary problems with a parameter. In turn, these spectral
properties are affected by the values of the coefficients in nonlocal conditions and by a geometrical
structure of the support of nonlocal terms and the boundary near the set K. However, if we consider
generalized solutions (i.e., functions from W™(G)), then the corresponding unbounded operator turns
out to have the Fredholm property irrespective of the above factors.

Earlier the Fredholm property of an unbounded nonlocal operator on Ly(G) was studied either
for the case in which nonlocal conditions were set on shifts of the boundary [19] or in the case of a
nonlocal perturbation of the Dirichlet problem for a second-order elliptic equation [11, 12]. Elliptic
equations of order 2m with general nonlocal conditions are investigated for the first time.

1 Setting of Nonlocal Problems in Bounded Domains

1.1 Setting of Problem
Let G C R? be a bounded domain with boundary 0G. Consider a set K C 0G consisting of finitely
many points. Let G\ K = U [';, where I'; are open (in the topology of 0G) C*°-curves. We assume

that, in a neighborhood of each point g € K, the domain G is a plane angle.

Denote by P(y,D,) = P(y, D,,, D,,) and B;,s(y, D,) = B;.s(y, Dy,, D,,) differential operators
of order 2m and m,, (m;, < m — 1), respectively, with complex-valued C'* coefficients, and let
P°(y, D,) and B}, (y, D,) denote their principal homogeneous parts (i = 1,...,N; p = 1,...,m;
5=0,...,5;). Here D, = (Dy,, Dy,), D,, = —id/0y;.

Now we formulate Condltlons on the operators P(y, D,) and B;,o(y, D,) (these operators will
correspond to a “local” elliptic problem). We assume that the operator P(y, D,) is properly elliptic

on G; in particular, the following estimate holds for all # € R? and y € G-
ATHOP™ < [Py, 0)] < Al9)*™, A >0. (1.1)

Further, let y € T;. One may assume with no loss of generality that the curve I'; is defined by
the equation y, = 0 near the point y. We suppose that the system {Bi.o(y, D,)}/=, satisfies the
Lopatinsky condition with respect to the operator P(y, D,) for alli=1,...,N. In other words, let
the polynomial

WO Z bz,uzz T t= B?p,()(yu ]-) 7—) (IHOd M+(y7 T))

be the residue of dividing B ,(y, 1, 7) by M*(y, 7), where

M*(y.7) = [[(r =77 ().
v=1
while 71" (y), ..., 7.5 (y) are the roots of the polynomial P%(y, 1, 7) with positive imaginary parts (note
that P°(y,1,7), Bi,o(y,1,7), and M*(y, ) are considered as polynomials in 7). In this case, the

validity of the Lopatinsky condition means that

di(y) = det [[biw (Y)15=1 # 0.

Since each of the curves I';, i =1,..., N, is a compact, it follows that
D= min_ inf |d;(y)| > 0. (1.2)
i=L...N yeT;
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We emphasize that the operators B;,o(y, D,) are not necessarily normal on T;.
For an integer k > 0, denote by W*(G) = WX(G) the Sobolev space with the norm

1/2

lulwee = | Y [ [Duf*dy
lo| <k ¢

(we set WO(G) = Ly(G) for k = 0). For an integer k > 1, we introduce the space W*~1/2(I") of traces
on a smooth curve I' C G with the norm

”¢||Wk—1/2(r) = inf ||UHW’“(G) (u € Wk(G) tulp = 1). (1.3)

Denote B, u = Biuo(y, Dy)u(y)lr,. As we have mentioned above, the operators P(y, D,) and B,
will correspond to a “local” boundary-value problem.

Now we define operators corresponding to nonlocal conditions near the set K. Let Q; (i =
1,...,N;s=1,...,5;) be C*-diffeomorphisms taking some neighborhood O; of the curve I'; N O.(K)
onto the set ,(0;) in such a way that

QTN O0(K)) C G,

Qis(g) ek for gel;NK. (1.4)

Here € > 0, O.(K) = {y € R? : dist(y, K) < €} is the e-neighborhood of the set K. Thus, under the
transformations €, the curves I'; N O, (K) are mapped strictly inside the domain G, whereas the set
of end points I'; N KC is mapped to itself.

Let us specify the structure of the transformations €2, near the set . Denote by the symbol ;!
the transformation Q;, : O; — Q;5(0;) and by Q' the transformation Q. : Q;,(O;) — O; inverse to
Q;s. The set of all points

QL (L.OEL (g) ek (1<s;<8;,j=1,...,q9),

iqSq 1181

i.e., the set of all points that can be obtained by consecutively applying the transformations Q;;i]

or Q;ij (taking the points of I to K) to the point g € K is called an orbit of g and is denoted by
Orb(g).

Clearly, for any g¢,¢’ € K either Orb(g) = Orb(g’) or Orb(g) N Orb(¢’) = @. In what follows,
we suppose that the set IC consists of a unique orbit. (All results can be directly generalized for the
case in which K consists of finitely many mutually disjoint orbits.) The set (orbit) K consists of N
points, which we denote by g¢;, j =1,...,N.

Take a small number ¢ (see Remark 1.3 below) such that there exist neighborhoods O, (g;) of
the points g; € K satisfying the following conditions:

1. O.,(g;) D O(g5);

2. in the neighborhood O, (g;), the boundary 0G is a plane angle;

3. O, (95) N Oc (gr) = @ for any gj, g € K, k # j;
4. if g; € T; and Q;5(g;) = g, then O.(g;) C O; and Qis(Og(gj)) C O (gr)-

For each point g; € T;NK, we fix a transformation y — ¢'(g;) of the argument; this transformation

is the composition of the shift by the vector —Og; and a rotation by some angle such that the set
O, (g;) is mapped onto the neighborhood O, (0) of the origin, while the sets

GNO.,(9;) and T[;NO,(g))



are mapped onto the intersection of a plane angle
Ki={yeR*: r>0, |w <w}
with the neighborhood O, (0) and the intersection of the side
Yo ={y €R?*: w=(-1)"w;}
(0 =1 or 0 = 2) of the angle K; with the neighborhood O, (0), respectively. Here (w,r) are the
polar coordinates of the point y and 0 < w; < .

Condition 1.1. The above change of variables y — y'(g;) for y € O:(g;), g; € Ti N K, reduces the
transformation Q;s(y) (i=1,...,N, s =1,...,5;) to the composition of a rotation and a homothety
in the new variables y'.

Remark 1.1. In particular, Condition 1.1 combined with the assumption Q;5(I";) C G means that,
if g € Qis(I;NK)NT,; N K # @, then the curves ;(I';) and I'; are not tangent to each other at the
point g.

Consider a number gy, 0 < gy < ¢, satisfying the following condition: if g; € T; and Qs(g;) = gx,
then O, (gr) C Qis(O:(g;)). Introduce a function ¢ € C*(R?) such that

C(y) =1 for ye O, (K), supp ¢ C O, (K). (1.5)

Now we define nonlocal operators leu by the formula

Si
B%Hu = Z (Bms(y, Dy)((’u)) (le(y)) for yelNO(K),

s=1
1
Bj,u=0 for yeli\(IiN0OA(K)),
where (Bius(y, Dy)u) (Qis(y)) = Bips(@, Dy)u(x)]s=q,, (- Since B}, u = 0 whenever suppu C G\
0., (K), we say that the operators B}u correspond to mnonlocal terms supported near the set K.

For any p > 0, we denote G, = {y € G : dist(y, dG) > p}. Consider operators B}, satisfying the
following condition (cf. [13, 18, 22]).

Condition 1.2. There exist numbers »x; > 5 > 0 and p > 0 such that the inequalities
HBZZNUHW%"*WW*U?(H) < Cl”uHWQm(G\m)’ (16)

||B12,LLU’||Wzm_mi#_l/Q(Fi\m) < CQ||UHW2m(Gp) (]_7)
hold for any

u € W2 (G \ O, (K)) N W™ (Gy),
wherei=1,..., N, u=1,...,m, and cy,cy > 0.

It follows from (1.6) that B},u = 0 whenever suppu C O, (K). For this reason, we say that the
operators B?u correspond to monlocal terms supported outside the set K.

We will suppose throughout that Conditions 1.1 and 1.2 hold.
We study the following nonlocal elliptic problem:

BWUEB?#U—FB}HU—FB?#u:O (yelyi=1,...,N; u=1,...,m), (1.9)

where fy € Lo(G). Introduce the space WJ(G) consisting of functions u € W™(G) that satisfy
homogeneous nonlocal conditions (1.9): B;,u = 0.
Consider the unbounded operator P : Dom (P) C Ly(G) — Lo(G) given by

Pu=P(y, Dy)u, u € Dom (P) = {u € Wg'(G) : P(y,D,)u € Lo(G)}.



Definition 1.1. A function u is called a generalized solution of problem (1.8), (1.9) with right-hand
side fy € Lo(G) if w € Dom (P) and Pu = fj.

One can give another (equivalent) definition for a generalized solution. To do so, we write the
operator P(y, D,) in the divergent form,

P(y,D,)= >  D’pe(y)DS,

0<¢],181<m

where pgg are infinitely differentiable functions.
For any set X € R? having a nonempty interior, denote by C§°(X) the set of functions infinitely
differentiable on X and compactly supported on X.

Definition 1.2. A function u is called a generalized solution of problem (1.8), (1.9) with right-hand
side fo € Lo(G) if u € WE(G) and the integral identity

> pes(y) D*uDPvdy = | fovdy
/ /

0<lel, IBI<m &
holds for any v € C3°(G).

Remark 1.2. Generalized solutions a priori belong to the space W™(G), whereas Condition 1.2 is
formulated for functions belonging to the space W?2™ inside the domain and near the smooth part of
the boundary. Such a formulation can be justified by the fact that any generalized solution belongs
to W?™ outside an arbitrarily small neighborhood of the set K (see Lemma 2.1 below).

Remark 1.3. We have supposed above that the number ¢ is small (whereas ¢, 55, p can be arbi-
trary). Let us show that this leads to no loss of generality. Let us have a number £, 0 < € < e.
Take a number &y, 0 < &, < £, satisfying the following condition: if g; € T; and Q,(g;) = gx, then
O, (91) C Qis(O:(g;)). Consider a function ¢ € C*(R?) such that ((y) = 1 for y € O¢,/2(K) and

supp ¢ C O, (K). Introduce the operators B;, as follows:

Si
le,uu = Z (BWS(?J’ Dy)(CU)) (st(y)) for yel;n Og(lC),
s=1
1
B,u=0 for yel;\([Iin0OA(K)).
Clearly,
0 1 2 _Ro Rl | R2
Bi,u + Bi,u + Biu - Bi,u + Biu + Bi;u
where Efu = B, — B}, + B2,. Since BL,u — BL,u = 0 near the set K, it follows that the operator
Bz-lu — ]AB}# satisfies Condition 1.2 for some suitable s, 59, p (see [22, § 1] for more details). Thus,
we can always choose ¢ to be as small as necessary (possibly at the expense of a modification of the
operator B?u and the values of s, 759, p).

1.2 Example of Nonlocal Problem
One can consider the following example as a model one.

Example 1.1. Let P(y, D,) and B;,s(y, D,) be the same operators as above. Let ;s (i =1,...,N;
s=1,...,5;) be C*-diffeomorphisms taking some neighborhood O; of the (whole) curve I'; to the
set ;5(0;) in such a way that Q,(I";) C G. Consider the following nonlocal problem:

P(y,Dyu= foly) (y<€G), (1.10)
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Biys(y, Dy)u) (s () |, =0 (1.11)

(yEFZ», =1,....,N; u=1,...,m).

BzuO(y7

We emphasize that a priori the transformations ;s are not supposed to satisfy condition (1.4);

however, we further represent the nonlocal operators as the sum of the operators BW lew and B?W

and the transformations occurring in the definition of the operators Bw will satisfy condition (1.4).

To obtain this representation, we take a small £ such that, for any point g € K, the set m

intersects the curve Q,(T;) only if g € Q;,(T;). If g € T; N K and Q4,(g) € K, then we assume that
)

the transformation €2;4(y) satisfies Condition 1.1 for y € O.(g).

Remark 1.4. By Remark 1.1, Condition 1.1 is a restriction on the geometrical structure of the
support of nonlocal terms near the set K. However, if Q;(I'; N K) C 9G \ K, then we impose no
restrictions on the geometrical structure of the curve €;4(I';) near the boundary 0G (cf. [13, 17]).

Let ¢ € C*°(R?) be a function satisfying relations (1.5). Introduce the operators

B?uu = Bi,uO(yv Dy)'LL(y)

BLu =" (Bus(y Dy) () (%))
B2u =3 (Bus(y. D,)((1 — Ou)) (@),

(see figures 1.1 and 1.2). Since the support of the function ( is concentrated near the set I, one may
assume that the transformations §2;; occurring in the definition of the operator B}M are defined on
some neighborhood of the set IC and satisfy condition (1.4). Moreover, it follows from [22, Sec. 1.2]
that the operator B?, satisfies Condition 1.2. Therefore, problem (1.10), (1.11) can be represented
in the form (1.8), (1.9).

1.3 Nonlocal Problems near the Set

When studying problem (1.8), (1.9), one must pay special attention to the behavior of solutions near
the set IC of conjugation points. Now we consider the corresponding model problems.

Denote by u;(y) the function u(y) for y € O, (g;). If g; € i, y € O.(g;), and Qus(y) € O, (gr)
then we denote the function u(€2;5(y)) by ug(€s(y)). In this notation, nonlocal problem (1.8), (1.9)
acquires the following form in the e-neighborhood of the set (orbit) K:

P(y, Dy)u; = foly) (v € O:(g;) NG),

Biuo(y, Dy)u;(y)lo.(g)nr; + Z ins (Y, D Cuk)) (st(y))

(y € O.(g;) NTy; ze{lgng:ngFi}; j=1,...,N; p=1,...,m),

Oc(g5)NTy fzu ( )

where f;, = =B} u.
Let y +— y'(g;) be the change of variables described in Sec. 1.1. Denote K5 = K; N O,(0) and
V5o = Vio N O:(0). Introduce the functions

Ui(y) =ww¥)),  fiy) =), v €K,
fion) = fiuw(@W)), ¥ €75,
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Figure 1.1: To problem (1.10), (1.11)
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Figure 1.2: To problem (1.10), (1.11)



where 0 = 1 (0 = 2) if, under the transformation y — ¥/(g;), the curve I'; is mapped to the side v
(7;2) of the angle K;. Denote y' by y again. Then, by virtue of Condition 1.1, problem (1.8), (1.9)
acquires the form

P;(y, Dy)U; = fi(y) (y € Kj), (1.12)
> " Bious® Dy)U) Giorsy) = fiony) (v € 75)- (1.13)

k,s

Here (and below unless otherwise stated) j,k =1,...,N; o = 1,2, p=1,...,m; s = 0,..., Sjox;
P,(y, D,) and Bj,.ks(y, Dy) are differential operators of order 2m and mj,, (m;,, < m — 1), respec-
tively, with C*° complex-valued coefficients, i.e.,

Pj(yv Dy) = Z pja(y)D;ja Bjauks(y7Dy) - Z bjauksa(?/)Dg;

|a[<2m lo|<mjop

Giors is the operator of rotation by an angle wj,;s and of the homothety with a coefficient x;ois
(Xjoks > 0) in the y-plane. Moreover,

’(_1)Ubj + wjoks’ < bk’ fOI' (k"a 8) 7£ (]70)

(cf. Remark 1.1) and
Wjgjo = 0, Xjojo =1

(i.e., gjgjoy = y)

2 The Fredholm Property of Nonlocal Problems

In this section, we prove the following result.

Theorem 2.1. Let the operator P(y,D,) be properly elliptic on G, and let the system
{Bio(y, Dy) =y satisfy the Lopatinsky condition on the curve I'; with respect to P(y,D,) for all
t=1,...,N. Assume that Conditions 1.1 and 1.2 are fulfilled. Then the operator P has the Fred-

holm property.

Remark 2.1. One can assign a bounded operator (acting from W?™(G) to Ly(G)) to problem (1.8),
(1.9). Such an operator is studied in [22, 23]; it is proved that, unlike the case treated in the present
paper, whether or not the bounded operator has the Fredholm property depends both on spectral
properties of auxiliary nonlocal problems with a parameter and on the validity of some algebraic
relations between the operators P(y, D,), B?u’ and B}M at the points of the set K.

2.1 Finite Dimensionality of the Kernel

In this subsection, we prove that the kernel of the operator P is of finite dimension. To do this, we
preliminarily study the smoothness of generalized solution of problem (1.8), (1.9). We first study the
smoothness outside a neighborhood of the set £ and then near K. The following lemma generalizes
part 1 of Theorem 5 in [24].

Lemma 2.1. Let Condition 1.2 hold, and let uw € W™ (G) be a generalized solution of problem (1.8),
(1.9) with right-hand side fy € La(G). Then

ue WG\ 05(K)) forany 0 >0. (2.1)



Proof. 1) Denote by W _(G) the set of distributions v on G such that v € W*(G) for all v € C5°(G).
It follows from Theorem 3.2 in [25, Chap. 2] that

u € W2 (@). (2.2)

loc

This relation and estimate (1.7) imply that

B} u € Wrm-min=1l/2(p\ O, (K)). (2.3)

Fix an arbitrary point g € I'; \ O,,,(K). Take a number § > 0 such that

Then the function wu is a solution of the following “local” problem in the neighborhood Os(g):

P(y,Dy)u = fo(y) (v € Os(9) NG), (2.5)
Biwo(y, Dy)u= fi,(y) (y€Os(g) Ty p=1,...,m),

where f],(y) = =B, u(y) —B;,u(y) for y € Os(g)NT;. It follows from relations (2.2), (2.3), and (2.4)
and from the definition of the operator B}, that f, € W™= mu=1/2(O5(g) N T;).
Applying Theorem 8.2 in [25, Chap. 2]' to problem (2.5), (2.6), we obtain

u € W™ (Os/9(9) N G). (2.7)
By using a partition of unity, we infer from (2.2) and (2.7) that

ue W™ (G\ 0,,(K)). (2.8)
2) It follows from the belonging (2.8) and from inequality (1.6) that

B} u € W mu—l2(1). (2.9)

Taking into account (2.9), we can repeat the arguments of part 1) of this proof for arbitrary
g € I'; and 6 > 0 such that
Og(g) N Fi C Fi.

As a result, we obtain the belonging (2.7) valid for an arbitrary point g € I';. Combining this fact
with relation (2.2) and using a partition of unity, we deduce (2.1). O

Now we study the smoothness of solutions of problem (1.8), (1.9) in a neighborhood of the set K.
Since generalized solutions can have power-law singularities near the set IC (see [13]), it is natural to
consider these solutions in weighted spaces. Let us introduce these spaces.

Assume that either @ = {y € R*: r >0, [w|<blor Q@ ={yeR*: 0<r <d |w <b}
0<b<md>0,or@Q=G. In the first and second cases, we set M = {0}, while in the third case
we set M = K. Introduce the space H¥(Q) as the completion of the set C5°(Q \ M) with respect to
the norm

1/2
lwl| x gy = Z pPle el Do P dy ,
la[<k

Tt is additionally supposed in Theorem 8.2 in [25, Chap. 2] that the operators B;,o(y, Dy) are normal on I';, while
their orders are not equal to one another. However, it is easy to check that the theorem mentioned remains valid
without these assumptions (see [25, Chap. 2, Sec. 8.3]).



where a € R, k > 0 is an integer, and p = p(y) = dist(y, M). For integer k > 1, denote by Hi™ 1/2(7)
the space of traces on a smooth curve v C @ with the norm

[l sy = inf fwllig)  (w € HE(Q) : wly = ). (2.10)

Let u be a generalized solution of problem (1.8), (1.9), and let U;(y') = u;(y(v')), j =1,..., N, be
the functions corresponding to the set (orbit) K and satisfying problem (1.12), (1.13) with right-hand

side {f;, fion} (see Sec. 1.3).
Set

dy = min{Xjoks, 1 }/2, dy = 2max{ X oks, 1 }.
Take a sufficiently small € such that dse < 1. It follows from Lemma 2.1 that

U; € V(/'Qm(.f(;-l25 N{|y| > d}) for any 9> 0. (2.11)
Further, it follows from the belonging U; € Wm(K]‘bg) and from Lemma 5.2 in [26] that
Uj € H, (KP*) C H)_,, (K®%), a>2m—1. (2.12)

Finally, f; € Ly(K5) and, by virtue of Lemma 2.1 and estimate (1.6), fjo, € W2 mion=12(45 ).
Therefore, by Lemma 5.2 in [26],

f; € HAKS),  fion € HZ" ™o 2(y5)),  a>2m — 1. (2.13)

The following two lemmas enable us to prove that U; € H, jm(Kj/ dg) whenever relations (2.11)—
(2.13) hold.

Set
K= K;N{edy®d /2 < |y| < edy®dy ),  ¢=0,....4.

Lemma 2.2. Let Condition 1.1 hold. Then the estimate
Z 1Ujllwr2m 10y < CZ{HP Y, Dy)Ujl| L x,0)
£ S By D)L i om0, iy + Wl ) (219)
holds for any U € [] W?2"(Kjo), where ¢ > 0 does not depend on U.
j

Proof. 1t follows from the general theory of elliptic problems that

10 llwan ey < Ea (1B DU
# N8l DO by rhen iy + Wilhaso)- (219

Let (k,s) # (4,0); then the set Giors(Vjo) N Kyo lies strictly inside the domain Kj;. Therefore, using
the boundedness of the trace operator on the corresponding Sobolev spaces, we obtain (similarly
0 (2.15))

1 Bjouks (Y, Dy)Uk(Gjoks)s, 055 lwem—mion-1r2(, i)

S k2||Bjo'p,ks<y7D ) |g30k5(’yﬂa)ka2||W2m i —1/2 (gjaks('-y]o’)kaZ)
< k3(||Pj(ya y)UkHLQ (Kk1) + HUk||L2(Kk1))' (2'16)

Estimates (2.15) and (2.16) imply (2.14). O
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Remark 2.2. Assume that the norm (in C°(Kj;1)) of the coefficients pj, of the operators P;(y, D,)
and the norms (in C?™~™iox(K,4)) of the coefﬁments bjouksa Of the operators Bjguks(y, D ) do not
exceed some constant C'. Let the norms (in C(K;1)) of the coefficients pjq,, |a| = 2m, at senior terms
of the operators P;(y, D,) not exceed the same constant C'. In that case, the constant ¢ occurring
in inequality (2.14) depends only on C, on the constant A in (1.1), and on the constant D in (1.2).

Lemma 2.3. Let Condition 1.1 hold. Assume that a function U satisfies relations (2.11) and (2.12)
and is a solution of problem (1.12), (1.13) with right-hand side { f;, fiou} satisfying relations (2.13).

Then U € HHQm( a/d) and

j

S O g vty < 32 (sl + Do Wil + Willmgp)} (2:17)
J J o,

where ¢ > 0 does not depend on U.

Proof. Set
Kj, = Ky {edy®dy 277" < [y| < edy®dy™27°), s=0,1,2,....

Clearly, . N
s 3 s € d%
Uk =r5  |JKu=K'" (2.18)
s=0 s=0

Set U (y') = U;(27°y’) and make the change of variables y = 27y in the equation

P;(y Z Pjaly Da (v)=fily) (ye stl)

|a|<2m

and in the nonlocal conditions

Z Z bjouksa(x) Dy Uj(x )|x=gjgksy = fiou(y) (v € %’crmK_;l)S

ks |a|l<mjgp

s-2m

multiplying the first equation obtained by 2~ and the second one by 27°™ie» we have

Z P 23(\a| 2m)Da US( "N = Q*S'me;(y') (v € K]Q1)> (2.19)

|a|<2m

SN (@) 220 DU gy = 27 () (Y € e N KD, (2:20)

ks |a|<mjou
where
Pia¥) =10ja7Y),  ioursa(®@) = bjoursa(27°2),
W) =£27%), on W) = fion(27%).
Applying Lemma 2.2 to problem (2.19), (2.20), we obtain

SO iy < kS L1272 Fll s,
J j

+ Z ||2 G ]cr,u”Wzm mj 1/2(7 mKO 1) + HUS”LQ KO )} (221)

where k; > 0 does not depend on s due to Remark 2.2.
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Consider a function ®;,, € H, 2 Myon (K;) satisfying the following conditions: (I)jau|wja = fion
and

H(I)jouHHjm—mjau(Kj) < ZHijuHHM*mjawl/?(ﬁa) (2.22)
(the existence of such a function follows from (2.10)). Then (I)jfw‘v R, = [l where @3 (y') =

®;,,(27%y'). Therefore, relations (2.21) and (1.3) imply

Z 1UF lwem xo,) < K Z{HTSQMf;HLQ(K;?l) + Z 12 Sm]o”(bjauHWQm‘mﬂ'W(Kﬁl) + HUJ'SHLz(K%)}'
J J oiH

(2.23)
Making the inverse change of variables y' = 2°y in inequality (2.23), we obtain

DY DU s, < Z{H? 2 fill Lo,

J o |al<2m
+Z S 2ttt e e + Ul s, b (2:24)

o Ja|<2m—mjo,

Multiplying inequality (2.24) by 275*=2™) summing with respect to s, and taking into account (2.22)
and (2.18), we deduce (2.17). O

Combining Lemma 2.3 with Lemma 2.1 yields u € H2™(G), a > 2m — 1, where u is an arbitrary
generalized solution of problem (1.8), (1.9) with the right-hand side fy € Lo(G).

It follows from Lemma 2.1 in [16] and from Theorem 3.2 in [17] that the set of solutions from
H?™(G) of problem (1.8), (1.9) with right-hand side f; = 0 is of finite dimension for almost all
a > 2m — 1. Thus, we have proved the following result.

Lemma 2.4. Let Conditions 1.1 and 1.2 hold. Then the kernel of the operator P is of finite dimen-
Ston.

2.2 Closedness of the Operator and its Image. Finite Dimensionality of
the Cokernel

To prove that the operator P has the Fredholm property, we need to consider problem (1.8), (1.9)
on weighted spaces with weight a such that 0 < a < m. Now the difficulty is that the belonging
u € H?™(G) does not imply that B}, u € H." ml“_lﬂ(Fi); therefore, the sum

B;u = B?#u + B}#u + B?#u

does not necessarily belong to Hom e Y 2(I‘i). One can only guarantee that B;u €

H m”‘_lﬁ(f‘i), where @’ > 2m — 1 (which follows from the fact that B;,u € W?mmu=1/2(T;)

a

and from Lemma 5.2 in [26]). However, it is proved in [23, Sec. 6] that

{P(y,D,)u, Bj,u} € HX(G,T) + RYUG,T)  forall we HMG), a>0,
where HY(G,T') = H(G) x HHfmfmi“flﬂ(Fi) and R2(G,T) is some finite-dimensional space nat-
urally embedded in {0} x H;Ij,m —min=l/ 2(Fi) for any @’ > 2m — 1. In particular, this means that

the space RY(G,T) contams only functions of the form {0, f;,}, where f;, € H."~ M=/, and
fin ¢ H™ m“‘_l/z(Fl). Fix some a’ > 2m — 1. Then any function

{fo, fiu} € Ha(G.T) + Ry(G.T)

12



can be represented as follows:
{f07 flll} = {f07 zlu} + {07 51}7
where {fo, fi,} € H)(G,T) and {0, f2,} € R3(G,T), and its norm is given by

1/2
1{fo: fin o ryimrocry = <||{f0,fi1,¢}||3fg(a,r) +Z ||fi2,i||i{2mfmmﬂ/z(r,)> :
i7lj/ a/ 7

Furthermore, it follows from Theorem 6.1 in [23] that the operator
L. = {P(y, Dy), By} : H(G) = H,(G.T) + Ry(G.T), a>0,

has the Fredholm property for almost all @ > 0. In other words, if u € H>™(G), then L,u “belongs”
to the space H2(G, T') up to a function of the form {0, f;,} from the finite-dimensional space R2(G,T').
Using the Fredholm property of the operator L,, we prove the following result.

Lemma 2.5. Let Conditions 1.1 and 1.2 hold. Then the operator P is closed, its image R(P) is
closed, and codimR(P) < oo.

Proof. 1) Let 0 < a < m. We consider the auxiliary unbounded operator
P, : Dom (P,) C Ly2(G) — La(G)
given by
P,u=P(y,D,)u, u€Dom(P,)={ue HG): Bj,u=0, P(y,D,)u € La(G)}.

Fix a number a, 0 < a < m, such that the operator L, has the Fredholm property. Let us show that
the operator P, also has the Fredholm property.

Since L, has the Fredholm property, it follows from the compactness of the embedding H*™(G) C
HY(GQ) (see Lemma 3.5 in [15]) and from Theorem 7.1 in [27] that

|l m2m @y < Er([|Law|lno @ ryiro @ + llullao@)) (2.25)

for all u € H2™(G).
Now we take a function v € Dom (P,). Then L,u = {P(y, D,)u, 0}, P(y, D,)u € Ly(G) C HY(G),
and hence

| Lau|#ocr1ro@r) = 1Py, Dy)ull o).

Combining this relation with (2.25) and taking into account the boundedness of the embedding
Ly(G) € HY(G) for a > 0, we obtain

[ull trzm(cy < Ra([[P(y, Dy)ullgiey + lullrge) < ks(IP(y, Dy)ullLo@) + lullLa@), (2.26)

where v € Dom (P,). It follows from inequality (2.26) that the operator P, is closed. Therefore,
using (2.26) and applying Lemma 7.1 in [27] again, we obtain that dim ker P, < oo (clearly, ker P, =
kerL,) and the image R(P,) is closed.

Consider an arbitrary function fy € Ly(G). Clearly, fo € H2(G). By Corollary 6.1 in [23], there
exist functionals F, ..., F,, from the adjoint space H2(G, T')* such that problem (1.8), (1.9) admits
a solution u € H>™(G) whenever

({fo,0}, F,) =0, g=1,...,q.

Since
[({f0, 0}, Fo)| < Kall follmoey < ksl follzaa)
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it follows from Riesz’ theorem on the general form of a continuous linear functional on a Hilbert
space that there exist functions fi, ..., f,, € L2(G) such that

<{f070}7 Fq> = (an fQ)Lz(G)7 q= L... »qo-

Therefore, codim R(P,) < go.
Thus, we have proved that the operator P, has the Fredholm property.
2) Since H2™(G) c H™,.(G) € W™(G) for a < m, it follows that

P, CP. (2.27)
In particular, relation (2.27) implies that the image R(P) is closed and
codim R(P) < codim R(P,) < qo.
It remains to prove that the operator P is closed.? Denote by hq, ..., h; some basis of the space
R(P,)" = R(P) 5 R(P,).

Then there exist functions vy, ..., vx € Dom (P) such that Pv; = h;, j = 1,..., k. Since h; ¢ R(P,),
it follows that v; ¢ Dom (P,). It is also clear that the functions vy, ..., v are linearly independent
because the functions hq, ..., hj; have this property.

Consider the finite-dimensional space

N = span(vy, ..., v, ker P) © ker P,,.

It is easy to see that NN Dom P, = {0}. Indeed, if w € NN Dom P, then

k
U= 5 oV + U,
i=1

where «; are some constants and v € ker P. Therefore, taking into account (2.27), we have
k
> aih =Pu="Puuc R(P,).
i=1

Hence, a; = 0,7 = 1,..., k, which implies that u = v. Using (2.27) again, we see that u = v € ker P,,.
Combining this fact with the definition of the space N yields u = 0.

Let GrP (GrP,) denote the graph of the operator P (P,). As is known, the operator P (P,,) is
closed if and only if its graph Gr P (GrP,) is closed in Ly(G) X La(G).

Note that GrP, is closed (as the graph of the closed operator) and GrP, C GrP, while the
spaces N and R(P,)"* are of finite dimension. Therefore, to prove that the operator P is closed, it
suffices to show that

GrP C GrP, + (W x R(P,)"). (2.28)

Clearly, the sum in (2.28) is direct. Indeed, if
(u, f) € GrP, N (N x R(P,)"),

then v € Dom P, N N = {0}, and hence (u, f) = (u,P,u) = (0,0).

2Note that the closedness of the image of some operator P on a Hilbert space and the finite dimensionality of its
kernel and cokernel do not imply the closedness of P itself; this can be shown by using arguments close to that in [28,
Chap. 2, Sec. 18]. However, if we additionally suppose that the operator P is an extension of a Fredholm operator,
then we prove that P is closed.
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Further, let (u, f) € GrP, i.e., u € DomP and f = Pu. We represent the function f as follows:

f=h+ [

where f; € R(P,) and fo € R(P,)*. Take an element u; € Dom (P,) such that P,u; = f;. Then
us = u — uy € Dom (P) and Puy = fo. Without loss of generality, one can assume that

us L ker Pg; (2.29)

if this relation fails, one must take the projection us, of the element uy to ker P, and replace u; by
Uy + Uzq and ug by us — Usg. Clearly, (ug, fi) € GrP, and, due to (2.29), (us, f2) € N x R(P,)*.
Thus, we have proved relation (2.28), and the lemma is true. O

Lemmas 2.4 and 2.5 imply Theorem 2.1.

Remark 2.3. Using results in [29], one can prove that Theorem 2.1 remains valid if the transforma-
tions () are nonlinear near the points of the set I, while the linear parts of §2;, satisfy Condition 1.1
at the points of IC.

The author is grateful to Professor A. L. Skubachevskii for attention to this work.
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