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Introduction

In the theory of nonlocal elliptic boundary value prolems in
bounded domains, the most difficult case deals with the situation
when support of nonlocal terms intersects with boundary of a do-
main (see [1]-[5]). This leads to apearance of degree singularities for
solutions near some set. Therefore it is natural to consider nonlocal
elliptic problems in weighted spaces (see [6]-[8]). In order to estab-
lish a priori estimates of solutions and construct a right regularizer



for nonlocal problems in bounded domains, one must study nonlocal
problems in dihedral and plane angles (see [4, 5]).

In paper [4], A.L. Skubachevskii found sufficient conditions of Fred-
holm solvability? for auxiliary nonlocal problems with parameter 6
in plane angles and sufficient conditions of one—valued solvability for
model nonlocal problems in dihedral angles. His consideration was
based on a priori estimates of solutions and on using a right regu-
larizer which needed some additional conditions on a corresponding
“local” model problem.

In the present work, we use another approach. Instead of con-
structing a right regularizer, we obtain the Green formula and study
adjoint nonlocal problems. This leads to nonlocal transmission prob-
lems in dihedral and plane angles. Similar problems were studied
in [9, 10] for the case of smooth boundary of a domain, in [11] for the
one-dimensional case, etc.

Our approach allows to establish 1) a necessary and sufficient con-
dition of Fredholm solvability for auxiliary nonlocal problems with
parameter 6 in plane angles (Theorem 9.1); 2) necessary conditions of
Fredholm solvability and sufficient conditions of one—valued solvability
for model nonlocal problems in dihedral angles (Theorems 9.2, 9.3).

The paper is organized as follows. In §§1-3, we consider nonlocal
boundary value problems in plane and dihedral angles. A priori es-
timates in weighted spaces are established. For reader’s convinience,
we formulate a number of results from the paper [4]. In §4, we ob-
tain the Green formulas for nonlocal elliptic problems. The Green
formulas generate nonlocal transmission problems, which are formally
adjoint to nonlocal boundary value problems. Nonlocal transmission
problems are studied in §§5-7. We prove the results that are anal-
ogous to those from §§1-3. §8 deals with operators that are adjoint
to operators of nonlocal boundary value problems. Connection be-
tween adjoint operators and formally adjoint nonlocal transmission
problems is considered. The main results are collected in §9 where
we study solvability of nonlocal boundary value problems in plane
and dihedral angles. §10 illustrates the results obtained in this work:
we investigate the one—valued solvability of nonlocal problems for the
Poisson equation in dihedral angles. The paper has two appendices.

2A closed operator A acting from a Hilbert space H; into a Hilbert space H is said to be
Fredholm if its range R(A) is closed, dimension of its kernel dimker (A4) and codimension
of its range codim R(.A) are finite. The number ind A = dim ker (A) —codim R(.A) is called
index of the Fredholm operator A.



Appendix A deals with the operator that is adjoint to the operator of
elliptic problem in R™ with additional conditions on the hyperplane
{zn, = 0}. We prove a theorem concerning smoothness of solutions for
the corresponding problem. This result is used in §8. In Appendix B,
we prove some auxiliary properties of weighted spaces that are needed
in the main part of the paper.

1 Nonlocal elliptic boundary value problems.
Reduction to problems with homogeneous
nonlocal conditions

1 Nonlocal problems in dihedral angles.

Introduce the sets
M={zx=(y, 2): y=0, ZGR”‘2},

Q={v=(y, 2): 7>0, bjy <@ <bjpr11, 2z € R™ 2,
Qu={r=(y, 2): >0, by <p<bj, 2zER"?} (t=1, ..., Ry),
Tjy={z=(y, 2): 7>0, p=bjy, z€R"?} (¢=1, ..., R;+1).
Here v = (y, 2) € R", y € R?, 2z € R" % r, ¢ are the polar coordinates of
a point y; R; > 1 is an integers; 0 < bj; < --- <bjpr 41 <2m;j=1, ..., N,

Denote by P;(Dy, D.), Bijou(Dy, D.), and Bjsukes(Dy, D,) homogeneous
differential operators with constant complex coefficients of orders 2m, m;,,, <
2m—1 and mj,, < 2m—1 correspondingly (j, k=1, ..., N;o =1, R;j+1;
p=1...,mq=2, ..., Rjs=1, ..., Sjorq)-

We shall assume that the following conditions hold (see [12, Chapter 2,
§61.2, 1.4]).

Condition 1.1. Forallj =1, ..., N, the operators P;(D,, D) are properly
elliptic.

Condition 1.2. For all j = 1, ..., N; 0 = 1, R; + 1, the system
{Bjou(Dy, D.)} is normal and covers the operator P;j(Dy, D.) on Tj,.

Consider the N equations for functions Uy, ..., Uy

P;i(Dy, D)U; = fi(x) (z€y) (1.1)
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with the nonlocal conditions

Bjou(Dy, D:)U = Bjou(Dy, D:)Ujlr,,+
+k2 (Bjouras(Dys D2)Uk)(Gjorasy 2)Iry, = Gjou(x) (z €T55)  (1:2)
»q,S
(j=1, ..., Nyo=1, Rij+1; p=1, ..., m).

Here and below the summation in the formula for Bj,,(D,, D,) is taken
over k = 1, ..., N; g = 2, ..., Ri; s = 1, ..., Sjgpg; U =
(U1, ..., Un); (Bjoukgs(Dy, D.)Ui)(Gjokgsy, ) means that the expression
(Bjoukgs(Dys Do )Uy)(2") is calculated for ' = (Gjokgs¥, 2); Gjokgs is the
operator of rotation by the angle jsi, and expansion by Xjores times in the
plane {y} such that by1 < bjo + Qjokg = bkg < bk, re+1, 0 < Xjokgs- )

We introduce the space H!(Q) as a completion of the set C5°(Q\M) in

the norm
1/2

lwllm@ = | Y [ "V Dw(e)Pde |
le|<l

where @ = {z = (y, 2) : 7 >0, 0<b < ¢ < by <2m, z € R"2}
Cse(Q\ M) is the set of infinitely differentiable functions in  with compact
supports belonging to Q\M; a € R, [ > 0 is an integer. Denote by Hé_l/Q(I‘)
(for I > 1) the space of traces on an (n — 1)-dimensional half-plane I' C Q
with the norm

1ol isv2 gy = it ol (w € HYQ) ¢ wle = o).

Introduce the spaces of vector—functions

N N
H(ll+2m,N(Q) _ HHtlz+2m(Qj)> HclL’N(Q’ F) = HHCZL(Q]', Fj)a
j=1

j=1

HL(Q, Ty)=HL () <[] JJHES e 2(00).

o=1,R;+1 p=1

We study solutions U = (Uy, ..., Uy) € HF?*™N(Q) for problem (1.1),
(1.2) supposing that f = {f;, gjou} € H-N(Q, T). Introduce the bounded
operator corresponding to problem (1.1), (1.2)

L ={P;(Dy, D.), Bjou(Dy, D:)}: H*"(Q) — Hy (2, T).



Lemma 1.1. For any gj,, € H(ll+2m_mj”“_1/2(f‘ja) (j =1, ..., N; 0 =
1, Rj+1; p=1, ..., m), there exists a vector-function U € H.?™N(Q)
such that

Biou(Dy, D)U = gjou(x) (x €Tjo),

HUHH[ll-‘—Qm,N(Q) <c Z nga'u||H(ll+2m77ﬂjg‘u,*1/2(rjg)7
1,0, 1

where ¢ > 0 is independent of gjou-

Lemma 1.1 is proved in [4, §1].

Let W!(Q) be a Sobolev space, where Q C R" is an open domain with
Lipschitz boundary. By W' =/2(T") (for I > 1) we denote the space of traces
on an (n — 1)-dimensional smooth manifold I' C Q. Further we shall need
interpolation inequalities for Sobolev and weighted spaces.

Lemma 1.2. Let Q be bounded; then for any w € WYQ) and X\ € C, we
have
M2 NJwllws@) < as(lwllwiq) + A llwll.@))- (1.3)

Here 0 < s < l; ¢;s > 0 1s independent of w, .

Lemma 1.3. Let Q be bounded; then for any w € W(Q) and X € C, we
have

A2 lwloelzaee) < cllwlwi@) + Al wlr@)- (1.4)
Here ¢ > 0 is independent of w, .

Lemmas 1.2, 1.3 are proved in [13, Chapter 1, §1]. Using lemma 1.2 and
properties of weighted spaces, one can establish the following result (see |2,

§1]).
Lemma 1.4. For any w € H.(Q) and X € C, we have

A Il @y < ets (Ul + A el )- (L5)

Here 0 < s <; ¢s > 0 1s independent of w, .



2 Nonlocal problems with parameter ¢ in plane angles.

Now we consider the case of the space R2. Put K = {y e R*: r >0, 0 <
by < ¢ < by < 27}. As above, we introduce the spaces H.(K) and H,ll_lﬂ(y),
where v C K is a ray.

Let us also introduce the space E'(K) as a completion of the set
Cs°(K\{0}) in the norm

lollm = | 3 / 2a(, 20010 4 1) D (y)[2dy

lo| <1 3¢

1/2

By E(ll_l/Q(y) (for I > 1) we denote the space of traces on a ray v C K with
the norm

1l vz ) = nf lwll gy (we E\(K): wl, =1).

One can find constructive definitions of the spaces Hi (") and EY ()

in [7, §1].
Introduce the spaces of vector—functions
L2m. N f¢ Lt2m LN L
B2 HE+2 , Eb HE B Vi),

EL(K;, v) = EL(K) < ] HEi“m’mj”“’” (o),
o=1,Rj+1 p=1
where Kj ={y: r>0, by <@ <bjr 41}, Vjo =1y : 7>0, ¢ =bj,}.
Consider the auxiliary problem for v = (uy, ..., uy) € ELF2mN(K)
Pi(Dy, O)u; = fi(y) (y € K;), (1.6)

Bjau(Dw O)u = Bjau(Dyv 0)u3|7] + Z( ]UquS(Dw Q)Uk)(gjffkqsyﬂwa =

q,s

- gja,u(y) (Z/ € 7]0)
(1.7)
(j=1, ..., Nyo=1 Ri+1, p=1 ..., m),

where 6 is an arbltrary pomt on a unit sphere S"73 = {z eR"?: |z| =1},

f=At gjou} € EgN(K, 7).
Introduce the bounded operator corresponding to problem (1.6), (1.7),

L(0) = {Pi(Dy, 0), Bjou(Dy, )} : BN (K) — BV (K, 7).



Lemma 1.5. For any gj,, € Eé+2m_mj”_1/2(’ng) (j =1, ..., N; 0 =

L, Rj+1; u=1, ..., m) and § € S"3, there exists a vector—function
u € B2 N(K) such that

Biou(Dy, Ou= gjou(y) (¥ € Vjo),

Hu“Eé“m*N(K) <c Z ngau”ELJr?m—mjw—l/?(

)
: Yjo)
Jro,u

where ¢ > 0 is independent of gjop, 0.

Lemma 1.5 is proved in [4, §1].

2 Solvability of nonlocal boundary value
problems in plane angles

We shall need the results of this section (obtained by A.L. Skubachevskii
in [4, §2]) in §3 for study a priori estimates of solutions to nonlocal boundary
value problems in dihedral angles.

1 Reduction of nonlocal problems in plane angles to nonlocal
problems on arcs.

Consider the following nonlocal problem for U = (Uy, ..., Uy) €
Hl+2m,N(K)
Pi(Dy, 0)U; = fi(z) (y € K3), (2.1)
Biou(Dy, 0)U = Bjou(D,, O)Uj’wa""
+k2 (BjaquS(Dy» O)Uk>(gjakqsy)|wa = gjou(y) (y € Vja) (2‘2>
0,5
(j=1, ..., Nyo=1, R;+1, p=1, ..., m),

where f = {f;, gjou} € HyN(K, 7).

We write the operators P;(D,, 0), Bjou(Dy, 0), Bjoukgs(Dy, 0) in the
polar coordinates: P;(Dy, 0) = r~*™P;(¢, D,, 7’~Dr), Biou(Dy, 0) =
r_mf"/‘ng,u(QP, Dt,m rDr)a Bjaukqs(Dya 0) = r7Mow jaukqs(@, D‘P’ TDT)’

where DSD = —Z%, Dr = _ZF

r



Put 7 = Inr and do the Fourier transform with respect to 7; then
from (2.1), (2.2), we get

753'(%0, D, )\)Uj(% )\) = Fj(% )\) (bjl <p< bj,RjJrl)a (2-3)
Bj0u<(p7 D<p7 >\>0(30~7 )\) :ng“(@, Dga /\)[ij((p, )‘)|<p:bjg+
_|_kz 6(z>\—mjcru)lnxy‘okqsBj(wkqs(go, DW )\)Uk(go—Fngakq, )\)’50:1,],0 == (24)
455 B
= Gjtw(/\)’
where Fj((xzpa 7—) = €2m7—fj(907 7—)7 Gjau(7—> = emjfngjau(T); Uj(gpa )‘) =
2m)~V2 [ Ui(p, T)e"dr.

This problem is a system of N ordinary differential equations (2.3) for
functions U; € W 2m(b,y, b, Rr;+1) with nonlocal conditions (2.4) connecting
values of Uj and their derivatives at the point ¢ = bj, with values of Uk and
their derivatives at the points of the intervals (bg1, bg g, +1)-

2 Solvability of nonlocal problems with parameter A\ on arcs.

Let us consider the operator—valued function

E()\) = {75]'(@, ng )\>7 Bjau(@» DSOa /\)}
W2 N (b b)) — WEN By, by

corresponding to problem (2.3), (2.4). Here

Wl+2m7N(b1’ b2> = ngl Wl+2m<bj17 bj}RjJrl)a
WHN[by, by] = T2, W bj, bjr;al,
Wl[bjl, bj,Rj-i-l] = Wl(bjl, bj,Rj—l—l) x C™ x C™.
Introduce the equivalent norms depending on the parameter A (JA| > 1) in

the Hilbert spaces Wl(bjl, bj,Rj—l—l) and Wl [bj17 bj,Rj—i—l}:

?

~ 5 - 1/2
U3 wi . b0 = W0ils0, b, 00 F A N a0, b5m,000)

HEEs: GiosHllwion, vyt = (IE B 0, o
- 1/2
b+ 1) G )
o, b

9



where U; € W(bj, bj,r;+1), {Ej, Gigpy € Wby, bj,r;+1]. And therefore

we have

~ ~ 1 1/2
N v, 5y = (2 T Brtsom oy, 5, 000)
J

- - 1/2
101w, = (D2 183t 1)
J

where U = (Uy, ..., Uy) € WHnN{B b)), & = (&, ..., dy) €
WI’N[bl, bQ]

The next two statements are proved in [4, §2].
Lemma 2.1. For all A € C, the operator L) : WH2mN@G b)) —
WEN[by, bo] is Fredholm, ind L(N\) = 0; for any h € R, there exists a g > 0
such that for X € Jp 4 = {X € C: Im X\ = h, |[Re A\| > qo}, the operator
L(N\) has the bounded inverse L71(X) : WHN[by, by] — WIH2N (b, by) and

LN D llwrszm v oy, by < €l @l lwavp, b

for all & € WHN[by, ba], where ¢ > 0 is independent of A and . The
operator—valued function L7H(N) : WEN[by, by] — W2 N(b, - by) is finitely
meromorphic.

Lemma 2.2. For any 0 < ¢ < 1/d, there exists a ¢ > 1 such that the
set {A € C: |Im A] < eln |[Re A|, |[Re A\| > ¢} contains no poles of the
operator—valued function L71(\), where d = max | In Xjorgs|; for every pole
Xo of the operator—valued function L~Y(X), there exists a § > 0 such that the

set {A € C: 0 < [Im A—TIm X\o| < 0} contains no poles of the operator—valued
function L71(N).

3 One—valued solvability of nonlocal problems in plane angles.
The following theorem is obtained from Lemma 2.1.

Theorem 2.1. Suppose the line Im A = a+1—1—2m contains no poles of the
operator—valued function L~(\); then nonlocal boundary value problem (2.1),
(2.2) has a unique solution U € HF*™N(K) for every right-hand side f €
HYN(K, «) and

||U||Hfl+2mvN(K) < C”fHHf;N(K v)?
where ¢ > 0 does not depend on f.

One can find the proof of Theorem 2.1 in [4, §2].

10



3 A priori estimates of solutions for nonlocal
boundary value problems

1 A priori estimates in dihedral angles.

Denote dy = min{1, Xjokgs}/2, d2 = 2max{1l, Xjokes}, Q? =Q,N {rldﬁfp <
r<rady P, |zl <2771 where j=1, ..., N; p=0, ..., 6; 0 <71 <ro.

Lemma 3.1. Suppose U; € W>™(Q)),

P;(Dy, D.)U; € WHQ9), Bjou(Dy, D.)U € WH2m=mian=1/2(1; 1 Q)
(3.1)
(j=1, ..., N;o=1 Ri+1; p=1, ..., m);

then U € [TW'2™(Q3) and for |\ > 1,
J

; 1U;llwi+2m ag) < c;{HPj(Dy, D )Ujllwr o+
+g 1Bjon(Dys D)Ullyszmmsou=rrzr, mas) + AT Usllwieem@n + - (3.2)
| HA2 U oy
where ¢ > 0 1s independent of A\ and U.

Proof. Denote
e =min{bjgr — b} /A (G=1, ..., Ny q=1, ..., B})  (3.3)
and introduce the functions (;, € C*°(R) such that
Gialp) = 1for [bjg — | < /2, (g(w) = 0 for |bjg — ¢ > & (3.4)

(j=1,..., N;¢g=1, ..., Rj+1).

Put (;(¢) = (j1(¢) + (jr,+1(¢). Since the functions (; are the multipli-
cators in W'(€2), we have (1 — (;)U; € W?™(Q9). Apply theorem 5.1 [12,
Chapter 2, §5.1] to the function (1 — (;)U; and to the operator P;(D,, D.,);
then from (3.1) and Leibniz’ formula, we get

(1—¢)U; € WH™(Q)). (3.5)

11



Denote Vio, = Y (Bjoukgs(Dy, D.)((1 — Cu)Uk))(Gjokgsy, 2). Clearly, we

k,q,s
have

Vieulr,ona2 = Y (Bjoukas(Dys D2)U) Giongsys 2)r,,na2- (3.6)

k,q,s

From equality (3.6) and relations (3.1), (3.5), it follows that

BjUN<Dy’ DZ>U]"F]-UOQ? = Bja,u(Dy? DZ)U - V}'Uu’l“jaﬂﬁ? €

c Wl+2m—mjw—1/2<rjg A QJQ) (3.7)

Again applying theorem 5.1 [12, Chapter 2, §5.1] to the function U; and to the
operator {P;(Dy, D.), Bjsu(Dy, Dz)|rjgm(2j2.} (=1, Rji+1;, p=1, ..., m)
from (3.1), (3.7), we obtain U; € W2m(Q3).

Now estimate (3.2) follows from lemma 3.1 [4, §3]. O

Let W} .(€;\M) be a set of functions belonging to the space W' on any
compactum in §2; that does not intersect with M.

loc

Theorem 3.1. Let U € [[ W2 (Q,;\M) be a solution for nonlocal boundary
J

value problem (1.1), (1.2) such that U € H>Y . (Q) and f € HLN(Q, T);
then U € H:P?™N(Q) and

”U“Hé”mvl\’(g) < C(”fHHé»N(Q, ) + ||U||H2L];/—2m(ﬂ))7 (3‘8>
where ¢ > 0 1s independent of U.
Proof. From Lemma 3.1, it follows that U € [][WL2™(Q,\M). Now
J

loc

lemma 3.2 [4, §3] implies that U € H.F?™ N (Q) and a priori estimate (3.8) is
valid. 0O

2 A priori estimates in plane angles.

Put K7° = KN {rdy ™25 <r < rydy P-2°}, where 0 <7y <7958 > 1; j =
1, ....N;p=0, ..., 6

Lemma 3.2. Suppose s > 1, 6 € S"%. Assume that u; € W™ (K}*),

Pi(Dy, O)u; € WHK®), Bjou(Dy, O)u=0 (y € yj, N K>)

12



(j=1, ..., N;o=1 Ri+1;, p=1, ..., m);
then u € [[W"*™(K}) and for |\ > 1,
j
505 g lramaey < 52 P, (D, 6wty

1 —19sa ’ +2m—19s(a—1—2m) (39>
N2 g gy + NP2 )

where ¢ > 0 1s independent of u, 6, X, and s.

Proof. Repeating the proof of Lemma 3.1 and substituting K7° for Q27 and
0 for D., we obtain u € [T W™ (K?%). Now a priori estimate (3.9) follows
J

from lemma 3.3 [4, §3]. O

Theorem 3.2. Let u € [[ W2 (K;\{0}) be a solution for problem (1.6),

loc
j
(1.7) such that u € E>Y , (K) and f € EYN(K, 7); then u € E+*™N(K)
and

||u||Efl+2m7N(K) < C(HJCHEQN(K, 5 T HUHEngszzm(K))’ (3.10)
where ¢ > 0 is independent of u, 0 € S"73.

Proof. 1) By Lemma 1.5, it suffices to consider the case g;,,, = 0. Since f; €
EL(K;) € Wi _(K;\{0}), as above, one can show that u € [ WiE2™(K;\{0}).

loc
J
Put r, = dy, ro = dy and denote K}* = Kjﬂ{dzfp-Zs <r< d;fp-Zs}, where
s>1;7=1,..., N;p=0, ..., 6. Let us also denote K7° = K;N{r < dy}.
Introduce the functions ¢ € C®(R), ¢(r) = 1 for r < dy, ¥(r) = 0 for
> 2dy; 1 € C(R), ¢(r) = 1 for r < 2d2, {(r) = 0 for r > 3d2.
Applying Theorem 3.1 to the operator {P;(D,, 0), Bj,.(D,, 0)} (for
n =2), we get

Z ||Uj||E(ll+2m(K§30) S k1 Z kujHHé“m(Kj) S
j j
< ko S {IIP;(Dy, 0)(us) || st )+ (3.11)
J
+ 2 1Bjon(Dy, 0)(u)ll yreommmumrrz F10t5llmo_,_, e}
o, 1t a jo

(’y,- a—l—2m

13



Let us estimate [|P;(D,, 0)(¢u;)| (k). Using Leibniz’ formula, the condi-
tion 6 € S"3, and limitations for supports of the functions v, v, we obtain

|P;(Dy, 0)(vbuj)| m (k) <
< ks([Pi(Dy, 0)(buj) e ;) + ||1/}Uj||H(§+_2{"*1(Kj)> < (3.12)
< k([P (Dy, O)ujllmy sy + 1wl givem-r ).

Let us estimate ||Bjy,(Dy, O)(@/)uj)||Hz+2m7mj0”71/2 Using Leibniz’ for-

(710)
mula, the condition € S"~3, limitations for supports of the functions v, v,
and the condition g;,, = 0, we get

“Bjau(Dy» 0)(¢uj)||Hi+2m—m —1/2@]0) <

< ks (IBjou(Dyy 0)(ous) | oamomsourin,, |+ [l ggsznie) <
S kﬁ(Hijgu(Dy, Q)U‘jHHiJerfmjaufl/Q + Z ”( (X]akqu)

(Vie) k,q,s

~0() Bioutas (D 0)1) Googst) byl ysssorin +

+||1/)U]||Hl+2m YK )) < k37(z ||uk||Wl+2m(K NSo) + ||@/)u]||Hz+2m 1(K ))

(3.13)
where Sy = {y € R? : 1 <r < 2dy/d;}.
Inequalities (3.11)—(3.13), Lemma 3.1, and interpolation inequality (1.5)
yield
Z 5] groram g0y < K Z{HfJHEl ()

1 l+2m 1 <3'14>
AT gl prram ey + 1A luilleo k)
2) By virtue of Lemma 3.2, for s > 1, we have
2 [l grom (geosy < K Z{HfjHEl (ree)+
j (3.15)

AT g | g icas) + A leo , . (e}

Summing up (3.14), (3.15) for all s > 1 and taking a sufficiently large |A|,
we obtain (3.10). O

From Theorem 2.1 and Lemma 3.2, one can also get the following result
(see theorem 3.1 [4, §3]).

14



Theorem 3.3. Suppose the line Im A = a+1—1—2m contains no poles of
the operator—valued function L~Y(\); then for all solutions u € E'?™N(K)
to nonlocal boundary value problem (1.6), (1.7) and all € S™=3, we have

||u||E£+2mvN(K) < C(Hf”El’;N(K 7 + Z ||uj||L2(KjﬁS))> (3'16)
J

where S ={y € R?: 0 < Ry <r < Ry}, ¢ > 0 is independent of 6 and u.

If for any 0 € S™"73, estimate (3.16) holds for all solutions to nonlocal
boundary value problem (1.6), (1.7), then the line Im A = a+1—1—2m
contains no poles of the operator—valued function /3_1()\).

Theorem 3.3 implies that kernel of £() is of finite dimension and range
of £(#) is closed. In order to prove that cokernel of L£(f) is also of finite
dimension, we shall obtain the Green formula for nonlocal problems and
study problems that are adjoint to nonlocal boundary value problems with
respect to the Green formula.

4 The Green formula for nonlocal elliptic
problems

In this section, we obtain the Green formula, which connects nonlocal bound-
ary value problems and nonlocal transmission problems in dihedral angles,
plane angles, and on arcs. Nonlocal transmission problems will be studied
in §§5-7.

1 The Green formula in dihedral angles.

Consider nonlocal boundary value problem (1.1), (1.2).

Let ng, be the unit normal vector to I'y, directed inside €, (¢ =
1, ..., Ry), ngr,+1 be the unit normal vector to I'y g, 41, directed inside
QkRk-

Denote by C*(Q;,\M) (C=(Q;\M), C>(T';,\M)) the set of infinitely
differentiable in Q;\M (in Q;\M, in [';,\M) functions. We also denote by
C(Q;:\M) (C(Q;\M), C3°(I';,\M)) the set of infinitely differentiable in
Q¢ (in Q;, in T'j,) functions with compact support from Q;\M (from Q;\M,
fromI';,\M) (j=1, ... N;t=1, ..., Rj;¢q=1, ..., R; +1).
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For Uj; € C°(Q\M), Vi € C®(Q;\M) (or Ujy € C®(Q;\M), Vj; €
C(())O(th\M))a put

(th, ‘/}t)th:/th"/jtdflf (]:1, ey N, tzl, ey R])

th

For Uqu € C’go(l“jq), Vqu < COO<qu> (OI‘ Uqu < COO<qu>, Vqu € C’(?O(F]q)),
put

(Uqu7 Vqu)qu:/Uqu.‘_/qudF (]:17 ey N, q:lj cee R]+1)

Ljq

If we have functions Vj,(x) defined in €2;;, then denote by V;(z) the func-
tion given by Vj(x) = Vj(z) for x € Q.

For short, let us omit the arguments (D,, D,) of differential operators.
Denote by Q; the operator that is formally adjoint to P;.

Theorem 4.1. For the operators P;, Bjs,, and Bjsukqs defined in §1, there
exist (not unique)

1) a system { B}, }_, of normal on I'j, operators of orders 2m—1-m/_,
with constant coefficients such that the system { Bjo,, Bj,,}i, is a Dirichlet
one on T',* of order 2m (o0 =1, R; +1);

2) a Dirichlet system {Bjq., B}, }i=1 on U, of order 2m such that the
operators Bjg, and B;'qu are of orders 2m — p and m — p correspondingly

If the choice has been done, then there exist operators Cisu, Fiop, Tiqu,
and Tiqpres (4, k=1, ..., N; o =1, R; +1 for the operators Cj,, and
Fiou, 0 =1, R, +1 for the operators Tiqupes; =1, ..., m;q=2, ..., Ry;
v=1 ..., 2m;s=1, ..., S, = Skj,) with constant coefficients such
that

I) the operators Ciop, Fiop, Tjqu, and Tiqres are of orders m}au,
1 —mjsu, v—1, and v — 1 correspondingly;

1) the system {Cjop, Fioulyy is a Dirichlet one on I'j, of order 2m
(U = 1, RJ + 1),

the system {Cjo, )y covers the operator Q; on U'j, (0 =1, R; +1),

the system {Tju}2™ is a Dirichlet one on T, of order 2m (¢ =
2, ceey Rj>;

2m —

3See [12, Chapter 2, §2.2] for the definition of a Dirichlet system.
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1) for all U; € C(Q\M), Vi € C°(Q;,\M) (or U; € C>(Q;\M),
Vii € C§°(Q ]t\M)) the following Green formula is valid:

Z{;(PjUjv Vjt)ﬂjt + Z(BJUMU jop J‘F]o)rw—i_
j
+Z(BJQMU |ng7 TmV Jll} Z{Z Uj, Qj Jt) (4.1)
Z( ]auU |F]o7 CJ”#%’EU)EJ + Z( ]un ‘F]q7 quruV)F }
In the Green formulas (here and below), the summation is taken over j =

1, ..., N;t=1, ..., Rj;o=1 Rj+1;,q=2, ..., Rj; p=1, ..., m;
Bjoy is given by (1.2);

7}un = quuv},q—lh“jq JqVVJq|FJq + Z ( qukasvk)(gjqkasya )|qu
v=1, ..., 2m),

in the formula for T, (here and below), the summation is taken over k =
L., Nyo=1LRe+1;s=1, ..., Sito = Skojg; Gjgros 18 the operator
of rotation by the angle @’ 1, = —Projq and expansion by Xinys = 1/Xrojgs
times in the plane {y}.

2m—1 Mg,
Proof. For j =1, ..., N, put B} 6 = (—z%) , Bjgu =
jo

a 2m—p a m—p
. / . _ o oy —

1, ..., m), where m/,_, are Chosen so that the numbers mj,, and 2m—1—m/,

run over the set 0, ]1 ' , 2m — 1, while p changes from 1 to 2m. .
By theorem 2.1 [12 Chapter 2, §2.2], there exist uniquely defined differ-
ential operators Fjo, I, Fligu, and Fl,.G=1 ..., No=1 Rj+1; ¢=
2, .. R;; p=1, , m) of orders 2m —1—mjg,, m},,, p—1, and m+p—1
correspondingly With constant coefficients such that
the system {Fj,,, Fj,,}/=; is a Dirichlet one on I'j, of order 2m (o =
1, R; +1),

the system {F},  }', covers the operator Q; on I'j, (0 =1, R; +1),

the system {Fjy,, Fj,qu ™ . is a Dirichlet one on I'j, of order 2m (q =
2, ..., R)),

for any U; € Cg°(Q;\M), Vj; € C=(Q;:\M) (or U; € C*(Q;\M), Vj; €

17



Ce°(Q:\M)), the following Green formulas are valid:

(PjUj7 le)Q‘1 + Z(BﬂﬂUj|Fg‘17 F}IH‘/}”Fjl)Fjl

+ Z(BJQMU |FJ2: J2p ]1|F32)F (U], QJ Jl) T

+ Z( jl,uU ’FJU jlu‘Gllel)

p,:

m
2_:( jQ}LU ‘F]27 ]2#‘/}1’Fj2)rj27

(PjUj’ V}?)sz - Z (BJZMU |F727 jQM‘/}Qh—" )

pn=1
"‘Z( J3MU ‘F]:w 3#‘/32’F33)F (UJ7 Q] 32)

32
m

Z ( ]2;LU |FJ27 ]2u‘/j2|rj2)rg2 Z( _]3/1,U |F337 ]3#‘/]'2‘1—}" )F]B? (42>
u=1 pu=1

m

Z(BjRjHUj’FjRj7 P}Rj“‘/jRj’FjR )FjR +

p=1

(PjUj7 ‘/jRj )QjRj -

m
+ Zl(Bj,Rj+1,uUj|Fj,Rj+1a E;
=

Jij"FLM‘/}Rj |Fj,Rj+1 )Fj,Rj+1 =

= (Uj7 QJ'VJRJ')QJ'R]- - Zl(B,'
/’L:

/
]Rj,uUj |FjRj > FjRjuVjRj |FjRj )FjR' +

+ ZI<B;‘,RJ-+1,MUJ'|F1,R]-+17 F](,Rj—&—l,u‘/jleFj R +1)Fg R;+1
M:

Adding equalities (4.2) together, we get

Z(P]Uj, Vit)a,, + 2 Z(BaouU s FiouVjlr,, v+
o=1,Rj+1 p=

+ 22 Z (Byq#U |F]q7 quuv 59— 1|F]q Jquvth“ )
q=2 p=

(4.3)
=205 QVia, + X Z( B}, Ujlr,,, T’

jau J |F]O')F]O'+
t 0':17Rj+1/,6

+ Z Z( JQ#U |Fm7

Jquvq 1|Fyq Fquu JQ|F3q)FJq
q=2 p=1
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N Rk Jdk:q
Add Z > Z (BjoukgsUk) (Gjokgs') to Bjs,U; and subtract it in (4.3);
=1q=2 s=
then usmg change of variables ©' = (Gjorqsy, 2) in the integrals over I';,, we

obtain

(BJUHU ’Fjga chv|1“ ) (BJouU jop J|FJU)FJU

Sjokq

(kz Z ( JUqusUk)(gjakQS')|Fjav Fﬂm ]|F70)F70 -
q s=1
4.4
(BJUuU Jou J’FJ0>FJJ+ (4.4)
Stage 1 /
+k§$ Szzl (= XGogs BiowkasUklregs (FjouVi)(Ggjos ) rig T,
Here S} ., = Sjokq; Gkyjos 15 the operator of rotation by the angle ¢, ., =

—Pjokg and expansion by Xj.irs = 1/Xjokes times in the plane {y}.
Clearly, we have

1
- jaukqs Z A]aukqsaqua Z Ajo'ukqsog kqa : (45>
Xjokqs
Here ( : .
Mjou—(2m—a
A; = ! Ds (2
Joukgso \ﬁ|§:0 jopkgsa™ z gykq l ’
Mjou—(m—a)
/’ — alﬂl Dﬁ a ’
jopkqsa |ﬁ|§:0 joukgsa™"z 6ykq
aﬁiukqsa, a’ffwkqsa € C, yj, is the coordinate on the half-axis I'y, N {z = 0}.
If Mjop — (2m — Oé) <0 (mjau - (m - Oé) < 0)7 then we put Ajﬂukqsa =0
(A;U,uk:qsa = O)

Denote by (Ajoukgsa)”s (N, ngsa)” the operators that are formally adjoint
to Ajapkqsaa A,

voukgsa cotTespondingly. Then (4.4) and (4.5) imply

( JUHU |F]0'7 JU#V'|Fja)Fj (BJUMU Jjop JlFJq) N"’

Skqga m
+Z 21 Z(quaUk|rkq7 (Njopkgse) [(FjouVi) (Grgjos ) M) ) Trg — (4.6)
7q S o= :
S]/quff m
_Z 21 Z(quaUk|qu7 ( ]o‘/j,k:qsa) [(‘Fj]/cr,u, ‘)(gllcqjas.ﬂrkq])rkq‘
7q s a=

4We choose the sign “minus” in right hand side of relation (4.5) just for convenience.
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Substituting (4.6) into (4.3), summing over j, and grouping the summands
containing Bj,,U;, we get

SASPU. Vida, + ¥ S Biowl, FionVilr, e+

o=1,R;+1 p=1

+ 22 Z (BJQ,UU |ngv quuv J9— 1|ng JQM Jq|ng
q=2 p=
lqka

LYY z({C§1<Akow>*Fkaa}Vk>< ks s, ) =

k o=1,Rp+1 s=1

(4.7)
:Z{;(Uj, QjVjt)njHr Z Z( Bl Ujlr,.s FioVilr,, )r,,+
] :

1, R;+

m
+Z Z( Jun |FJq’ quuv‘l 1|Faq quu Jq|ng

q=2 p=1
!
qukff

+Y Y z@( toasn) Floa Vi) (Gloros )i b

k o=1,Rp+1 s=1

where the operators Akqusu and A/ are obtained from the operators

/ l 181 l
AkUanSH and Ak’aa]qsu by SUbStltuung akaaquu(quk‘as) and a kaa]qsu(qukas>

! 1 :
for agqusu and a’fjqusu correspondingly.

Denoting

kcrcqusu

Cion=F,,(j=1 ..., N;o=1 Rj+1; p=1, ..., m),

jop
Tip = Fjp forv=1 ..., m; T}y, = F! forv=m+1, ..., 2m;

Jq,v—m
m

71jqukos - Z (Ako'aquu)*FkJa for v = 17 sy, M,

a=1

T'qukO'S = Z (A;caochsu m) Fklzaa for v = m+ 17 Tt 2m

(j7l{?:1, N q—2 RJ,O'Zl, Rk+178:1’7 }qko’)’

we complete the proof. [

Remark 4.1. Formula (4.1) can be extended by continuilty for the case
Ui € HM™Y), Vie € H?'\ 0, (Q).  Indeed, C(QU\M) is dense in
HZ™(Qy), C°(Q\M) is dense in H*7'\,,,(Q); therefore there emist se-
quences {UF}2, C Cgo(Q;\{0}) and {Vi}2, C C5°(Q;:\{0}) that con-
verge to U; and Vi in H2™(Q;) and H2a+2m(§2]t) correspondingly. Green
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formula (4.1) is valid for the functions UJ’? and Vﬁ; passing to the limit as
D, ¢ — 00, we obtain the Green formula for U; and Vi (we can pass to the
limit by virtue of the Schwarz inequality and Theorem B.1).

The following two examples illustrate the Green formula.

Example 4.1. For simplicity we assume that n = 2, N = 1. Put K =
{y: 7>0, b <o<bs}, Ke={y: r>0, by <p <bp} (t=1, 2),
Yo =1y >0, 90 =20} (¢ =1, 2 3), where y = (y1, y2) € R
0<b <by<by<2m.
Let ny be the unit normal vector to ~; directed inside K; and nsy, n3 be
the unit normal vectors to 7,, 3 correspondingly directed inside K.
Consider the nonlocal problem

—AU = fly) (y € K), (4.8)

U|71 + OCU(X127’, Y+ 9012)|~x1 = gl(y) (Z/ S ’71)7 (4.9)
Ul = 93(y) (v € 73).

Here U(r, ) is the function U(y) written in the polar coordinates; by + @12 =
bQ, X12 > 0, a € R.

Take U € CP(K\{0}), V; € C°(K,\{0}). Multiply —AU by V; and
integrate over K;, t = 1, 2; then using the formula of integration by parts,
we get
[(~AU)-Vidy + [ U], g—&h dy— [U], -] gy =

1 1 2

K 8n2 w2

_ NEYNY vl |y _roul .y
_[‘(flU ( Am)dy—i-vflanl‘m V1|71dﬁy 7{‘6712}72 V1|72d%

[ (-00) - Vady+ [0 G| [UL - G2 =

Ky

= [ U-( szd.wng] Vz\wdwfaU\ Vi
K>
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Adding the last two equalities together, we obtain

> [ (=OU) - Vidy + [ ULy, - G| o+
7

t K

+ Ul %\ dy+ [ Ul,, (3‘”2\ g% Y=
V3 o T2 N2 | (4 10)
:;IJ‘U'(_A‘Z:)d?J‘I’f%Ul " 'Vl|v1d7+fw %"72|73d7+
t ! 73
+ [ GY| - (Valyy = Vils,) dy
72 72
But we have
A% A%
fU|71 : ﬁ dy = [(Uly, +aU(xazr, ¢+ ¢12)|) - Wi . dry—
7
— [ aU(xaer, ¢+ @)l - T’
! _
= [ (Ul +aU(x1or, ¢+ @12)l) - g—v dy—
7 N1ly
A%
— [ Ul - aXngnl (X7 @+ ¢)| dv,
72 72
where x5, = 1/x12, ¥ = —¢12. This and (4.10) finally yield
Y [ (=AU) - Vidy + [(Uly, + aU(xaar, ¢+ ¢12)l) - ?W‘z/i dy+
Ky 1 M

8V > -
+fU|"/3 2 d'7+f?WU72'(‘/1|72_V2|72)d'7:
Y2

Zt:f([ A‘_/t)dy—f_fag; “71|v1d7+7{%[273"72|73d7+
oV; av ovi .,

f Ul - (C%L; ('377; ‘ + axy (‘)nl (Xo17, @+ ¢hy) . ) dry.

72 2

Example 4.2. Using denotations of Example 4.1, consider the nonlocal prob-
lem

—AU = f(y) (y € K), (4.11)

?WUIIM + a%{(xlzr, p+on)lh =al) (yemn),

Sl = o) wew).

(4.12)
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From formula (4.10) and equality

faU‘ Vil dy = <@U‘ + a9 (xuor, ¢+ p12) )"leldﬁ
7

+ f U|72 : a(X21>2%(X217’ © + ©h1)

Y2

dry

2

(where x5, = 1/x12, ¥5 = —¢12), we get the following Green formula:
)+ (=T dr+
7

oU = ou ¥, ¥ =
—l—’y{% . (=Va)|qy dy +Vf2ﬂm Ny *(Vilhy = Valqy) dy =

y oU oU
S [(~AU) - Vidy +f<%1 _FaGrlur ¢+ i)

t K,

oV OV
“ 08+ [0 B o o B o
oV 0V (3V
f ’72 : <_3n; N - _8n§ ‘7 + CV(X/21)2 or 1 (X217" w+ 9021) > dy.
Y2 2 2 Y2

2 The Green formula with parameter 7 in plane angles.
Forn=2,57=1, ..., N, put
Kj = {y s r >0, bjl << bj,Rj+1};

Kjt:{yi 7">0, bjt<(10<bj,t+1} (tzl, e Rj),

’)/jqz{yi 7°>0, Y = jq} (qzl, cee Rj—l-l)
Replace D, by 7 in differential operators and consider the auxiliary non-
local boundary value problem with parameter n € R" 2 for u = (uy, ..., uy)
Pi(Dy, mu; = f;(y) (v € Kj), (4.13)

BjUM(Dya 77)“ = Bqu(Dy7 77)“j|’y]'g+
+k2 (Bjoukas(Dy, m)ur)(Giongsy)lrse = Gjony) (Y € Vjo) (4.14)
7q7s
(j=1, ..., Nyo=1, R;+1, p=1, ..., m).

For uj, € Cg°(K;:\{0}), vje € C=(K;:\{0}) (or uy, € C®(K;\{0}), vy, €
Ogo(KJt\{O}))7 pUt

('Lbjt, vjt)Kjt:/ujt'T_}jtdy (]:1, ey N, tzl, cey RJ)
Kjt
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For Uy;y € Cgo(’yjq)7 Uyjq € COO(%‘Q) (or Uy, € Coo('yjq)7 Uy, € C(())o(%q))a put

O I /u%.q Uy, dy (j=1,..., Nyg=1, ..., Rj+1).
Viq
If we have functions v;;(y) defined in Kj;, then denote by v;(y) the function
given by v;(y) = v (y) for y € Kj.

Theorem 4.2. Let Pj, Bj,,, ¢tc., be the operators from Theorem 4.1. Then
for all u; € CR(RNOD), vy € C=(RK;\{0}) (or u; € C=(K;\{0}), vy €
C(K;:\{0})), the following Green formula with parameter n is valid:

Z{Z s Mg, Vjt)K,,t+
+Z( JUM( s 77)“ Fiou(Dy, )Uj‘vjo)7j0+

+Z( j(IM< s n)“j"mq’ 73(1# 'qu} =

(4.15)
= Z{Z Uj, QJ Y )th>Kjt+

+Z( ]g’u( Yo )u]|'YJa’ C]O’M(D Y n)’l}j|7ju)7ja+
+Z( ]qu( Y n)uj‘qu zq,m-i-u(Dya n)v)')’jq}'

Here Bjou(Dy, 1) is given by (4.14);

Tiq(Dy, mv = Tjgu(Dy, M)vjg-1ly,, = Tiar(Dy, M)Vjgly,,+
+kz (Tigukos(Dys M)0k)(Gjgros¥) s,
(v=1, ..., 2m);
L akos 15 the transformation defined in Theorem 4.1.

Proof. Introduce the functions vy, 1y € C5°(R"™2) such that

YPy(z) =0 for |z| > 1, / U (z)dz =1,
n—2
o(2) =1 for |z| < 1, 1a(z) =0 for |z] > 2.
Substituting U;(y, 2) = € by (2)u;i(y), Vily, 2) = ™ hy(2)v;:(y) into

equality (4.1), we get (4.15). O
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Remark 4.2. Replacing in Remark 4.1 H2™(-) and H*",,, (-) by E¥"(:)
and E*7 ., () correspondingly and Theorem B.1 by Theorem B.2, we see
that formula (4.15) can be extended by continuity for the case u; € E*™(K;),
Vje € B2 o0 (Kie).-

3 The Green formula with parameter A\ on arcs.

Put Hj = {((p, T) : bjl < p < bj,Rj+1) T € R}, Hjt = {(QO, T) : bjt < p <

bjt—i-la TER} (t_l ) Rj) _ _
For uj; € Cg°(Tyt), vy € C®(IL;) (or uje € C®(Iyy), vy € C(I)),

denote

(wje, Vi), = j? bjfmuyt (0, 7) - viele, T)dpdr
(j:l, T N1 R)).
For (VNS Coo( ), £ € C®(R) (or ¢ € C*(R), &£ € CP(R)), denote (¢, &)r =
f (1) - (1) dr. For Uy, Vi € C([bjr, bjei1]), we also denote
bji+1
Uity Vidose, b3.00) = / Ui(¢)-Vislp)de (=1, ..., Ny t=1,..., Ry).
bie

And finally for d, e € C, we put (d, e)c =d - e.

If we have functions Vj,(¢) defined in [bj;, b;,41], then denote by V;(¢p)
the function given by V;(p) = Vii(e) for ¢ € (bjr, bjis1)-

Put D, = 0 and write the differential operators in the polar coordinates:
P;i(Dy, 0) = 17" Py(¢, Dy, rD,), Bjgu(Dy, 0) = 1~ Bjo(p, Dy, D),
ets.

Consider nonlocal boundary value problem (2.3), (2.4) with parameter .

Theorem 4.3. Let P;, Bjo,, €tc., be the operators from Theorem 4.1. Then
for all U; € C*([bj1, bjr,41]), Vie € C=([bjt, bjey1]), the following Green
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formula with parameter X\ is valid:

Z{Z 75]'(907 Dsﬂa )‘)ﬁj ‘7 )(th b]t+1)+
+Z( ch(% D, )‘>0v FJUM( D, /\>Vj’s0=bja)C+

+Z( JQM((p? D A)U |30 bjq» 7;‘1#(90’ Dcpa )\/)‘7)0} -

o ) (4.16)
:Z{Z(Ujv Qi(ps Doy NVit) s, bt
Z( jo',u,( )U | o= bjos JU#(‘Pv D, /\/>‘7j|s0=bjc)0+
+Z( jq,u( )‘)Uj|§0:qu7 j}q,m—i—u(@; DiP’ )‘/)V)C}

Here Bjou(@, Dy, A) is given by (2.4);

7;111/(907 Dy, X)V quu(% >‘) Jq ( )|<p biqg

—Tjg(p, Dy, N)V; ( )= bjq

+ Z 6(i)\/_(y_1)) lnX;qusY}qykas( 7 <P’ ) ( + w;qk0>|¢:qu;

k,o,s

N =A=2i(m—1); Y}uo and X', are the rotation angles and the expansion
coefficients correspondingly defined in Theorem 4.1.

Proof. Put r = €7, vj; = r*™ 2wy, w;(p, 7) = wi(p, 7) for (¢, 7) € 1L,
Then from formula (4.15) for n = 0, we obtain

S{Z (Pl Do DoJuj, wie)  +

i St jt

‘|‘Z< ]au(s@, Dcpa DT)U, Fjau(@» Dcpv D; — Qi(m_ 1))wj|<p:bja>R+

+z( Bl Dys DYislomsyy Tinlipr Dy Dy = 2i(m = D)w)_} =

gt

Z(B;o,u< ©, Dy, Dr>uj|¢:bjaaéj0u(90’ Dy, Dy —2i(m — 1))wj|4P:bja)R+

o,
+Z( ]q,u,( Dy, DT)wj|so:qu77}q,m+u(90, Dy, D; — 2i(m — 1))w>R}»
(4.17)

:Zj:{;(@@, Qj(% D, DT_%(m_l))wjt)H *
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where

ij(% Dy, Dr)u = Bjcw(% Dy, Dr)uglo=b,,+
+ Z e Mo lanquSBjo,ukqs<907 ng DT>uk<30 + Pjokg, T + In Xjﬂkqs)‘wzbjd’

k,q,s
T4 (. Dy, Dy — 2i(m — 1))w =
N = Tjou(p, Do, D — 2i(m — 1)) wjg—1]pmp,, — |
~Tjg (¢, Do, D —2i(m — 1))wjgle=b,, + D o= =(r=1)) X} 100 o

k,o,s
XTigukos(#s Do, Dr = 2i(m = 1)wi(p + Plgror T 10 Xgpo) o=ty
Introduce the functions ¢y, ¥, € C§°(R) such that

Wn(r) = 0 for |7 > 1. / o(r)dr =1,

Po(7) =1 for || < 1, ¢o(7r) =0 for || > 2.
Substituting u;(p, 7) = ei’\Twl(T)f]j(@), wi(p, T) = eiXng(T)Vjt(cp) into
equality (4.17), we obtain (4.16). O

Remark 4.3. Formula (4.16) can be extended by continuity for the case
U; € W (bj1, bjr,11), Vie € W™ (bjy, bjss1) (see remark 2.2 [12, Chapter
2, 82.3]).

5 Nonlocal elliptic transmission problems.
Reduction to problems with homogeneous
nonlocal and boundary conditions

1 Nonlocal problems in dihedral angles.

Put V.= W, ..., W), f=(f1, ..., fn). Here the functions V;(z) (f;(x))
are defined in ; (j =1, ..., N). As before, we shall denote by Vj; (f;:) the
restriction of V; (f;) to ;. Then we see that Green formula (4.1) generates
the problem, which is formally adjoint to problem (1.1), (1.2)

Q:(D,, D)V = fulz) (x€Qut=1, ..., R)), (5.1)
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Cirp(Dy, D)V = Cju(Dy, D)Vir(2)lr), = gjnu(x) (z € Tj),
Cj,RjJrl,#(Dyv DZ)V = ijRj+17ﬂ(Dy7 DZ)‘/}RJ‘ (x)’Fj,Rj+1 = (5.2)
= gj,RjH,u(l‘) (x € Fj,Rj+1)7
IZZ'qV(Dy» D.)V = qul/(Dyv Dz)vjvq—l(x)h“jq - quV(Dy’ Dz)qu x)|qu—|—
+ 2 (Tigwkos(Dy, D)Vi)(Gigrosys 2)Ir;, = hjgw(x) (2 € Tj4)

k,o,s
(5.3)
=1, ..., Nypu=1...,m;q=2, ..., Ry v=1, ..., 2m).

Here Q; is formally adjoint to Pj; the operators Cjsp, Tiqu, Tjqukes are of
orders m;w, v — 1, v — 1 correspondingly; ]’ gkos 18 the operator of rotation
by the angle ¢, = —@ioj, and expansion by X’ 1,e = 1/Xkojqs times in
the plane {y} such that b, + ©}1o = bko, 0 < Xjgross 4o K =1, ..., N;
q=2, ..., Rjjo=1 Ry +1;s=1, ..., S 1, = Skojq-

Problem (5.1)-(5.3) is a system of Ry+- - -+ Rx equations for functions V},
with boundary conditions (5.2) and nonlocal transmission conditions (5.3).
We shall say that problem (5.1)—(5.3) is a nonlocal transmission problem.

Let us write the nonlocal transmission problems, which are formally ad-

joint to nonlocal boundary value problems of Examples 4.1 and 4.2.

Example 5.1. From Example 4.1, it follows that the problem
—AVi=filly) (e Ky t=1,2),
Vil = 91(y)  (y € m),
Valya = g3(y)  (y € 73),

Vily, — ‘8/2\/“2 =ha(y) (y€),
PG GrtOhr, ot ¢h)| = hm(y) (e )

2

A%
ang

oVy

2 ongy

Y2

is formally adjoint to problem (4.8), (4.9).

Example 5.2. From Example 4.2, it follows that the problem

AV, = fily) (ye Ky t=1, 2),

oV
I LT 9(y) (v €m),
%‘g Lol Wew)
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. . Vily, — Vz@!‘v/a =ha(y) (v € ),
1 o 2 /! \2 1 / / _
21y T Onal, + a(Xa1) W(an o+ 9021)‘72 = ha(y) (y € 72)

is formally adjoint to problem (4.11), (4.12).

From Theorem 4.1, it follows that the following conditions hold (see [12,
Chapter 2, §§1.2, 1.4]).

Condition 5.1. For all j =1, ..., N, the operators Q;(D,, D,) are prop-
erly elliptic.

Condition 5.2. For all j = 1, ..., N; 0 = 1, R; + 1, the system
{Cjon(Dy, D)}y is normal and covers the operator Q](Dy, D,) on T,
Condition 5.3. For all 5 = 1, ..., N; ¢ = 2, ..., R;, the system
{Tu(D,, D.)}2™ is normal on T,.

Remark 5.1. One can easily prove that under condition 5.3, the system
{Tju(Dy, D.), Tj(Dy, D,)}2™ jointly covers the operator Q;(D,, D,) on
[ in the sense of [9].

Consider the space H!(;) = @H’( jt) with the norm |[Vj|lye ;) =
1/2

R
> Vi3 )
=1 a J

Introduce the spaces of vector—functions

Hf}—&—?m, N H Hl+2m Hl N Q 1-\ H Hl

L. T =)
m l+2m m -1/2 m +2m—v
X Ilomt my 41 [T Ha (Ts0) x TL2e TI2 Ha' ™" A (T,).
We study solutions V = (Vi, ..., V) € HLF?™N(Q) for problem (5.1)-

(5.3) supposing that f = {fj, Gjous hjew} € HLN(Q, T). Introduce the
bounded operator M : H2mN(Q) — HLN(Q, T) corresponding to prob-
lem (5.1)—(5.3) and given by

MV = (W, Cin(D,, DIV, T(D,, DIV}
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Here Cj,,(Dy, D)V and 7T}, (D,, D.)V are given by (5.2) and (5.3) corre-
spondingly; W;(z) = Q;(D,, D,)V,(x) for x € ;. (Notice that we cannot
write W; = Q;(D,, D.)V; for & € Q; because V; € H.™™(Q;) may have
discontinuity on I'j4, ¢ =2, ..., R;.)

I+2m—m/,_ —1/2 I+2m—v+1/2
Lemma 5.1. For any gj,, € Ha 78T, Bjqw € Ha' 1/ (T'jq)
=1 ..., Nyo=1 Rj+1, p=1 ..., m qg=2, ..., Rj; v =
1, ..., 2m), there exists a vector—function V € H.2™N(Q) such that

Cion(Dy, D)V = gjou(z) (x € Tjo),  Tjgu(Dy, D.)V = hje(x) (x € T'jy),
IV llgram gy < € X{ S Nionll tramom -z +
J g, K a )

Tjo
+ 3 gl grram-riage, b
q,V

where ¢ > 0 is independent of Gjou, Njqu-

Proof. By virtue of condition 5.2 and lemma 3.1 [7], there exists a vector—
function W € H:P?™ N (Q) such that

Ciou(Dy, D)W = gjou(x) (v € Tjo), (5.4)

W by < b 3 Mol g, o 659)

By virtue of condition 5.3 and lemma 3.1 [7], for all j =1, ..., N and
q=2, ..., R; there exists a function W, € H**™(Q;,_1) such that

Tjqu(Dy, D2>I/T/j,q—1<x)’1“jq = hjq(z)— 56

= ¥ (Twkos(Dys D)W (Glpratss 2)lry, (x €T5),  (56)

k,o,s

IWjallgiom @,y < ko 22 1hjq (€)=
= 5 (Tiawhos(Dyy DIW) Gty Dl llgreanvisra .

k,o,s

(5.7)

Since the functions (j, defined by formula (3.4) are the multiplicators in
the spaces H,2™(€);), from (5.4)-(5.7), it follows that the functions

leleA(x) + Cjzﬁ/jl(ﬂj) fOI' xr € le,
V}(l‘) = Cj,t+1th(x) for x € th (t = 2, ceey Rj — ),
Cj,Rj"erjRj ($) for x € QjRj

satisfy the conditions of the Lemma. 0O
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2 Nonlocal problems with parameter ¢ in plane angles.

Put v = (v1, ..., vn), f = (f1, ..., fn). Here the functions v;(y) (f;(v))
are defined in K; (j =1, ..., N). As before, we shall denote by v;; (fjt)
the restriction of v; (f;) to Kj. Then we see that Green formula (4.15) (for
n=260ecS"3={zeR"?: |z|] = 1}) generates the problem, which is
formally adjoint to problem (1.6), (1.7)

Qj(Dy, Q)th = fﬁ(!j) (y € Kjt; t = 1, ceey Rj), (58)
Cﬂu(D O)v = CM(Dy, 0)vi(Y)ly = 951u(y) (¥ € 7i1),
] R;+1, ,u( ) Cj,R]-—l-l,,u(Dya Q)UJ'R]' <y>|’Yj,Rj+l - (59)

- g],Rj-i-l,,LL(y) (y € ,yj,Rj“l‘l)J
Tiq(Dy, 0)v = Tjq (Dy, 9)vj7q—1(?/>|vjq — T (Dy, H)qu(y)|"/jq+
+k2 (Tjqukos(Dy, e)vk)(g;'qkosyﬂ'}’jq = hjuw(y) (Y € jg) (5.10)
=1, ..., Nypu=1...,m;q=2, ..., Rj; v=1, ..., 2m).

It is easy to see that problem (5.8)—(5.10) can be also obtained from prob-
lem (5.1)—(5.3) by substituting for D..

Consider the space H.(K;) = @H (Kje) with the norm [|vjl[30 (x,) =

1/2
(% ||vjt||§{é(Kﬁ)> and the space E(K;) = 59 E!(Kj;) with the norm
- 1/2 =
lvillezxc;) = t; ||th||?;gl(;{jt)
Introduce the spaces of vector—functions

N

eV (K Hf:l“m ), €K, ) = [T €4S, ),
j=1
. 51( i 17/3) EL(K;)x
X [Ty 1, Rj+1 Hu 1 Ea (Vjo) X Hq 2H2m Elﬁm VH/Q(’qu)'

We study solutions v = (vy, ..., vy) € EXF2™N(Q) for problem (5.8)—(5.10)
supposing that f = {f;, Gjou, hje} € ELN(Q, T). Introduce the bounded
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operator M(f) : ELF2mN(Q) — ELN(Q) T) corresponding to problem (5.8)—
(5.10) and given by

Muv = {wj’ chM(Dya 9)”» 7}QV<Dy’ ‘9)1}}

Here Cj,,(Dy, 0)v and Tjq, (D, 0)v are given by (5.9) and (5.10) correspond-
ingly; w;(y) = Q;(Dy, 0)vu(y) for y € K.

Repeating the proof of Lemma 5.1, from lemma 3.1’ [7], we get the fol-
lowing statement.

Lemma 5.2. For any gj,, € Eiﬂmfmj"”flﬂ(fng), hig € BP0
=1 ..., Nyo=1, R+, p=1 ..., m; g=2, ..., Rj; v =
1, ..., 2m) there exists a vector—function v € ELF2™N(Q) such that

Cion(Dy, 0)v = gjou(y) (¥ € Vio)s  Tiq(Dy, 0)v = hje(y) (¥ € Vjq),

||'U||glll+2m,N(Q) < CZ{Z@M ||gjg,u||Ez+2m—m;,W—1/2 +
J a

('Yja)
+ o Whiarll prson-esrag, o b

where ¢ > 0 is independent of Gjop, hjq, 0.

6 Solvability of nonlocal transmission prob-
lems in plane angles

The results of this section are analogous to those of §2. We shall need these
results for obtaining a priori estimates of solutions to nonlocal transmission
problems in dihedral angles in §7.

1 Reduction of nonlocal problems in plane angles to nonlocal
problems on arcs.

Consider the nonlocal transmission problem for a vector—function V =
(Vi, ..., Vy) € HLP?P™N(K)

Qi(Dy, 0)Vjr = fuly) (e Kj; t=1, ..., Ry), (6.1)

32



leu(Dya O)V = Ojlu(Dya O)V}l(y)"m = gj1u<y) (3/ € ’Yﬂ):
Ci.rt1u(Dy; OV = Cjpy1u(Dy, 0)Vir,(y)ly p, 00 = (6.2)
= 9j.r;1u(y) (¥ € Vjir;+1);
qu/(D 0)V = TJqV(D O)X/j:fI*l(y)hjq - quV(Dy? O)Wq(y)‘wq—i_
+ Z ( qvchS(Dyv O)‘/k)(g;’qko‘sy)l'ﬁq = hqu,(y) (y € 7jq) (6'3>

(]:1, o, Nyp=1,...,m; ¢=2, ..., Rj; v=1, ..., 2m),

where f = {fj7 Gjou, hqu} € HZN(Kv 7)
Put formally D, = 0 and write the differential operators in the po-
lar coordinates: Q;(D,, 0) = r2"Q;(p, Dy, rD,), Cj,u(D,, 0) =

7 "ionClgu(@, Dy, rD,), Tjw(Dy, 0) = r"T,(p, Dy, rD,),
Tiqukos(Dy, 0) :TwHqut/kUS(% Dy, rD;).
Put 7 = Inr and do the Fourier transform with respect to 7; then
from (6.1)-(6.3), we get
Qj(% ng )\)f/;t(@, )‘) = F’jt(gpv )‘) (90 € (bjt7 b]t+1) = 1 Rj)?
) ) (6.4)
le.“((pa ng )\)V(907 /\) :Q ( D )‘)‘/]1(%07 )‘>|‘P:bjl -
) ) — Gy, )
Cj7Rj+17M(90a Dapv )\)V(QO, >‘) O~ R;+1 M(SO, D ©) /\)V}Rj(@, )‘)|60:bj,Rj+1 =
G Ri+1 ,u(>‘)
(6.5)

73(111(()07 DW? )‘)‘N/:(SD? )‘) :quu(?v ng )\)‘;},qfl(gp, )\)‘Lp:qu_
T]‘W(@? Dcpa )\)V}q(?a )\)|go:qu+ ~
+ Z A= (= 1))1nXqurrqu,,kgs(g0, Dtp7 )\)Vk(go—i— gp;qka’ )‘)|90=qu = quu<)\)

k,o,s
(6.6)
=1, ..., Nyu=1 ..., mqg=2, ..., Rj v=1, ..., 2m).

Here Fy(p, 7). = e fulo, 1), Gioplr) = 7 Gumu()s Hig(7) =
e VThi(7); Vit, Fity, Giop, and Hj,, are the Fourier transforms of Vj,
Fji, Gjopu, and Hjg, correspondingly.

This problem is a system of Ry + --- + Ry ordinary differential equa-
tions (6.4) for the functions Vj, € W™ (b, b;,+1) with boundary condi-
tions (6.5) and nonlocal transmission conditions (6.6) connecting jumps of the
functions VJ and their derivatives at the points of the intervals (b;1, b r,41)
with values of the functions f/kl and f/k R,+1 and their derivatives at the points
¢ = by and ¢ = by g, 41 correspondingly.

33



Notice that problem (6.4)-(6.6) is formally adjoint to problem (2.3), (2.4)
with respect to Green formula (4.16).

2 Solvability of nonlocal problems with parameter A\ on arcs.

Consider the space W'(bj1, bjr,4+1) = @W( it bjir1) with the norm

1/2
||VHW1 (b1, bimy) = (Z ||Vjt||Wl (bse, b “H)) . Introduce the spaces of

vector—functions

N
WH2RN (b by) = T W™ (b1, bjs,41),

j=1
N
Wby, bo] = [ W' birs by,
j=1
R
Wl[bjb bj7Rj+1] = Wl<bj1, bj7Rj+1) x C™ x C™ x Hc2m
q=2

Introduce the equivalent norms depending on the parameter A (JA\| > 1) in

the Hilbert spaces Wl(bjl, bj,Rj-i-l) and Wl [bjl, bj7Rj+1]Z

~ 1/2
IVillwi . im0 = (Villaicoye, 6,0 ) + AP Vil a1, b, 000)

Y

|||{FJ7 Gious qu’/}|||wl[bj17 bj,r;+1] = <|||F}|||12/Vl(bj1, bj,Rj+1)+
-m’ - ~ m—v 7 1/2
(L PR G (1 e i, )
o, v

where ‘7] S Wl(bjl, bj,Rj+1)7 {F'], éjgu, I:Iqu} S Wl[bjl, bj,Rj+1]- And there-

fore we have

~ ~ o 1/2
W, 5 = (S Vil Butiomoys, by 0))
J

- - 1/2
18wt~ = (D0 MRl Byt 5 1)
J
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where ‘7 = (‘71, ceey VN) € Wl+2m’N(b1, bg), b = ((I)l, ceey (I)N) €
WEN by, byl.

Consider the operator-valued function M(X) : W2 N(p b)) —
WEN[by, by corresponding to problem (6.4)—(6.6) and given by

MV = {W}, Cjou(w, Do, NV, T, Dy, NV}

Here Cjou(¢, Dy, MV and T, (¢, Dy, AV are given by (6.5) and (6.6)
correspondingly; W;(¢) = Q;(p, Dy, NVi(e) for ¢ € (bjy, bjs)-

Lemma 6.1. For all A € C, the operator M(\) : WH2mN (b, by) —
WhEN by, by] is Fredholm, ind M(X) = 0; for any h € R, there ezists a gy > 0
such that for X € Jp 4o ={A € C: Im XA = h, |Re \| > qo}, the operator
M(X) has the bounded inverse M~Y(\) : WEN[by, by] — W2 N (b by)
and . . .

AL 0Bl psson s, ) < cll Bl v, 0 (6.7

for all® € WZ’N[@, bo], where ¢ > 0 is independent of X\ and ®; the operator—
valued function M7L(X) : WEN[by, by] — W2 N (b, by) is finitely mero-
morphic.

Proof. If

I]}(JV(% Dsm )‘)V(S@ /\) TJqV(

2 9‘3 D /\)‘/Jq—l((p’ /\)|<P:qu_
~Tj (0, Doy MVig(p, A)lo=b

(i.e., if the operators Tjgukos (@, Dy, 7D;) corresponding to the nonlocal terms
are absent), then we denote by Mo()\) the operator M()). Following the
scheme developed by M.S. Agranovich and M.I. Vishik in [13] (see also [10,
§5]), one can show that there exist 0 < ¢; < 7/2 and ¢; > 0 such that for

ANE Qe ={N: N >aq, |arg\| < e} UL A > @1, |arg A — 7| < e},

there exists the bounded inverse operator My '(\); moreover, for all & €
WI’N[bl, bg],

1M (N @l lwirzm v oy, 5 < Kalll@ vy, 6o (6.8)

Here ki > 0 is independent of A and P.
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Consider the operator M,(A) = Mo(\) + t(M(X) — My(N)), 0 <t < 1.
We shall prove that for any h € R, there exists a gy > 0 such that if A € Jj 4,
and 0 <t <1, then we have

Fa| [ M)Vt ¥y, by < NV wtezm vy, ) < k3’|"/\;lt(>‘)v”‘Wl’N[bh(bz] |

6.9

forall V e ]/\lem’NN(bl,~ by). Here ko, k3 > 0 are independent of A\, ¢ and V.
Denote M;(A)V = ®; then we have

MWV =& + T,
where

\I] _ {O, 0’ —t Z e(i)\—(V—l))lnxquUSj;quko.s(gD’ DSO’ )\)Vk(g@—{—@;qka, )\)|<P:qu}'

k,o,s

By virtue of (6.8), we have
1V wrszm, 6y, b2y < kall|@ + L[ vpoy, - (6.10)

Take ¢ > 0 from formula (3.3) and a ¢y > ¢, such that Jj, ,0 C Q¢ 4 - Then
using inequalities (1.3), (1.4), we get

iA—(v—1))In X;qkls >

Lers = (1 -+ Pm=es1/2)

X Tjuiis (@5 Doy Vil + @) |pmbyy| <

kAP Tiguras (0, Doy MWVt llw s, by e/ +
|/\| HquVle(QD’ DW )\)VkIHLZ(bkL bk1+5/2)} < k5|||vk1|||Wl+2m(bk1, bk1+6/<2)' )
6.11
If e, is sufficiently small and ¢, is sufficiently large, then from inequal-
ity (6.11), theorem 4.1 [13, Chapter 1, §4|, Leibniz’ formula, and interpolation
inequality (1.3), we obtain

Ligrs < ks||[Ga Vil lwirem oy by ver2) < Ko (11 Qr (G Vi) [l wives, i)+

4 Z<1+ |)\|l+2m—mﬁclufl/2) C’km(% D@, )\)Vkl(gﬁ)ho:bkl ) S
pn=1

< k7(|HQka1|le(bk1, bro) T |)“_1H|Vk1”|Wl+2m(bk17 bra) T
+ 21(1 AR 2) Crau(0, Dy A)Vi ()|t |) -
/_L:

(6.12)
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Similarly to (6.11), (6.12), one can estimate

[qu’k,Rk+1,s - (1 —|— ’)\|l+2m—V+1/2)X

(iIA—(v—1)) Inx", s -~ / .
xe Ja F qul/k,Rk-i-l,S(gpv Dy, )‘>Vk(@+@jqk,Rk+1)|<ﬂ:b3‘q :

]jquk:,Rk—&-l,s < k~8(|||QkaRk|||Wl(kak7 bk,Rk+1)+
FINTH N Varg wisem b, bom, )T

U I+2m—m — ~ ¥
+ 21(1 + Al " PR 1/2>’Ck7Rk+1,H(907 D, )\)VkRk ((10>’<P:bk,Rk+l D
u:

(6.13)
Now if go is sufficiently large, then (6.10), (6.12), and (6.13) imply right-
hand side of inequality (6.9). Left-hand side of inequality (6.9) is obvious.
Using a standard method of continuation with respect to parameter ¢ (see
the proof of theorem 7.1 [14, Chapter 2, §7]), inequality (6.9) and existence
of a bounded inverse operator /\;la Y(\) for A € Q., 4,, one can easily see that
for A € J.q,, the operator M()) also has a bounded inverse and (6.7) holds.
Let us prove that the operator M()\) is Fredholm. For Ay € Q.,,,, we
have

MM (Xo) = T + (M(X) = Mo(Xe)) Mg (M),

where I is the identity operator in WENTby, bs)]. Since the operators
Q,(¢, Dy, M) contain the parameter A only in junior terms, the operator

M) = Mo(No) : WH2N (b by) — WHE N[ by

is bounded for every fixed A € C. Hence from the compactness of the imbed-
ding operator of W' (b;;, bjsy1) into W(bji, bjir1), it follows that the op-
erator

(M(A) = Mo(Xo)) Mg (Xo) : WEN by, ba] — WEN by, by

is compact. Thus by theorem 15.1 [15, §15], the operator M()) is Fredholm
and ind M(X\) = 0 for all A € C.

From this, from existence of the bounded inverse operator M~1()) for A €
Jh.q0, annd from theorem 1 [16], it follows that the operator-valued function
M~()) is finitely meromorphic. 0O

Repeating the proof of lemma 2.2 [4, §2], from (6.10)—(6.13), we obtain
the following statement.
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Lemma 6.2. For any 0 < ¢’ < 1/d’, there exists a ¢ > 1 such that the set
{AeC: [ImA[ <e'In|Re )|, [ReA| > g} contains no poles of the operator-
valued function M~'(X), where d' = max |In X .,.l; for every pole Ao of

the operator—valued function M~'()\), there ezists a 6 > 0 such that the set
{AeC: 0<[ImA—Im)g| <0} contains no poles of the operator—valued
function M~1(N).

3 Omne—valued solvability of nonlocal problems in plane angles.

Replacing in the proof of theorem 2.1 [4, §2] Sobolev spaces W'(-) by W'(-)
and weighted spaces H!(-) by H.(-), from Lemma 6.1, we obtain the following
result.

Theorem 6.1. Suppose the line Im A = a+1—1—2m contains no poles of the
operator-valued function M~1(\); then nonlocal transmission problem (6.1)-
(6.3) has a unique solution V € H.?™N(K) for every right-hand side f €
HLN(K, v) and

HVHHﬁj?mvN(K) < CHfHHfiN(K, 4)?

where ¢ > 0 does not depend on f.

7 A priori estimates of solutions for nonlocal
transmission problems

In this section, we prove a priori estimates for solutions to nonlocal trans-
mission problems analogous to those of §3.

1 A priori estimates in dihedral angles.

Denote di = min{1, X s }/2, dy = 2max{1l, X/, }, 2 = QN{ri(d})°7 <
r < ra(dy)®P, 2] < 27PN} QF = Q0 {r(d))° T < < ma(dh)SP J2] <
27771} ‘where j=1, ..., N; t=1, ..., Rj; p=0, ..., 6; 0 <7y <ra.

R;
Introduce the space WH(Q) = @ W*'(€,) with the norm |[Vj[lyiqr) =
t=1 !

R; 1/2
(tzzl ||‘GtH12/[/l(Q§_’t)> .

38



Lemma 7.1. Suppose V; € W*™(Q)),

Q;(Dy, D.)Vj; € Wl(Q/Qt), )
Ciou(Dy, D.)V € WHm=ma=V2(1;, 0 QF), (7.1)
Tiq(Dy, D.)V € WH2m=vH12(1;, N QY)

(j=1, ..., Nyo=1 Ri+1, p=1, ..., m;
¢=2, ..., Rjyv=1, ..., 2m);
then we have V€ [[W*2™(Q3) and for [\ > 1,
i

5 1V, lbwrsanasy < ¢ AT NQ4(Dyr DVitlhwias +
J J
R T S
SN T Dy DIV lgtsonwisrae, o +

q,Vv
FIAH IV wisema) + A2V g b

o

where ¢ > 0 1s independent of X\ and V.

Proof. Since the functions (j, (¢ =1, ..., R;+1) given by (3.4) are the mul-
tiplicators in the spaces W'(Q%) (t =1, ..., R;), we have (;,V; € W?™(Q))
(0 =1, R; +1). Apply theorem 5.1 [12, Chapter 2, §5.1] to the functions
(joV; and to the operator {Q;(D,, D.), Cjsu(Dy, D.)}; then from (7.1) and
Leibniz’ formula, we get

GoVy € WHm™(QD). (7.3)
Denote Wjg, = 3= (Tjgukos(Dy, D:2)(CroVi))(Gjgosy, #)- Clearly,
k,o,s
/
Wiglr,,n02 = > (Tjowkos(Dys D)Vi) ) (Ggkosls 2)Ir;yn02- (7.4)

k, o,s
From equality (7.4) and relations (7.1), (7.3), it follows that

quV(Dya DZ)V}vq—1|qumQ§ - quV(Dya DZ)V}q|qumQ§ =

o - 7.5
= T (Dyy DIV — Wil € Whznwriz@y fgz). (79)
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Now (7.1), (7.5), and theorem 1 [9, §2] imply that V; € W'*2™(Q?) and

S AVillwisamag) <k ZAS Qi (Dyr Do)Viellwicas,+
j j

+OZ’: HCjU/,L(Dyy Dz)VH l+2m—m90u—1/2(rjUOQ?)+ (76)

+ Z ” JQV( )V},qflyrquﬁg_
_qul/(Dyv D ) Jq|qumQ§HWl+2m vH1/2(DqN63) + H‘/j”LQ(Q?)}'
Again using theorem 5.1 [12, Chapter 2, §5.1], Leibniz’ formula, and inequal-
ity (1.3), we get
[Wigwlr qm95||Wl+2m /2,000 < Ko Z [Cro Viellwitam oy <

SkaZ{ZHQk v )thszm)+
+Z”Ckcw( )V” l+2mm —1/2

op (T mQ3)+
A lHVkszm ap) + A2 Vil e -

From (7.6), (7.4), and (7.7), it follows inequality (7.2). O
R _
Denote Wi (\M) = @ Wi, (2;¢\M).
t=1

Theorem 7.1. Let V € H 2m(Q,\M) be a solution for nonlocal transmis-

sion problem (5.1)-(5.3) such that Ve H>Y o (Q) and f € HLN(Q, T);
then V € HL2m™N(Q) and

HVHHQ’LQW’N(Q) < C(HfHHf{N(Q, ) + ”VHHgv_];’_Qm(Q))a (7'8>
where ¢ > 0 1s independent of V.
Proof. From Lemma 7.1, it follows that V' € H WL (Q,\M). Now repeat-

loc

ing the proof of lemma 3.2 [4, §3] and replacing there W!(-) by W!(-) and
weighted spaces H.(-) by H.(:), from Lemmas 5.1 and 7.1, we derive that
V e HAH?mN(Q) and a priori estimate (7.8) holds. O
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2 A priori estimates in plane angles.

Put ijs = Kj N {Tl(d,l)ﬁ_p < r< T2(d/2)6—p . 25}, Kfts = Kjt N {Tl(dll)G_p .
25 <1 < 1ro(dy)®P -2} where 0 <7y <r9;8>1;,j=1, ..., N; p=
0, ..., 6.

R,
Introduce the space W'(K?*) = @ W'(KZ) with the norm [|v; I (xeesy =
t=1

R 1/2
<t:ZI ijtH{Q/Vl(ng)) .

Lemma 7.2. Suppose s > 1, 6 € S"7%. Assume that v; € W*™(KJ*),
Q;(Dy, O)vj € Wl(Kths)a
Ciou(Dy, O)v =0 (y € o N Kgos)a Tjgw(Dy, )v=0 (y €5y N KJQS)
(j=1, ..., N,o=1 R;j+1, p=1, ..., m,
¢q=2, ..., Rj, v=1, ..., 2m);
then v e [TWH™(K?*) and for all |\ > 1,
J

22 yllwseon g < e S{27 1 Q4(Dy Oilhwnccy+
J J

+’)\|—125aHUj”Wl“m(K?S) + ‘)\’l+2m—125(a—l—2m) ”UjHLQ(K?S)}7

(7.9)

where ¢ > 0 is independent of v, 0, A, and s.

Proof. Repeating the proof of Lemma 7.1 and replacing 2} by KJ* and D,
by 6, we get v € [JW?™(K7%). Now repeating the proof of lemma 3.3 [4,

J
§3] and replacing there W!(-) by W!(-) and H!(-) by H.(-), from a priori
estimate (7.2), we derive estimate (7.9). O

Theorem 7.2. Let v € [[WZ(K;\{0}) be a solution for problem (5.8)-

loc
J
(5.10) such that v € B> , (K) and f € EXN(K, 7); then v € EF2N(K)
and

HUHgé“’"»N(K) < C(Hf“gf;N(K, ) + HUHES’N (K))7 (7'1())

—l—2m

where ¢ > 0 is independent of v and € S"73.
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Proof. The proof is analogous to the proof of Theorem 3.2, where one must
replace W'(-), H.(-), EL(-) by W!(-), H.(-), E!(-); Lemmas 1.5, 3.1, 3.2 by
Lemmas 5.2, 7.1, 7.2 correspondingly; Theorem 3.1 by Theorem 7.1. 0O

From Theorem 6.1 and Lemma 7.2, we obtain the following result (see
theorem 3.1 [4, §3] with E!(-) replaced by E.(-)).

Theorem 7.3. Suppose the line Im A = a+1—1—2m contains no poles of
the operator-valued function M~Y(X\); then for all solutions v € EF?™N(K)
to nonlocal transmission problem (5.8)-(5.10) and all § € S™3, we have

[ollgteam. gy < (1 fllgt v, o + D Mvillzatesnsn) (7.11)
J

where ' = {y € R?: 0 < Ry <r < R,}; ¢ > 0 is independent of 6 and v.

If for any 6 € S™73, estimate (7.11) holds for all solutions to nonlocal
transmission problem (5.8)-(5.10), then the line In A = a+1—1—2m
contains no poles of the operator—valued function M~1(\).

Theorem 7.3 implies that kernel of M(#) is of finite dimension and range
of L£(0) is closed.

8 Adjoint nonlocal problems

In this section, we study operators that are adjoint to the operators of the
nonlocal boundary value problems with parameter § € S"3.

1 Operators L(0)*.

Let £(8) = {Py(D,, 6), Biou(Dy, O)} + EZ™N(K) — ESN(K, ) be the
operator corresponding to problem (1.6), (1.7). Consider the adjoint operator
L(8)° : (ESN(K, 7))° — (2N (K))", where

N m
(EC(L),N(K’ 7))* _ H{E9a<KJ) % H H(Esm_mjw_l/z(%'a))*},
j=1 o=1, Rj+1 p=1
N
(EamN () = [T ()
7=1
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L(0)* takes f = {fj, gjou} € (EXN(K, 7))* to L()*f by the rule
<u, LIO)f >= Z{< Pj(Dy, O)uj, fj >k, +
+ Z < BJUM(D 0)u; jou >’on}

for all w € E2™N(K). Here < -, - >, < -, - >g,, < -, - >, are the
sesquilinear forms on the correspondlng dual pairs of the spaces.

Introduce the space W'(K;) = @ WH(Kj,) with the norm [[v;llw(x,) =
N 1/2
t;l ”thH%Vl(Kjt)> . Further (see Theorem 8.1), we shall see that if the j-th

component of £(0)*f is smooth in K; (j =1, ..., N), then f; is smooth
only in K;; and, generally, may have discontinuity on v;, (¢ =2, ---, Rj).
This happens because of nonlocal terms with supports on v;, in the operator
L(0) and therefore in the operator £(#)*. Hence it is natural to consider
spaces W(-) (but not W!(-)) when studying smoothness of f.

Consider the functions v, € C5°(R') such that

Pp(r) =1 for rd; P < r < rody P,
Y,(r) =0 for r < 2r1d3_p and r > §r2d3_p,
P 370y 5720y

where 0 < r; <ro; p=20, ..., 3. Put%qZ{yi © = bj, Or%p:qu"'ﬂ}
(j=1, ..., N; ¢g=1, ..., R; +1). Clearly, v, C Yq-

Theorem 8.1. Suppose [ = {fj, Gjou} € (EPN(K, 7)), LO)f €
(B3N (K))*,
HW 2m+l( ™5 for | < 2m,
@DOE(G)*JC € HW 2m+l( j) fOTl Z 2m;

then Vs f € H{Wl ) x [ W2mtttmientl/2(4, a)} and

o

||w3f||Q{Wl K. )>< —2m+l+mjgu+l/2(;yjo)} S

8.1
Al ®) 1] 2m+l+||wof||q{w (@it )

o.p
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where
| - HQW—Qm-H(Rn for 1 < 2m,

|| . H72m+l = || ||QW 2mti(K;) fOT’l > 2m

¢ > 0 depends on I > 0 and does not depend on f.
Proof. 1) For any g € (Ei_lﬂ(%q))* and 1, denote by g ® d(v;,) the
distribution from W (R”) given by

< uj, Vg ®6(vq) >k, =< VU, g >, forall u; € WHK;),

j=1 ..., N;qg=1, ..., R +1
Introduce the auxiliary operator

N m . —

Lo(0): TI{EY(K;) x 1T TL(E 2 (,0))" x
j= o=1,Rj+1 p=1

Sjokq

7j=1
N R EAm—mieu=1/2 m
< 1T 1T (E P Om)))} = (B ()Y
=1qg=2 s

that takes ' = {f}, Gjons Ciopgs} € H{EE K;) % H( p2me mjau—1/2(7ja))* y
J

I1 (Egm_mj"”_lﬂ(’ykq))*)} to Lg(0)*f' by the rule

k,q,s
<u, EQ(Q)*]N >= Z{< Pj(Dy’ 9)uj7 fj >k, +
+Z(< BJW(DJya O)ujlsyer Gjon >n0 +
kZ < ijqu(D e)uk"mqa Djoukas >'mq)} for all u € EZ™"(K).
055

Now for every gjo, € (Egm—mjw—l/Q(

Vjo))* and 1, we introduce the distri-
. 2m =m0y —1/2 . _ _ .
butions gjgaukqs c (Eam Mjop—1/ (,qu)) and wpg]gaukqs cWw 2m+m30u+1/2(,ykq>
given by
<u G es =< U, (Gjokgs')s Gijop >n;
Yrar Jjoukqs = kg ) Yig Jcrlla/z; » Gjon ~vje
M= —
for all u,, € Ea™ 77" " (Vkq)

5WIT(I(R") (I > 0) is the space that is adjoint to W!(K;). One can identify the space
ng (R™) with the subspace of the space W ~!(R") consisting of distributions with supports
from K; (see remark 12.4 [12, Chapter 1, §12.6]).
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and
< Wo, ¢p9?aukqs > g — < (wpkaqxgjakqf)’ Gjou e
for all W,, € W2m—miou=l/2(3, ).
From this, it follows in particular that wpg].gwkqs € Wmtlmjoutl/2(5,
iff 1V, (Giokgs ) Gjop € W2mHHEmioutl/2(5, ) moreover, there are constants
ki, ko > 0 (depending on [) such that

kl||¢p(gj0'k’q8')gj0'u||W*2m+l+mjgu+1/2(:ng) < H@ngjggykqs”W*2M+l+mjw+1/2(,ykq) <
< k2||¢p(gj0kq§)gj0u||W—2m+l+mjw+1/2(ﬁjo)'
(8.2)
Put f9 = {fi, Giou, gjgwkqs}. From the definitions of the operators £(0)*
and Lg(0)*, it follows that

Lg(0)f7 = L(O) f. (8.3)
Denote Zf = {Z;f;, Eigjou}s EfY = {Zifis EiGjows ZkGimurgs
where = = (5, ..., En), Z; = Z;(¢) are arbitrary infinitely differ-

entiable on [bj;, bjg,41] functions. Notice that in the formula Zf9 =
{Eifi, ZiGjou Ekgjgwkqs}, a distribution g]gwkqs is multiplied by Zj, but
not by Z;. This will be important further.

2) Let (j, be the functions given by formula (3.4). We also consider the
functions

Cig € OP(R), Ciglw) =1 for |bjy — @] < 32/2, Cjglw) =0 for |bj, — | > 2e;

_ _ - (8.4)
Gig € CF(R), Cig(p) =1 for |bjg — ¢l < /8, (glp) = 0 for |bjg — @] > /4
(8.5)
(j=1, ..., N;g=1, ..., Rj+1), where ¢ is given by formula (3.3).
Introduce the N-dimensional vector—function
=7 =0, ..., gy -0y 0).
Here “zeroes” are everywhere, except the j’-th position, 7 = 1, ..., N;

o =1, Ry +1.1f j # 5/, then we have Egl"/ = 0. If j = 4/, then we see
that the support of Ejf’ = (1o does not intersect with 7.4, but the support
of g]gam-,qs is contained in vj, (¢ = 2, ..., Rjy); therefore, (;, = 0.
Thus we have

Lo(6) (6= 19) = (0, ... Qy(Dy, O)(Wyyor i)+
- 21 B, (Dy, 0)(pCirorGirory @ 0(Yjeor)), -+ -5 0)

g
"Yionj'as
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(p = 0, ..., 3). Here “zeroes” are everywhere, except the j'-th posi-

tion, Q;/(D,, ) and Bj,, (Dy, 0) are formally adjoint to P;(D,, 6) and
B

g (Dy, ) correspondingly.
Notice that the operator

Q;(Dy, 0)(WyCjror f) +§:B%m (Dys 0)(pCyrorGirorn @ 3(Yjror))

pn=1

can be identified with the adjoint to the operator

{Pj’(Dw g)uj’v Bj’o”u(Dyv g)uj’|’7j/gl i

p=1"

Therefore we can use theorem 4.3 [12, Chapter 2, §4.5]%. Thus from rela-
tion (8.3) and Leibniz’ formula, it follows that

w =j'o fg c H{Wl >< H(W 2m+l+mﬂw+1/2(,yja)><
>< H W—2m+l+mjg#+1/2(;)\/kq))}

k,q,s
and
(e ngQ{Wz M(W—2m+l+mjou+1/2(y )ku w2 (5, ) ) =
gkxw@<nyMH+W%gwEm@;Rﬁ
+ 3 Woggolly-mrom v, )
(8.6)

From (8.6) and (8.2), it follows in particular that wgg]g,a,“kqs €
W_2m+l+m7/0,“+1/2(7k ) and

||¢2gjg pkqs||W_2m+l+m]au+1/2( < k4(||¢0 ( )*fH 2m+l+

8.7

+w%ggﬁmy(W-+ZHM%UA|4mHm”+m%WQ (87

3) Put Z¥¢ = (0, ..., Gy, ---, 0). Here “zeroes” are everywhere, except
the k'-th position, k' =1, ..., N;¢ =2, ..., Rp. If kK # k', then we have

6Theorem 4.3 [12, Chapter 2, §4.5] deals with operators having variable coefficients;
therefore some additional restrictions are imposed on supports of considered functions. It
is easy to see that these restrictions may be omitted if the coefficients are constant.
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Elzlq/ = 0. If ¥ = k', then we see that the support of E:ﬁql = (g does
not intersect with the supports of g, and gjgwk, gs fOr ¢ F# q'; therefore,
Cog Grrop = 0 and Ck/q/gfwk,qs = 0 for g # ¢’. Thus we have

ﬁg(e)*(¢p5k/q/fg) - (O, SRR Qk’(Dy7 8)(¢p§k’q’fk’)+

+ Z B;auk’q’s(Dw 9) (wpgk/q/gggap,k’q’s ® 5(,713'!1'))7 R O)
],U“U/,S
(p =0, ..., 3), where “zeroes” are everywhere, except the k’-th position,
By S(D 6) is formally adjoint to Bjsuuqs(Dy, 0).

Notice that the operator

Qk’(DZN 9) (wpgk’q’ fk' Z ja,uk’q s y7 9) (wpck'(/gfauk’q’s ® 5(7’?%'))

Jy054s8

can be identified with the adjoint to the operator of the problem

Pk’(Dya e)uk’ = fk’(y) (y € R2)7
Bjtwk’q’S(Dya G)Uk’|*/k/q/ = ngMS(y) (Y € wy)
(=1, ..., Nyo=1, Ri+1, p=1, ..., m; s=1, ..., Sjorg)-

This problem differs from the problem studied in Appendix A only in junior
terms.

In 1), we showed that ¢og¥ ., € W2 HFmient/2(5,,): hence we can
apply theorem A.1. Thus from relation (8.3) and Leibniz’ formula, we obtain

w Hk/q/fg c H{Wl >< H(W 2m+l+mjgu+1/2(,yja)><
>< H W-— 2m+l+mml+1/2(,yk ))}

k.,q,s

and

=kq £
ngu q f ”Q{Wl ;) H( _2,7“.1-‘.771](,#4-1/2(7 )XkQ W_2m+l+mjgu+1/2(%q))} <
o q,s

< ks ([[92L(0)" fll—2mess + l[1h2Crg il

+ 2 ||¢29J0uk’q s”W‘Qm“*mJ”““/Q(v / /))
Js03H4,8
(8.8)
Notice that the space W'(-) appeared just here. As we noted earlier, this

is connected with the nonlocal terms g]gguk, which have supports on g

(q/:2, ceey Rk/)

q's’
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From inequalities (8.8) and (8.7), we get

||77Z)35k q ngQ{Wl K )>< <W72m+l+m]o.u+1/2('y )% W72m+l+mjw+1/2(% ))} <
k,q,s
< k6(!|¢oﬁ(9)*fozm+z + Z > AIoGo il HGURS
j=lo=1,R;+1
+ 21 H?ﬂogjgu‘|W72m71+mjw+1/2(%0)})‘
/J/:
(8.9)
Ri+1
4) Finally, we put (o = 1 — Z iy 20 = (0, ..., Go, ..., 0). Here
“zeroes” are everywhere, except the i-th position, 2 =1, ..., N.
Since the support of ;o does not intersect with v;, (¢ =1, ..., R; + 1),

we have

Lg(O) (0p="f9) = (0, ..., Qu(Dy, O(WpCufi), .-, 0)

(p=0, ..., 3). Here “zeroes” are everywhere, except the i-th position.
The operator Q;(D,, 0)(¥,Cjror f;7) can be identified with the adjoint one
to the operator of the problem

Pi(Dy, O)u; = fi(z) (y € R?).

Therefore applying theorem 3.1 [12, Chapter 2, §3.2], from (8.3) and Leibniz’
formula, we get

w ~10fg c H{Wl >< H(W 2m+l+mﬂw+1/2(%U)><
>< H W-— 2m+l+mjg#+1/2(,yk ))}

k,q,s
and
i0 £G
|20 f HQ{wl (W72m+z+mjw+1/2(%0)ku W L/2 s ))} <
< ]<;7(H¢0 (0) fll—2m+1 + HwOC_iOfi”W;(_I(R"))’
(8.10)

R;+1 _
where Go =1— > (i
q=1

Now a priori estimate (8.1) follows from inequalities (8.6), (8.9), and
(8.10). O
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2 Connection between kernel of £(0)* and kernel of M(6).

Lemma 8.1. The kernel ker (L(0)*) of the operator L(6)* coincides with
the set {U], Ejou(Dy, 0) Uy}, where v; € Exam (1), vje € C(K;\{0})
(G=1,..., N;t=1, ..., Rj), and v is a solution to problem (5.8)-(5.10)
fOT’ {fj> gja;u hqu/} = 0

Proof. 1) In this proof, we shall omit the arguments (D,,, 6) in differential
operators; so we shall write P; instead of P;(D,, #) and so on.

Suppose v; € E¥, (K;), vy € C*(K;;\{0}) and v is a solution to
problem (5.8)-(5.10) for {f;, gjou, hje} = 0. Then for any functions u; €
Ce°(K;\{0}), by virtue of Theorem 4.1, we have

Z{Z P Uj, th)th + Z( ]U[,Lu ]UMUJ|’Yja)’Yja = 0 (811)

Since the imbedding operator of €27, (K;) into E° (K;) is bounded,
we have v; € £° (K;). Besides, the operator Fj,,(D,, 6) is of order 2m —
1 —my,,; hence, from the Schwarz inequality and Theorem B.2, for all u,;, €

2m—mi, .
Ea 7" (v;,), we obtain

’(u'}’]b? F]O'NUJ"YJO' 7]0 f T 2m m]o‘u_l/Q )"U/ |2dfy><

x [ rerrm (e 2) | Fjopuvi o | dy <
Yjo

< kl”“')/]o” 2m— Mg ]_/2( .U) ' ||FjUN,Uj"YjO'HQEmji;QJ,Jrl/z(,yjo_)
—a m

Therefore, Fjo,v;,,, € (Egm_mj”“_l/Q(’y]U))*.
2m—mj(w—1 2 *
Thus, {v5, Fu(Dy: O)vlyy,} € THE (K5) x TT(Ee P00}
and from the definition of the operator L(0)* and 1dent1ty (8.11), we get
<u, LO){vj, Fiou(Dy, 0)v],,} >=0 for all u € [ [ Cg°(K;\{0}).
J
But [T C5°(K;\{0}) is dense in E2™N(K); hence, {v;, Fjou(Dy, 0)v|,,,} €

j
ker (L(0)*).

2) Now suppose {vj, ¥jou} € ker (£(0)*). From Theorem 8.1, it follows
that vj; € C®(K;\{0}), Yo, € C®°(7j,). Then from the definition of the
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operator L£(6)*, it follows that
S APy, v)i, = = (Bjoptt, Yjop)s,, for all u; € Co(K\{0}).
J

J,0s 1

The last identity and Green formula (4.15) imply
Z{Z joul, quj|wa 1/@0#)%0 ""Z( Jquuj|wq7 73(1#”)7]@} -
—E{Z iy Qivin)so, + 2 W%lwﬂ,, ClionVjlo )i T (8.12)
qZ( ]q,LLuJ|%q7 quﬂﬂ})%q}

Putting supp u; € C§°(K), from (8.12), we obtain Q;v;; =0, j = 1, , N;
t=1,..., R,
By Theorem 4.1, the system {Bj,,, B}, ,}/=; is a Dirichlet system on -,

(j=1, ..., N; o =1, R;+ 1) of order 2m. Therefore, for any system of
functions {©,,,}2", C C’go(vja) there exist functions u; € C5°(K;\{0}) such
that

Bjoutijly,e = Ojons Bigutijlyse = Ojoyrm, p=1, ..., m,
u; = 0 in a neighbourhood of v;, (=1, ..., N; ¢=2, ..., Rj)

(see lemma 2.2 [12, Chapter 2, §2.3]). Therefore, taking into account that
Q,vj = 0, from (8.12), we obtain Fjwz}]]%(, Vjop = 0 and Cjo,v54,, = 0.
Similarly, since {Bjq,, B}, is a Dirichlet system on v;, (j =
1, ..., N;qg=2, ..., R)) ofordeer we get T, v = 0.

Finally, we know that v; € Ega(Kj) by assumption and we showed
that v;; € C°°(K;\{0}); therefore, from Theorem 7.1, it follows that

U] S g2a+2m(K ) u

9 Solvability of nonlocal boundary value
problems

In this section, we study solvability of nonlocal boundary value problems. In
subsection 1, we establish necessary and sufficient conditions for Fredholm
solvability of the nonlocal boundary value problems with parameter 6 in
plane angles. In subsection 2, we study necessary conditions for Fredholm
solvability and sufficient conditions for one—valued solvability of nonlocal
boundary value problems in dihedral angles.
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1 Fredholm solvability of nonlocal boundary value problems with
parameter 6.

Theorem 9.1. Put a =b+1. Suppose the line ImA = b+ 1 — 2m contains
no poles of the operator—valued function L71()\); then the operator

L(0) = {P;(Dy, 0), Bjou(Dy, 0)} : BN (K) — Eg (K, )

is Fredholm for all 0 € S™3.
If there is a 0 € S™3 such that the operator L(0) is Fredholm, then the
line Im A\ = b+ 1 — 2m contains no poles of the operator—valued function

LY.

Proof. Suppose the line Im A = b+ 1 — 2m contains no poles of £7*(\); then
by Theorem 3.3, the operator £(f) has finite dimensional kernel and closed
range.

Let us prove that cokernel of the operator £() is of finite dimension.
First, we put [ = 0. By Theorems 2.1 and 6.1, the operators £(\) and M())
are Fredholm and have zero indices. Therefore from Green formula (4.16)
and Remark 4.3, it follows that \g is a pole of £71(\) iff X) = Ao — 2i(m — 1)
is a pole of M~1()). Hence the line Im A = (—b+2m) + 1 — 2m contains no
poles of the operator—valued function /\;lfl()\). Now by Theorem 7.3, kernel
of the operator M(0) is of finite dimension. Finally, Lemma 8.1 implies
dim ker (L£(0)*) = dimker (M(0)) < cc.

Consider the case [ > 1. Suppose f € EXN (K, 7). By the above, there
exists a u € E-™N(K) such that £L(0)u = f iff (f, \I/i)E‘(l);Jy([C .y = 0 for
some linearly independent functions ¥; € EXY (K, 7) (i=1, ..., J). Here
(-, ) 9N (i, ) 18 the inner product in the Hilbert space EXY(K, 7). In
addition, by Theorem 3.2, we have u € E{P?™N(K).

By virtue of the Schwarz inequality and boundness of the imbeding op-
erator of EVN(K, v) into EYJ (K, v), we have

(s W) govie, 4y S I llgov e, o 1¥ill gorv e, oy <

lefHEf;N(K, y)H\I[iHES’flV(K 20)

for all f € EYN(K, 7). Therefore, by virtue of the Riesz theorem concerning
a general form of a linear functional in a Hilbert space, there exist linearly
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independent functions ¥; € ELN(K, ~) (i=1, ..., .J) such that
(f, \I]i)ES*j’(K, b = (f, \i’z’)E‘l{N(K, ) for all f € ECZ{N(Ka )

This means that cokernel of the operator £(0) is of the same finite dimension
J for all { > 0.
The second part of the Theorem follows from Theorem 3.3. [0

2 Solvability of nonlocal boundary value problems in dihedral an-
gles.

Theorem 9.2. Put a = b+ 1. Suppose the line Im A =b+ 1 — 2m contains
no poles of the operator—valued function E‘l(A). Suppose also that forl =0,
we have dimker (L£(0)) = 0 for all € S"3, codim R(L(6y)) = 0 for some
0y € S"73; then the operator

L ={P;(Dy, D.), Bjou(Dy, D.)}: H*™¥(Q) — Hy™(Q, T)
18 an isomorphism.

Proof. By Theorem 3.3, we have dim ker (£(6)) < oo and range R(L(0)) is
closed in ELN (K, ) for all § € S"=3,

Since the operator £(6) is bounded and dimker (£(0)) = 0 for [ = 0, we
have

BILO)ull o5 e o < Tl g gy < R £Oullpovge o (9.1)

where ki, ko > 0 are independent of § € S"3 and u (ko does not depend on
6 € S"3, since the sphere S™"73 is compact).

By assumption, there exists a 6y € S™"® such that the operator L£(6p)
has a bounded inverse. Therefore, using estimates (9.1) and the method
of continuation with respect to the parameter §# € S™3 (see the proof of
theorem 7.1 [14, Chapter 2, §7]), we prove that the operator £(6) has a
bounded inverse for all § € S"73.

Reduce problem (1.1), (1.2) to problem (1.6), (1.7) doing the Fourier
transform with respect to z : U(y, z) — U(y, n) and changing variables:
Yy = |n| - y. Now repeating the proof of lemma 7.3 [7, §7] and applying
Theorem 3.1 of this work, we complete the proof. 0O
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Theorem 9.3. Suppose for some b € R, l; > 0, the operator

L ={P;(Dy, D.), Bjou(Dy, D:)}: Ho ™™ (Q) — H:M(Q, T), ar = b+,
18 Fredholm; then the operator

L(0) ={P;(Dy, 0), Bjou(Dy, )} : BN (K) — E;V (K, 7), a=b+1,
is an isomorphism for all @ € S"3,1=0, 1, ...

Proof. 1) While proving the Theorem, we shall follow the scheme of the
paper [7, §8].
Similarly to the proof of lemma 8.1 [7, §8], one can prove that the operator
L is an isomorphism for [ = [, a = a;. Therefore we have
HU”H(ll11+2m,N(Q) < leEUHHf}l’N(Q, r):
Substituting UP(y, z) = p™2e'% Dp(z/pluly) (¢ € CER"?), u €
1 m, n— . . . . . .
B2 N(K), 0 € S"%) into the last inequality and passing to the limit
as p — 0o, we get

ull gram. ey < Kol £O)u] v (9.2)

(K, 7)

for { = 11, a = a;. This implies that £(0) has trivial kernel for [ = [1, a = a;.
But by Theorem 3.2, kernel of £(f) does not depend on [ and a = b + [
therefore the operator £(#) has trivial kernel for all [ and a = b+ .

By Theorem 3.3, estimate (9.2) implies that the line Im A = b+ 1 —
2m contains no poles of the operator-valued function £7'(\). Hence, by
Theorem 9.1, the operator £(f) is Fredholm for all [ and a = b+ [. From
this and from triviality of ker £(#), it follows that estimate (9.2) is valid for
all l and a = b+ (.

2) Repeating the proof of lemma 7.3 [7, §7], from estimate (9.2), we get

||U||H3m’N(Q) < k3||£UHH2’N(§27 )’
where | = 0, @ = b. Therefore, the operator £ : H™™(Q) — H)N(Q, T)
has trivial kernel and closed range. Let us show that its range coincides with

HPN(Q, T). Indeed, since Hé:lrme(Q) c H™N(Q), range R(L)pq, of the

operator L : Héﬁ:{me(Q) — Héﬂrlllv(Q, I') is contained in range R (L), of the
operator £ : H™N(Q) — HXN(Q, T):

R(L)or1;, T R(L)y.
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By proved in 1), R(L)p4i, = Héﬂr’ljlv(Q, I') which is dense in H>™(Q, T);
hence, R(L), is also dense in Hy"V(Q, T). But R(L), is closed; therefore,
R(‘C>b = HZ?7N(Q’ F)'

So, we have proved that the operator £ : H;™™(Q) — HY™N(Q, T) is an
isomorphism.

3) Now we shall prove the estimate

||V”H2_’Z’+§m<ﬂ> = k4”MV”H?§iQm<Q Ik (9:3)

Denote by P : H)Y (Q) — HY™(Q) the unbounded operator corre-
sponding to problem (1.1), (1.2) with homogeneous nonlocal conditions. The
operator P is given by

Dom (P) = {U € H™™(Q) : Bjpu(D,, D.)U =0,
j=1, ..., Nyo=1 Rj+1; p=1, ..., m},
PU = (P,(D,, D.)Uy, ..., Px(D,, D.)Uy), U € Dom (P).

Denote by Q : HN(Q) — Hg’b]iQm(Q) the unbounded operator corre-
sponding to problem (5.1)—(5.3) with homogeneous boundary conditions and
homogeneous nonlocal transmission conditions. The operator Q is given by

Dom (Q) = {V € H2—TZ+]2Vm(Q) : Cjtw(Dyv DZ)V =0, ZqV(Dya DZ)V =0,

j=1 ..., N;o=1 Rij+1; p=1, ..., m;
q=2, ..., R v=1, ..., 2m}
QV:<W1, e WN); WJ:Q](Dy, Dz)‘/jt fOI':UEth, VEDOHI(Q)

It is clear that Dom (P) is dense in H,"5 (€) and Dom (Q) is dense in
H(i’bN (). From Theorems 3.1 and 7.1, it follows that the operators P and Q
are closed. Since the operator £ : H.™N(Q) — HY™(Q, T) is an isomor-
phism, the operator P is also an isomorphism from Dom (P) onto H,>™ ().

Denote by P* : HE’bN(Q) — HE’bJXQm(Q) the operator that is adjoint to

P with respect to the inner product ) (U;, Vj)q, in [] L2(£2;). Since the
J J

operator P is an isomorphism from Dom (P) onto H,"™ (), the operator

P* is also an isomorphism from Dom (P*) onto HE’bJXQm(Q) and its domain

Dom (P*) is dense in H%, (). The operator P* is given by

Z(PjUj, V])QJ = Z(Uj, (P*V)j)Qj for any U € Dom (P),V € Dom (P*).

J J
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Since the closed operator P* is an isomorphism from Dom (P*) onto

H E’b]}:m (Q2), we have

||V||HE’bN(Q) < kSHP*VHHS’bJLm(Q) (9-4>

for all V'€ Dom (P*), where k5 > 0 is independent of V.
From Theorem 4.1 and Remark 4.1, it follows that Q C P*.” Therefore
using (9.4), we get

||VHHo_,bN(Q) < k5|’QVHHﬂbﬁ2m(Q)

for all V' € Dom (Q). From the last inequality, Lemma 5.1, and Theorem 7.1,
we obtain estimate (9.3).

4) Substituting VP(y, 2z) = p'~"2e!% 2p(z/p)v(y) (¢ € CL(R"2), v €
832”4]2\[,71([(), 6 € S"3) into inequality (9.3) and passing to the limit as p — oo,
we get

||U||g3'rgié\fm(K) S k6||M(0)U||82’b112m(K, )"

Therefore kernel of the operator M (0) : S_T;Ljr]gvm(K ) — EE’bﬁQm(K , 7y) is triv-
ial. By virtue of Lemma 8.1, dimker (£(#)*) = dim ker (M(6)) = 0. Com-
bining this with 1), we see that the operator £(0) : E;™ ™ (K) — EY™N (K, 7)
is an isomorphism. Using Theorem 7.2, we prove the Theorem for arbitrary
landa=0+1. 0O

Remark 9.1. From Theorems 9.1 and 9.3, it follows that the operator L :
HF2mN(Q) — HLN(Q, T) is an isomorphism for alll and a = b+1 whenever
L Hi2mN(Q) — HVN(Q, T) is Fredholm for some Iy and a; = b+ 1.

10 One—valued solvability of nonlocal prob-
lems for the Poisson equation in dihedral
angles

As an application of the results obtained in this work we shall prove the one—
valued solvability of nonlocal problems for the Poisson equation in dihedral
angles. For this purpose we need to study corresponding auxiliary nonlocal
problems in plane angles which is done by reducing them to boundary value
problems for differential-difference equations (see [2, 17, 18]).

"One can prove that Q = P*, but for our purposes, it is sufficient to prove the weaker
result.
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1 Difference operators in plane angles.

Put
K:{yGRQ: r >0, b1<90<bR+1},
Ki={yeR*: r>0, b<po<byi}(t=1, ..., R),
Y=y eER*: >0, p=0b,} (¢g=1, ..., R+1),

where R > 1 is an integer; 0 < by < by < -+ < bg < bryy < 2m; by — by =
"~:bR+1—bR:d>0.
Consider the difference operator R : Ly(R?) — Lo(R?) given by

Ru)p) = Y - wlr, o+ pd),

p=—R+1

where w(r, ¢) is the function w(y) written in the polar coordinates; e, € R.

Let I : Ly(K) — Lo(R?) be the operator of extension by zero outside
K; P : Ly(R?) — Ly(K) be the operator of restriction to K. Introduce the
operator Rk : La(K) — Lo(K) given by

Rk = PkRIk.
The following statement is obvious.
Lemma 10.1. The operators R : Ly(R?) — Ly(R?), Ry : Lo(K) — Ly(K)

are bounded.
R-1

(Rrw)(z) = > ep-w(r, ¢ —pd); Ry = Pk R*Ik.

p=—R+1

Introduce an isomorphism of the Hilbert spaces U : Ly(K) — LE(Ky) by
the formula

(Uw)t(y):w(r, 90+bt_b1) (yEKh t:]_, R R)a
R
where LE(K;) = [] La( Ky).
t=1
Denote by R the matrix of order R x R with the elements

Tpips = Epa—p1 (pb p=1 ... R)

Lemma 10.2. The operator URxU™ : LE(K,) — LE(K,) is the operator
of multiplication by the matriz R;.
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Lemma 10.3. Spectrum of the operator Ry : Lo(K) — Lo(K) coincides
with spectrum of the matriz Rq.

Lemma 10.4. The operator Rk + R : Lo(K) — Lo(K) is positive definite
if and only if the matriz Ry + R is positive definite.

Lemmas 10.2-10.4 are analogous to lemmas 8.6-8.8 [18, Chapter 2, §8].

Introduce the spaces W!(K) and W!(K) as a completion of

the sets C§°(K\{0}) and C§°(K) correspondingly in the norm
1

/2
< > [ |IDgw(y)*dy . Similarly, we introduce the space W(K,).

la|<tK
Denote by w; the restriction of a function w to K;. Consider the spaces

R R
WHK) = @WHK,) and EL(K) = @ EL(K;) with the norms [[w|wix) =
t=1 t=1

R 1/2 R 1/2
(z uwtu%w(m) and [|e] ) = (z Hwtu%m) correspondingly.

Lemma 10.5. The operator Rk maps continuously WYK) into W{(K) and
for all w € WH{(K),

D*Rgw =RrgDw (|a| <1).
Lemma 10.5 is analogous to lemma 8.13 [18, Chapter 1, §8].

Lemma 10.6. The operator Ry maps continuously W'(K) into W'(K) and
EL(K) into EL(K).

If det Ry # 0, then the operator Ry also maps continuously W'(K) into
WHK) and EL(K) into E(K).

The proof follows from Lemmas 10.2; 10.3.

2 Differential-difference operators in plane angles.
Consider the differential-difference equation

2

2
Prw = — Z (Rijrwy, )y, + ZRinyi + Roxw = f(y) (y€K) (10.1)

i j=1 i=1
with the boundary conditions

W]y, = wlgy, =0, (10.2)
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where Rin = PKRijIK7 Rik = PkRilk, Rox = PxRolk;

R-1

Ryw(y) = Y egp-w(r, ¢+pd) (i, j=1, 2);

p=—R+1

R-1

p=—R+1
€ijps Eip S R, f S LQ(K)
Denote by (-, -)k the inner product in Ly(K).

Definition 10.1. We shall say that differential-difference equation (10.1) is
strongly elliptic in K if for all w € C§°(K\{0}),

Re (Prw, w)ic > eallwlli ey — allwlagey (10.3)
where ¢y > 0, co > 0 do not depend on w.

Definition 10.2. A function w € Wl(K) is called a generalized solution for
problem (10.1), (10.2) if for all uw € W(K),

2 2

Z (Rijrwy;, uy, )k + Z(Rinyia uwk + (Roxw, )k = (f, uk.

i,5=1 i=1

We define the unbounded operator Pr : Ly(K) — Ly(K) with domain
Dom (Pr) = {w € WY(K) : Prw € Lo(K)} acting in the space of distribu-
tions D'(K) by the formula

2 2
=1

i, j=1

The operator Py is called a differential-difference operator.
It is easy to show that Definition 10.2 is equivalent to the following one.

Definition 10.3. A function w € D(Pg) is called a generalized solution for
problem (10.1), (10.2) if
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Denote by o(Px) spectrum of the operator Pg : Ly(K) — Lo(K).
Using the strong ellipticity of the operator Pz and Lemmas 10.1, 10.2,
10.5, one can prove the following result (cf. theorem 10.1 [18, Chapter 2,

§10]).

Theorem 10.1. Suppose differential-difference equation (10.1) is strongly
elliptic; then
oc(Pr) C{A € C:ReX > —ca},

where ¢ > 0 is a constant in (10.3).

Example 10.1. Consider the equation

~ARgw(y) + Rrw(y) = fly) we K={yeR*: r>0, by < p <bs})
(10.4)

with the boundary conditions
w|71 = wl% =0, (10.5)

where Rw(y) = w(r, ¢) —aw(r, p+d) = Bw(r, p—d), d =bs—by = by —by;
a, fER; |a+ 8| <2
Clearly, the matrix R; has the form

1 —
Ri= < 3 - ) .
Using Lemma 10.5, for all w € C§°(K\{0}), we get

Re (=ARkgw + Rrgw, w)g =
2
S (R + Ri)wy,, wy)x + 5(Ri + Riohw, w)x.
=1

N —

Since |a 4+ (] < 2, the matrix Ry + R} is positive definite; therefore, by
Lemma 10.4, the operator R + Rj; is also positive definite. From this and
from the last equality, we obtain

Re (—ARKU} + RKw, w)K > CleHIZ/Vl(K)-

Hence by Theorem 10.1, boundary value problem (10.4), (10.5) has a unique
generalized solution w € W1(K) for every f € Ly(K).
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3 Nonlocal problems for the Poisson equation in dihedral angles.
Put
Q={r=(y, 2): >0, by <p<bg, z€R"?}
Q={r=(y, 2): 7>0, b <p<byi, z€ R} (t=1, 2),
T,={z=(, 2): >0, p=b,, z€R"?} (¢=1, ..., 3),

Wherebg—blzbg—b2:d>0.
Consider the nonlocal boundary value problem

—AU = — ZUmzmz(x) = f(z) (x€Q), (10.6)

Ulp, +aU(r, o +d, 2)lp, = qi(z) (zeTy),
Ulr, + BU(r, ¢ —d, 2)|r, = gs(z) (z €Ty).

Here U(r, ¢, z) is the function U(z) written in the cylindrical coordinates;
a, BER; |a+ [ < 2.

Forn=2 weput K ={y: r>0, by<po<bs}, K;={y: r>0, b <
o < b}, g ={y: r >0, p =0b,}. Write the corresponding nonlocal
problem in the plane angle K :

(10.7)

—Dutu= =Yy (y) Fuly) = fy) (ye K), (10.8)

i=1

uly +au(r, o +d)y, =g1(y) (Y €m), (10.9)
ulys + Bulr, ¢ —d)|ys = g3(y) (v €13)-
Clearly, the corresponding homogeneous problem with parameter A has

the form . )
~Uup + XU =0 (p€ (b, b)), (10.10)

()l gty + aU (e + d) gy, =0,
U(@)'@Zbg + ﬁU(QP - d)|§p:b3 =0.

One can easily find the eigenvalues of problem (10.10), (10.11). If a+ 5 =
0, then we have

(10.11)

™

-
s — by

ko(k==+1, 2, ...).
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If 0 < |a+ ] < 2, then we have

_ . 27 _
)\k—zbg_blk‘ (k;-:l:l, +2, ...),

( 4_ P)

+2 arctan (a + ﬁ) 4

i atf +i—2P_ for —2<a+ <0,

Ay = bz — by 253—51
4 —

21 £+ 2 arctan (_S; 5) 4

) a vy
| e Hip for0<a+p3<2

Obviously, the line Im A = 0 contains no eigenvalues of problem (10.10),
(10.11). Therefore by Theorem 9.1, the operator

(—Au +u, uly, +ou(r, ¢+ d)|y,, uly, + Bulr,  — d)"ys) : Elz(K> -
= E{(K) x I E"()
(10.12)
is Fredholm. Let us show that operator (10.12) has trivial kernel.
Suppose u € E?(K) is a solution for homogeneous problem (10.8), (10.9).
Introduce the difference operator Rx = Px'RIk, where

Ruw(y) = w(r, p) —aw(r, ¢ +d) = Bw(r, ¢ —d).

Put u = Riw. Since |a + | < 2, the matrix Ry = ( _16 —1a ) corre-

sponding to the difference operator Ry is non-singular and

-1 _ ]. 1 (0%
= _1—aﬁ<ﬁ 1)'

Therefore, by Lemma 10.3, the operator Ry has the bounded inverse Ry
and w = Ry u.

Now we shall show that w € E(K)NE;(K) and wl,, = w|,, = 0. Indeed,
by Lemma 10.6, w € £2(K). Further, using the isomorphism U, the matrix
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R;*', and Lemma 10.2, we get

wily = Uwli(r, b) = =5 ([Uuli(r bo) + altuls(r, b)) =

— ﬁ(u(r, by) + au(r, bs)),
(10.13)
waly, = [Uwly(r, b) = ﬁ(ﬁ[ﬂlﬂl(r, b1) + [Uuly(r, by)) =

= ﬁm(n bi) +u(r, b)).

But the function w satisfies homogeneous conditions (10.9) and therefore
au(r, bs) = PBu(r, by). Combining this with (10.13), we see that wyl|,, =
Wy, 16, w € Fi(K).

Similarly,

wilyy = Uwli(r, b) = 7= g (Uuh(r, b) + altdula(r, b)) =
= _1aﬁ(u(7", b1) + au(r, by)) =0,

Walyy = [Uwla(r, by) = ﬁ(ﬁ[uuh(ﬁ ba) + [Uuls(r, bo)) =
=g (Bulr, ba) +ulr, b)) =0,

since the function u satisfies homogeneous conditions (10.9).

Therefore from the imbedding £Z(K) N B} (K) € W(K), it follows that
w € WY(K) and w is a generalized solution to boundary value problem (10.4),
(10.5) for f = 0. In Example 10.1, it is shown that w = 0 which implies
u=Rrgw=0.

In order to prove that range of operator (10.12) coincides with E?(K) x

I Ei’/ *(v4), we study the problems that are formally adjoint to prob-
o=1,3
lems (10.6), (10.7) and (10.8), (10.9) with respect to the Green formulas.
Similarly to Example 4.1, we obtain the following nonlocal transmission prob-
lems:

—AVi+Vi=f(z) (e t=1,2) (10.14)

Vile, = g1(z)  (z €Ty),

Valr, = gs(z) (x € Ty), (10.15)
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Vilr, — Valr, = ho1(z)  (z € I'y),

oV oV o, | Vs _
e Ir, %FQﬂLam(T,@ d, Z)F2+5m3(7"790+d» Z)F2

= hgg(fb) (.T € FQ)

(10.16)
and

—Avy+uv = fly) (ye Ky t=1, 2) (10.17)

vily, = a1(y) (¥ € ), .
0.18
valy = 05(y)  (y € ), (10.18)

5 5 V1, —avﬂw =ha(y) (v 6872),
v ) v v .

Ongl,, ~ Ongl,, T (" © - d)‘w O vt d)| = (10.19)

= ha(y) (¥ € 72)

Here n; is the unit normal vector to I'; (1) direct inside € (K;); ny and
ns are the unit normal vectors to I'y (72) T's (73) correspondingly directed
inside € (K3). As we have notices in the proof of Theorem 9.1, )¢ is an
eigenvalue of problem (10.10), (10.11) iff A = )¢ is an eigenvalue of nonlocal
transmission problem with parameter A corresponding to problem (10.14)-
(10.16) (which can be written in the obvious way). Hence this problem also
has no eigenvalues on the line Im A = 0. Then by Theorem 7.3, the operator

0 0
(_UA +v, Ul|71’ U2|’Yav U1|’Y2 - U2|W27 % 2 B 6;;22 V2
v ov .
rafutr o —d)| +AGR( o) ): (10.20)

2
EHK) = EX(K) x TT B (30) < TT BV ()

has finite dimensional kernel. Here va(y) = Av(y) for y € K, t =1, 2. Let
us show that kernel of operator (10.20) is trivial.

Suppose v € E(K) is a solution for homogeneous problem (10.17)-
(10.19). Consider the adjoint difference operator Rj,. The matrix R} =

—a
the matrix R is non-singular and by Lemma 10.3, there exists the inverse
operator (Rj)~". Put v = (R} ) 'w; hence w = Rv.

Let us show that w € E?(K) and w|,, + Bw(r, ¢ +d)|,, = 0, w|,, +
aw(r, ¢ —d)|,, = 0. Indeed, by Lemma 10.6, w € £(K). Further using the

( L _16 > corresponds to the difference operator Rj,. Since |a+ (| < 2,
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isomorphism U, the matrix R}, and Lemma 10.2, we get

Wiy, = [Uwli(r, ba) = [U]i(r, b)) — BlUV]s(r, by) =
= ’U1<T, bQ) — ﬁ?)g(?”, bg) = Ul(T’, bQ),
(10.21)
Wals, = [Uw]s(r, br) = —afUv]i(r, bi) + [Uv]a(r, b) =
= —avi(r, by) + va(r, by) = va(r, be),

since v satisfies homogeneous conditions (10.18). From (10.21) and homoge-
neous conditions (10.19), we get wy|,, = wWa,.

Similarly,
Owy | _ v, py— g9,
84,0 . a(p <T7 2) ﬁa(p (T7 3)’ (1022>
% — _q%u (r, by) + %(r, bs).
¥y ' 2
. g _ 190 _ o _ _10
Taking into account that n;, = Tog (1t = 1, 2) and Ons = TOg
from (10.22) and homogeneous conditions (10.19), we obtain ?)_7#21 =
2

% . Therefore, w € E?(K). Analogously one can show that wl|,, +
12 1y,

511)(7“, ©+ d)"Yl =0, w”Ys + aw(r, ¥ — d)’% = 0.
This means that w € EZ(K) is a solution for the problem

—Aw+w=0 (yeK), (10.23)

w”h + ﬁ’LU(T, 90+d>”¥1 =0 (y € 71)7
Wy, +aw(r, ¢ —d)ly, =0 (y € y3).

But problem (10.23), (10.24) is a nonlocal boundary value problem of
type (10.8), (10.9) (one must replace a by # and 3 by «). Hence, by the
above, w = 0 if |a + 3| < 2. This implies v = Rgw = 0.

From Lemma 8.1, it follows that dimension of cokernal of operator (10.12)
is equal to dimension of kernel of operator (10.20). Therefore cokernal of
operator (10.12) is trivial. Finally applying Theorem 9.2, we obtain that

nonlocal boundary value problem (10.6), (10.7) has a unique solution U €

Hﬁ%(Q) for every right-hand side {f, g1, g3} € Hi,(K) x [] Hl+3/2(FU).
c=1,3

(10.24)

1+
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A A priori estimates for the operator L* in
R"™
1 Some approaches for ordinary differential equations.

Let P(¢/, —i—L1) and B,(¢/, —ioL) (v =1, ..., J; J > 1) be differential
operators with constant coefficients and parameter & = (&, ..., &,1) €
R"! such that after replacing —i% by &,., we get polynomials of orders

2m and m, < 2m — 1 that are homo?geneous with respect to (£, &,) corre-
spondingly.
Let the following condition hold.

Condition A.1. P(¢, &,) # 0 for all (&', &,) # 0.
Consider the bounded operator Lg : W2™(R) — Ly(R) x C7 given by

d d d
_ ! Y S ! Y ! P SR
Leu = (P(¢, Zda:n)u’ By (&, zdxn)u\xnzo, ..., By(&, zdxn)u]xnzo).

Introduce the adjoint operator Ly, : Ly(R) x C7 — W*"(R) that takes
U= (¢, dy, ..., dj) € Ly(R) x C’ to L ¥ by the rule

J
. . d . d
<wu, LLU >=<P(¢, —zd—xn)u, Y > +; < B,(¢, —ZE)thnzoa dy >

for all u € W?™(R).

Lemma A.1. Suppose n > 2; then for all ' € R, & # 0, the operator Lg
18 Fredholm, its kernel is trivial.

Proof. Since n > 2, condition A.1 implies that
k(14 1€.7)%" < P(E, &P < ka1 + [€[*)*™ for & # 0. (A1)

Here ki, ks depend on & and do not depend on &,. Multiplying the first
inequality in (A.1) by |@(&,)]? (@ is the Fourier transform of the function u
with respect to x,) and integrating over R, we obtain

|ullwemry < ksl|P(E, &)ullramr),
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where k3 > 0 depend only on & and do not depend on u. The last inequality
implies that the operator L has trivial kernel and closed range.

Let us show that cokernel of the operator L¢ is of finite dimension. Using
the Fourier transform and inequality (A.1), one can easily check that for n >

2, ¢ # 0, the operator P(¢', —z%) maps W?™(R) onto Ly(R). Therefore
the operator L maps W2™(R) onto Ly(R) x M7, where M is a closed (since

range of Lg is closed) subspace of C/. But C”7 is a finite dimensional space;
hence cokernel of the operator L¢ is also finite dimensional. [

Lemma A.2. Suppose n > 2; then for all £ € R" !, & 0, we have
I) the operator Ly, is Fredholm, its range coincides with W—2m(R);

II) for all UV = (¢, dy, ..., dj) € La(R) x C7, the following estimate
holds:
J
1Wllaw) < co (1LY llw—2m@m) + D 1dul), (A.2)
v=1

where cg > 0 depends on £ and does not depend on V;
I) if ¢ € K C R™! where K is a compactum such that KN {0} = @,
then inequality (A.2) holds with a constant ¢ that does not depend on &'

Proof. I) follows from Lemma A.1. Let us prove II). Denote by ker (L)
kernel of the operator L. Since L, is Fredholm, ker (L) is of finite dimen-
sion.

Let us show that in the space ker (L), we can introduce the norm

J 1/2
v=1

which is equivalent to the standart norm in Ly(R) x C’. Among all of the
properties of a norm, the following one is not obvious: ¥ = 0 whenever
H\I’err(Lg/) = 0. Check it. Suppose H\Iferr(Lg/) = 0; then ¥ = (¢, 0, ..., 0).

Since ¥ € ker (Lg), it follows from the definition of the operator Lf, that

< P&, —ii)u, ) >=0 (A.3)

dz,

for all u € W?™(R).
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As we have already mentioned in the proof of Lemma A.1, the opera-

tor P(&, —Z%) maps W?™(R) onto Ly(R) if n > 2, ¢ # 0. From this

and (A.3), it follows that ¥ = 0; hence, ¥ = 0.
Now we get that the norm ||+ ||er (1z) I8 equivalent to the norm ||-|| 1, ryxc7,

since the space ker (L) is of finite dimension.

The operator Lf is closed and range of L, is closed; hence from theo-
rem 2.3 [15, §2], it follows that for any ¥ = (v, dy, ..., dj) € Ly(R) x C7,
there exists a ® € Ly(R) x C/ such that L}V = L, ® and

||®||L2(R)><CJ S kl ||L*/\Ij||W72m(R)7

where k; > 0 depends on §’ and does not depend on ¢ and V. But ¥ = <I>+\il,
where U = (¢, di, ..., dj) € ker (L,); therefore,

1O £y ryxcr < Eal|LE P lw—2m®) + [ W]| Ry xc-

By proved, the norms || - ||xer ( Lz) and || - ||, (ryxc are equivalent; this implies

1 L) S | oryxes < FLl|LE Y |l —2m(r) + k?QVZJl |d,| <
< B ZE W2y + e 3 0]+ Bl @l s <
< Ea||Lg ¥ lw—2m(r) + ko UZi:l || + kikol [ L5 V[ w—2mr) <
< o3 Wlhw-2oimy + 3 i),

where ¢ = max(ky + k1ka, ko).

Let us prove III). Suppose I1T) does not hold; then there exist sequences
(Y c K, {W} = {(W, df, ..., d%)}, k = 1, 2, ..., such that
[l Lar) =1,

J
L (e Wk llw-2m(r) + Z |d¥| — 0 as k — oo. (A.4)

v=1

Choose from {(£')*¥} a subsequence (we shall denote it {(£')*} too) that con-
verges to a (¢)? € K. By assumption, (£)? # 0; therefore by proved, esti-
mate (A.2) holds for & = (¢')°.
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Notice that

HL&/)OKIJk“W*%”(R) S ||L>(k§/)k\11k||W*2m(R)+
[ Ligrye = LignolLamyxcr—w-2m®y - Wl Lo ryxco-
From (A.4), it follows that ||Lizy.Wgllw-2mr) — 0. Further, ||Liz. —
L?E,)0||L2(R)XCJ_,W72WL(R) — 0, since Lg depends on £ polynomially. Finally,
Wkl £,(R)xcs is uniformly bounded by a constant not depending on & which
follows from (A.4) and relation |[¢y|,r) = 1. Hence, |[L{zy o V|lw-2mr) — 0
as k — 0o. Combining this with (A.4), we obtain

J
1 Lo Ckllw—2mmy + Y 1df| = 0 as k — oc. (A.5)

v=1

Now applying estimate (A.2) to the sequence {¥}} and & = (£')Y, from (A.5),
we eventually get
1Ykl Lor) — 0 as k — oo.

This contradicts the assumption ||ty z,r) = 1. O

2 A priori estimates in R".

Write a point x € R" (n > 2) in the form z = (2/, x,), where 2/ =
(1, ..., 1) € R*1 2, € R. Similarly, write a point £ € R" (n > 2)
in the form & = (¢, &,), where ' = (&, ..., &) € R"H &, € R

Let P(D) = P(Dy, D,,), B,(D) = By(Dy, D) (v =1, ..., J; J>1)

be differential operators with constant coefficients such that after replacing
D = (D, D,,) by & = (£, &), we get polynomials P(&) = P(¢, &),
B,(&) = B,(¢, &,) of orders 2m and m, < 2m — 1 correspondingly that
are homogeneous with respect to & = (£, &,). We shall suppose that the
polynomial P (&) satisfies condition A.1.

Consider the bounded operator

J
L : WQm(Rn) N LQ(R”) > Hw2m—mu—1/2(Rn—l)

v=1
given by

LU = (P(D)Ua Bl(D)len:Oa ceey BJ(D>U|xn:O)-
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Notice that the problem corresponding to the operator L is quite artificial.
This is not a boundary value problem, since a solution U is considered in R".
And this is not a transmission problem, since we impose the trace conditions
on the hyperplane {z,, = 0}, but not transmission conditions. Moreover the
operators B;(D) do not cover the operator P(D) on the hyperplane {z,, = 0}.
Nevertheless we need this problem for getting a priori estimates of solutions
to adjoint nonlocal problems (§8). This is explained by the specific character
of our method, which may be called “separation of nonlocality”.

J
Introduce the adjoint operator L* : Ly(R") x [] W—2m+m»+1/2(Rn—1) —

v=1
W=2m(R"). The operator L* takes F = (fo, g1, ..., g7) € La(R™) x
J
[T W—2m+mut1/2(Rr=1) to L*F by the rule
v=1

< U, L*F >=<P(D)U, fy>+ Z < B,(D)Ulz,=0, v >
for all U € Wzm(R”)

Denote R = {z e R* : z, >0}, R* = {z ¢ R" : z, < 0}. Con-
sider the space W/(R") = WHR?) & W(R™) with the norm |U||yigny =

1/2
(10 gy + 10

Theorem A.1. Suppose

J
F=(fo, g1, .-, g5) € Lo(R") x HW*2m+l+mu+1/2(Rn71)’

v=1

W=2mH(R™) for | < 2m,

LEe { W=EH(R™) for | > 2m;

then fo € WH(R™) and

J
1 ollwige < (12" Fll-amia + I follw-1m) + Y l1gulw-2msrsm1/2ga-1)),
v=1
(A.6)

|| . ||W_2m+l(Rn) fO’f’l < 2m, ¢ >0 depends onl>0

where || | -oms1 = { |- [ly-2msigey for > 2m,
and does not depend on F.
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Proof. Suppose | = 0. Then using Fourier transform of the functions fy, g,
and L*F with respect to ' we derive estimate (A.6) from Lemma A.2 (in
the same way as estimate (4.27) [12, Chapter 2, §4.4] follows from (4.18) [12,
Chapter 2, §4.2], see the proof of theorem 4.1 [12, Chapter 2, §4.4]).

If [ > 1, then we prove that f, € W!(R") and obtain estimate (A.6)
using (A.6) for [ = 0, the finite difference method, and condition A.1 (in the
same way as estimate (4.40) [12, Chapter 2, §4.5] is derived from (4.40") [12,
Chapter 2, §4.5], see the proof of theorem 4.3 [12, Chapter 2, §4.5]). O

Remark A.1. Unlike model problems in R™ (see [12, Chapter 2, §3]), our
operator L* contains distributions with support on the hyperplane {x, = 0}.
That is why smoothness of the function fo can be violated on the hyperplane
{z, = 0} even if L*F is infinitely smooth in R"™. Moreover, Theorem A.1
shows that if we want the function fo to be more smooth in R} and R", then
we must consider more smooth function L*F and more smooth distribu-
tions ¢, as well.

B Some properties of weighted spaces

Introduce the space H.(€) as a completion of the set C5°(Q\M) in the norm
1/2
Uy = | D> [ P9 DoU () Pda ;

lo|<l g

where Q = {z = (y, 2) : 7 >0, 0<b < ¢ < by <2m, 2z € R"2}
M={x=(y, 2): y=0, z€ R"2}. Denote by Ho /*() (I > 1) the
space of traces on the (n — 1)-dimensional half-plane I' = {x = (y, z) : r >
0, p=0b, z€ R"2} (by <b < by) with the norm

19012y = W U gy (U € HAQ) : Ulr = ).

Introduce the space E'(K) as a completion of the set C°(K\{0}) in the

norm
1/2

Il = [ 3 / P2 2000 4 1) Dou(y) Py |

‘OC|SZK
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where K = {y € R?: >0, 0< b, < < by <2r}. By E. "?(y) (1 > 1)
we denote the space of traces on theray vy = {y: 7 >0, p = b} (by < b < by)
with the norm

16l = 0l ) (u€ ELCK) : uly = ).
Our aim is to prove the following two theorems.
Theorem B.1. For all ¥ € Hifl/Q(F), we have

1/2

/TQ(a(ll/z))’\I/F dl < CH\I;HHl_l/2

r

I )’

where ¢ > 0 1s independent of .
Theorem B.2. For all vy € Efl_l/Q(v), we have
1/2

/TZ(a(l1/2))‘¢]2 dry < CHQPHEZ*”Q(V)’

il

where ¢ > 0 is independent of 1.
At first, let us formulate two lemmas (see [8, Chapter 6, §1.3].

Lemma B.1. The norm ||U| g (o) is equivalent to the norm
1/2

/QMPZG W, e dn |

where W (y, 1) = U(|n|""y, n), Uy, n) is the Fourier transform of Ul(y, z)
with respect to z.

Lemma B.2. The norm |u|| g ) is equivalent to the norm

1/2

-k
§j/‘“a“1ﬂ>§jl+r2“kﬂn0D> NI
j=0

k=07

u(r, @) is the function u(y) written in the polar coordinates.
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Let us prove Theorem B.2. Take a function u € E!(K) such that u|, = 1,

lull gy < 2[|90 - 172, Since u(r, ¢)|yo=p = ¥(r) and the trace operator in
Sobolev spaces is bounded we have [¢(r)|* < ky||u(r, Therefore

by Lemma B.2, we get

Mivion, o)

[e.o]

/ A0 ) dy < /ﬁ/ 2 e, Wi, by @ < Fallullin i
0 0
(

/\\_/

Now Theorem B.2 follows from (B.1) and the inequality |ulg: x
2“¢HE3—1/2(’7)'

Let us prove Theorem B.1. Take a function U € H'(Q) such that Ulp =
U, U g o) < 2||\I/||Hz 12y Using the Fourier transform with respect to z

and the Parseval equality, we have

/ R e R

Rr—2 R1

where U(r, n) is the Fourier transformation of the function ¥(r, z) with
respect to z. Doing change of variables 7 = |n|~'7’ in the last integral and
using (B.1), we obtain

fT‘ —(I— 1/2))|\I/]2d1“—
< [ [P e D G, P dtdn < (g

Rn 2R1
S kQ f |7]|2 (I=a) 72||W('7 77)”]25}1(1() d?]
Rn—2

where W(y, 1) = U(Jn|"'y, n). Now Theorem B.1 follows from (B.2),
Lemma B.1, and the inequality |[U||x1 @) < 2[|¥]| - 12y

The author is grateful to professor A L. Skubachevskii for constant at-
tention to this work.
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