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SOLVABILITY OF THE BOUNDARY VALUE PROBLEM FOR
SOME DIFFERENTIAL–DIFFERENCE EQUATIONS

P. L. GUREVICH ∗

Abstract.
The problems of solvability and smoothness of generalized solutions to boundary value

problems for differential–difference equations on a finite interval (0, d) in not self-adjoint
case were considered in [1]. The interest to these problems was arisen by their numerous
applications as well as by a number of quite new properties they possess. For instance,
the smoothness of generalized solutions to such problems may fail inside the interval (0, d)
even in the case of infinitely differentiable right hand side of the equation and remains only
in some subintervals. In [1] necessary and sufficient conditions of Fredholmian solvability
and smoothness of solutions to such problems on the whole interval were established in
the case of non–integer d. In the case of integer d only sufficient conditions were obtained.
The problem of obtaining necessary and sufficient conditions was formulated in [1] as an
unsolved one. This paper is dedicated to the solution of this problem.

In section 1, the properties of difference operators in Sobolev spaces are considered. In
section 2, the necessary and sufficient conditions of Fredholmian solvability (with index
zero) of a boundary value problem for a differential–difference equations are established.
In section 3, the smoothness of the generalized solutions is considered in terms of the index
of the corresponding differential–difference operator.

The author is grateful to professor A. L. Skubachevskǐı for constant attention to this
work.

1. Difference operators in the spaces L2(R), L2(0, N + 1), and
in the Sobolev spaces W k(0, N + 1). We consider the difference operator
R : L2(R) → L2(R) defined by the formula

(Rv)(t) =
N∑

j=−N

bjy(t + j). (1)

Here bj are real numbers, N is a natural number.
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We introduce the operators

IQ : L2(0, N + 1) → L2(R), PQ : L2(R) → L2(0, N + 1),
RQ : L2(0, N + 1) → L2(0, N + 1)

by the formulas

(IQv)(t) =

{
v(t) (t ∈ (0, N + 1)),
0 (t 6∈ (0, N + 1));

(PQv)(t) = v(t) (t ∈ (0, N + 1));

RQ = PQRIQ.
(2)

Here Q = (0, N + 1).
We denote Qs = (s− 1, s) (s = 1, . . . , N + 1).
We introduce an isomorphism of the Hilbert spaces

U : L2(∪sQs) → LN+1
2 (Q1)

by the formula

(Uv)k(t) = v(t + k − 1) (t ∈ Q1, k = 1, . . . , N + 1), (3)

where LN+1
2 (Q1) =

∏N+1
k=1 L2(Q1).

Let R1 be the matrix of order (N + 1) × (N + 1) with the elements
rik = bk−i (i, k = 1, . . . , N + 1). Let R2 be the matrix of order N × N

obtained from R1 by deleting the last column and the last row. We denote
also by Bik the cofactor of the element rik of the matrix R1.

Consider the operator RQ1 : LN+1
2 (Q1) → LN+1

2 (Q1) defined by the for-
mula RQ1 = URQU−1.

Now we shall formulate the next four Lemmas (proofs are given in [1],
Chapter I, Section 2).

Lemma 1. The operator RQ1 is the operator of multiplication by the
matrix R1.

Lemma 2. The spectrum of the operator RQ coincides with the spectrum
of the matrix R1.

Lemma 3. The operator RQ maps continuously W̊ k(0, N + 1) into
W k(0, N + 1) and, for all v ∈ W̊ k(0, N + 1),

(RQv)(j) = RQv(j) (j ≤ k). (4)
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Lemma 4. Let det R1 6= 0 and let RQv ∈ W k(Qi) for i = 1, . . . , N + 1.
Then v ∈ W k(Qj) (j = 1, . . . , N + 1) and

‖v‖W k(Qj) ≤ c
N+1∑

i=1

‖RQv‖W k(Qi),

where c > 0 doesn’t depend on v.

We denote by W k
γ (0, N +1) the subspace of functions from W k(0, N +1)

satisfying conditions

u(µ)(N + 1) =
∑

1≤i≤N+1, i 6=m+1

γ1iu
(µ)(i− 1), (5)

u(µ)(m) =
∑

1≤i≤N, i 6=m

γ2iu
(µ)(i), (6)

where m is a fixed number from the set {1, . . . , N}, γ1i (i = 1, . . . , N +1, i 6=
m + 1), γ2i (i = 1, . . . , N, i 6= m) are real numbers; µ = 0, . . . , k − 1; k ≥ 1.

Hereinafter, we shall assume that the following conjecture is fulfilled.

Conjecture 1. We assume that det R1 6= 0, det R2 = 0.

The other cases have been studied in [1], Chapter I.

Theorem 1. There exist real numbers γ1i (i = 1, . . . , N +1, i 6= m+1),
γ2i (i = 1, . . . , N, i 6= m) such that the operator RQ maps W̊ k(0, N + 1) onto
W k

γ (0, N + 1) continuously and in a one–to–one manner.

Proof. 1. At first we proof that there exist γ1i (i = 1, . . . , N + 1, i 6=
m+1), γ2i (i = 1, . . . , N, i 6= m) such that RQ(W̊ k(0, N+1)) ⊂ W k

γ (0, N+1).

We denote by R1
1(R

2
1) the matrix, obtained from R1 by deleting the first

(the last) column. Denote by ei (gi) the i-th row of the matrix R1
1(R

2
1).

The condition det R2 = 0 implies that g1, . . . , gN are linearly dependent.
Hence there exists a number m from the set {1, . . . , N} such that the row
gm is a linear combination of the other ones

gm =
∑

1≤i≤N, i 6=m

γ2igi, (7)

where γ2i (i = 1, . . . , N, i 6= m) are real numbers.
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It is easy to see that ei+1 = gi (i = 1, . . . , N). Therefore, using (7), we
get

em+1 =
∑

1≤i≤N, i 6=m

γ2iei+1, (8)

i.e.,

em+1 =
∑

2≤i≤N+1, i 6=m+1

γ2,i−1ei. (9)

From non-singularity of the matrix R1 it follows that the rows ei (i =
1, . . . N +1, i 6= m+1) form the basis in RN and the rows gj (j = 1, . . . N +
1, j 6= m) also form the basis in RN .

By Lemma (3), RQ(W̊ k(0, N + 1)) ⊂ W k(0, N + 1). Thus (3), (7) and
Lemma (1) implies that, for v ∈ W̊ k(0, N + 1) and µ = 0, . . . , k − 1,

(RQv)(µ)(m) = (URQv)(µ)
m (1)

= (R1Uv(µ))m(1) =
∑

1≤i≤N, i6=m
γ2i(R1Uv(µ))i(1)

=
∑

1≤i≤N, i6=m
γ2i(RQv)(µ)(i) (µ = 0, . . . , k − 1).

(10)

Further,

(RQv)(µ)(N + 1) = (URQv)
(µ)
N+1(1)

= (R1Uv(µ))N+1(1) =
N∑

s=1
rN+1,s(Uv(µ))s(1)

=
N∑

s=1
rN+1,s(Uv(µ))s+1(0) =

N+1∑
s=2

rN+1,s−1(Uv(µ))s(0).

(11)
And, in the same way,

(RQv)(µ)(i− 1) = (URQv)
(µ)
i (0) = (R1Uv(µ))i(0)

=
N+1∑
s=2

ris(Uv(µ))s(0) (i = 1, . . . , N + 1).
(12)

Since the rows ei (i = 1, . . . , N + 1; i 6= m + 1) form the basis in RN , it
follows that

gN+1 =
∑

1≤i≤N+1, i 6=m+1

γ1iei,

i.e.,

(rN+1,1, . . . , rN+1,N) =
∑

1≤i≤N+1, i 6=m+1

γ1i(ri2, . . . , ri,N+1). (13)
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Now, using (11), (12), (13), we get

(RQv)(µ)(N+1) =
∑

1≤i≤N+1, i 6=m+1

γ1i(RQv)(µ)(i−1) (µ = 0, . . . , k−1). (14)

Therefore, by virtue (10) and (14), RQ(W̊ k(0, N + 1)) ⊂ W k
γ (0, N + 1).

2. Now let us prove the inverse inclusion

W k
γ (0, N + 1) ⊂ RQ(W̊ k(0, N + 1)).

Suppose u ∈ W k
γ (0, N + 1). By virtue of Lemma (2), the operator RQ :

L2(0, N + 1) → L2(0, N + 1) has a bounded inverse R−1
Q : L2(0, N + 1) →

L2(0, N + 1). We shall show that v = R−1
Q u ∈ W̊ k(0, N + 1).

By virtue of Lemma (4), v ∈ W (Qs) (s = 1, . . . , N + 1). Therefore, to
prove this theorem, it is sufficient to prove that

(Uv)(µ)
s (1− 0) = (Uv)

(µ)
s+1(0 + 0) (s = 1, . . . , N),

(Uv)
(µ)
1 (0 + 0) = (Uv)

(µ)
N+1(1− 0) = 0.

Denote

ϕµ
s = (Uv)

(µ)
s+1(0 + 0) (s = 0, . . . , N ; µ = 0, . . . , k − 1);

ψµ
j = (Uv)

(µ)
j (1− 0) (j = 1, . . . , N + 1; µ = 0, . . . , k − 1).

Since RQv ∈ W k(0, N + 1), we have

(RQv)(µ)|t=i−0 = (RQv)(µ)|t=i+0 (i = 1, . . . , N ; µ = 0, . . . , k − 1).

Thus, for every µ = 0, . . . , k − 1, the functions ϕµ
s , ψµ

j satisfy the following
conditions

N+1∑

s=1

ri+1,sϕ
µ
s−1 =

N+1∑

s=1

risψ
µ
s (i = 1, . . . , N). (15)

Moreover, the function RQv satisfies conditions (10), which can be rewritten
in the form

N+1∑

s=1

rmsψ
µ
s =

∑

1≤i≤N, i 6=m

γ2i

N+1∑

s=1

risψ
µ
s (16)
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or in the form

N+1∑
s=1

rm+1,sϕ
µ
s−1 =

∑
1≤i≤N, i6=m

γ2i

N+1∑
s=1

ri+1,sϕ
µ
s−1

=
∑

2≤i≤N+1, i 6=m+1
γ2,i−1

N+1∑
s=1

risϕ
µ
s−1.

(17)

From conditions (16), (17) and (7), (9), we obtain

(
rm,N+1 − ∑

1≤i≤N, i 6=m
γ2iri,N+1

)
ψµ

N+1 = 0,
(
rm+1,1 − ∑

2≤i≤N+1, i 6=m+1
γ2,i−1ri1

)
ϕµ

0 = 0.

The factor preceding ψµ
N+1 (ϕµ

0) is non–zero. Otherwise, we have
det R1 = 0, which contradicts Conjecture (1). Hence ψµ

N+1 = ϕµ
0 = 0.

Thus system (15) will have the form

N∑

s=1

ri+1,s+1ϕ
µ
s =

N∑

s=1

risψ
µ
s (i = 1, . . . , N).

Since ri+1,s+1 = ris and the m-th row of this system is a linear combination
of the other ones, this system will have the form

N∑

s=1

risϕ
µ
s =

N∑

s=1

risψ
µ
s (i = 1, . . . , N ; i 6= m). (18)

Now, using the condition ψµ
N+1 = ϕµ

0 = 0, we rewrite relations (14) in
the following form:

N∑

s=1

rN+1,sψ
µ
s =

∑

1≤i≤N+1, i 6=m+1

γ1i

N∑

s=1

ri,s+1ϕ
µ
s . (19)

The condition (13) implies that

∑

1≤i≤N+1, i 6=m+1

γ1i

N∑

s=1

ri,s+1ϕ
µ
s =

N∑

s=1

rN+1,sϕ
µ
s .

Thus, using the last relation and relation (19), we obtain

N∑

s=1

rN+1,sϕ
µ
s =

N∑

s=1

rN+1,sψ
µ
s . (20)
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Combining (18) and (20), we get the system of N equations with N

unknowns

N∑

s=1

ris(ϕ
µ
s − ψµ

s ) = 0 (i = 1, . . . , N + 1; i 6= m). (21)

The rows of system (21) coincide with the linearly independent rows
gi (i = 1, . . . , N + 1; i 6= m). Hence ϕµ

s − ψµ
s = 0, i.e., ϕµ

s = ψµ
s (s =

1, . . . , N ; µ = 0, . . . , k − 1). We have thus proved that W k
γ (0, N + 1) ⊂

RQ(W̊ k(0, N + 1)).

Remark 1. It can be given the following equivalent definition of the sub-
space W k

γ (0, N + 1). W k
γ (0, N + 1) is the subspace of functions from

W k(0, N + 1) satisfying conditions

u(µ)(0) =
∑

1≤i≤N+1, i 6=m′
γ′1iu

(µ)(i),

u(µ)(m′) =
∑

1≤i≤N, i 6=m′
γ′2iu

(µ)(i),

where m′ is a fixed point from the set {1, . . . , N}, γ′1i(i = 1, . . . , N+1, i 6= m′),
γ′2i(i = 1, . . . , N, i 6= m′) are real numbers; µ = 0, . . . , k − 1; k ≥ 1.

Let us introduce the sets

M = {u ∈ W̊ 1(0, N + 1) : RQu ∈ W 2(0, N + 1)},
Mk = {u ∈ W̊ 1(0, N + 1) : u, RQu ∈ W k+2(0, N + 1)} =

= {u ∈ M : u, RQu ∈ W k+2(0, N + 1)},

where k = 0, 1, . . .

These sets will play the role of the domains of the corresponding differen-
tial–difference operators.

We denote by G1
j (G2

j) the j-th column of the N×(N+1)-matrix obtained
from R1 by deleting the first (last) row (j = 1, . . . , N + 1). Notice that
Conjecture (1) implies that G1

1 6= 0, G2
N+1 6= 0.

The following lemma allows to find out the structure of the sets Mk.

Lemma 5. For any n ≥ 2, we have:
(a) Suppose that G1

1 and G2
N+1 are linearly independent. Then

{v ∈ M : v, RQv ∈ W n(0, N + 1)} = W̊ n(0, N + 1).
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(b) Suppose that G1
1 and G2

N+1 are linearly dependent. Then

{v ∈ M : v, RQv ∈ W n(0, N + 1)}
= {v ∈ M : RQv ∈ W n(0, N + 1), (Uv)

(µ)
l+1(0 + 0) = (Uv)

(µ)
l (1− 0),

µ = 1, . . . , n− 1},
where l ∈ {1, . . . , N} is a number satisfying the following condition: deter-
minant of the matrix with the elements rij, where 1 ≤ i, j ≤ N, i 6= m, j 6= l,
doesn’t equal zero. (By virtue of the linearly independence of the rows gi, i =
1, . . . N, i 6= m, there really exists such a point l.)

Proof. First let us prove (a).
The inclusion W̊ n(0, N +1) ⊂ {v ∈ M : v, RQv ∈ W n(0, N +1)} follows

from Lemma (3). Let us prove the inverse inclusion.
Let v ∈ W̊ 1(0, N +1)∩W n(0, N +1), RQv ∈ W n(0, N +1). Then, using

the notation of Theorem (1), for all µ = 1, . . . , n− 1, we obtain

N+1∑

s=1

ri+1,sϕ
µ
s−1 =

N+1∑

s=1

risψ
µ
s (i = 1, . . . , N). (22)

Regrouping the summands in (22) and noticing that ri+1,s+1 = ris (1 ≤ i, s ≤
N), we get

N∑

s=1

ris(ϕ
µ
s − ψµ

s ) = −ri+1,1ϕ
µ
0 + ri,N+1ψ

µ
N+1 (i = 1, . . . , N). (23)

Since v ∈ W n(0, N + 1), we have ϕµ
s = ψµ

s (s = 1, . . . , N). Hence

−ri+1,1ϕ
µ
0 + ri,N+1ψ

µ
N+1 = 0 (i = 1, . . . , N).

But the last relations are equivalent to the following:

−G1
1ϕ

µ
0 + G2

N+1ψ
µ
N+1 = 0.

Thus, by virtue of the linearly independence of G1
1 and G2

N+1, we have ϕµ
0 =

ψµ
N+1 = 0. This implies that v ∈ W̊ n(0, N + 1).

Now let us prove (b). The inclusion

{v ∈ M : v, RQv ∈ W n(0, N + 1)}
⊂ {v ∈ M : RQv ∈ W n(0, N + 1), (Uv)

(µ)
l+1(0 + 0) = (Uv)

(µ)
l (1− 0),

µ = 1, . . . , n− 1}
is obviously.
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Let us prove the inverse inclusion. Let

v ∈ {v ∈ M : RQv ∈ W n(0, N + 1), (Uv)
(µ)
l+1(0 + 0) = (Uv)

(µ)
l (1− 0),

µ = 1, . . . , n− 1}.
Note that it cannot be written “v(µ)(l− 0) = v(µ)(l +0)” here and in the

statement of the lemma because we don’t know beforehand if the derivative
of order µ for the function v belongs to the corresponding Sobolev space.
Thus we have to write “(Uv)

(µ)
l+1(0 + 0) = (Uv)

(µ)
l (1− 0)”.

Since G1
1 and G2

N+1 are linearly dependent, G1
1 6= 0 and G2

N+1 6= 0, there
exist non–zero real numbers α1, α2 such that

α1G
1
1 + α2G

2
N+1 = 0. (24)

Now we shall show that, in this case,

α1(Uv)
(µ)
N+1(1− 0) + α2(Uv)

(µ)
1 (0 + 0) ≡ α1ψ

µ
N+1 + α2ϕ

µ
0 = 0. (25)

Denote w = RQv. Since (Uv)(µ)(t) = (R−1
1 Uw(µ))(t) (t ∈ (0, 1)), we can

rewrite (25) in the form

α1

N+1∑

i=1

Bi,N+1

det R1

(Uw(µ))i(1− 0) + α2

N+1∑

i=1

Bi1

det R1

(Uw(µ))i(0 + 0) = 0. (26)

Since B11 = BN+1,N+1 = det R2 = 0, relation (26) has the form

N∑

i=1

(α1Bi,N+1 + α2Bi+1,1)w
(µ)(i) = 0. (27)

Then, analyzing Bi,N+1, Bi+1,1 and using (24), we see that α1Bi,N+1 +
α2Bi+1,1 = 0 (i = 1, . . . , N).

Therefore (27) is identical, i.e., (25) is valid for any

v ∈ {v ∈ M : RQv ∈ W n(0, N + 1), (Uv)
(µ)
l+1(0 + 0) = (Uv)

(µ)
l (1− 0),

µ = 1, . . . , n− 1}.
Further, we have (likewise (23))

N∑

s=1

ris(ϕ
µ
s − ψµ

s ) = −ri+1,1ϕ
µ
0 + ri,N+1ψ

µ
N+1 (i = 1, . . . , N). (28)

By virtue (24), (25), system (28) will have the form

N∑

s=1

ris(ϕ
µ
s − ψµ

s ) = 0 (i = 1, . . . , N). (29)
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Since ϕµ
l = ψµ

l and the m-th row of (29) is a linear combination of the other
ones, system (29) is equivalent to the following:

∑

1≤s≤N, s 6=l

ris(ϕ
µ
s − ψµ

s ) = 0 (i = 1, . . . , N ; i 6= m). (30)

Thus we have the system of (N − 1) equations with (N − 1) unknowns.
Selection of point l implies non-singularity of the matrix of system (30). This
system has a unique trivial solution. Hence, for any µ = 0, . . . , n− 1, we get
ϕµ

s = ψµ
s (s = 1, . . . N). Therefore v ∈ W n(0, N + 1) and thus Lemma (5) is

proved.

Let Rk
Q : W k+2(0, N + 1) → W k+2(0, N + 1) be a bounded operator

defined by D(Rk
Q) = Mk, Rk

Qv = RQv (v ∈ D(Rk
Q)), where k ≥ 0.

Theorem 2. The operator Rk
Q (k ≥ 0) is Fredholm, dim ker(Rk

Q) = 0,

codim Im (Rk
Q) =

{
2(k + 2), if G1

1, G2
N+1 are linearly independent,

k + 3, if G1
1, G2

N+1 are linearly dependent.

Proof. Let G1
1, G2

N+1 be linearly independent. In this case, by virtue
of Lemma (5), the domain Mk of the operator Rk

Q coincides with the space

W̊ k+2(0, N + 1). By virtue of Theorem (1), the operator Rk
Q maps Mk onto

W k+2
γ (0, N +1) in a one–to–one manner. This implies that dim ker(Rk

Q) = 0.
Now let us find codim Im (Rk

Q). We consider the equation

Rk
Qu = w (w ∈ W k+2(0, N + 1)). (31)

Theorem (1) implies that equation (31) has a solution u ∈ Mk =
W̊ k+2(0, N + 1) iff w ∈ W k+2

γ (0, N + 1), i.e., iff w satisfies the conditions

w(µ)(N + 1) =
∑

1≤i≤N+1, i 6=m+1
γ1iw

(µ)(i− 1),

w(µ)(m) =
∑

1≤i≤N, i6=m
γ2iw

(µ)(i) (µ = 0, . . . , k + 1).

We introduce 2(k + 2) linear functionals Fjµ (j = 0, 1; µ = 0, . . . , k + 1)
by the formulas

F0µ(w) = w(µ)(N + 1)− ∑
1≤i≤N+1, i6=m+1

γ1iw
(µ)(i− 1),

F1µ(w) = w(µ)(m)− ∑
1≤i≤N, i 6=m

γ2iw
(µ)(i).

(32)

By virtue of the trace theorem (for example, see [2]), Fjµ are continuous
functionals over W k+2(0, N +1). It is not hard to check that Fjµ are linearly
independent.
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From the Riesz theorem it follows that Fjµ(w) = (w, fjµ)W k+2(0,N+1),

where fjµ ∈ W k+2(0, N + 1) (j = 0, 1; µ = 0, . . . , k + 1) are linearly indepen-
dent functions. This implies that codim Im (Rk

Q) = 2(k + 2).
Now we consider the other case. Let G1

1, G2
N+1 be linearly dependent.

Since D(Rk
Q) ⊂ W̊ 1(0, N + 1), RQ maps W̊ 1(0, N + 1) onto W 1

γ (0, N + 1) in
a one–to–one manner, and RQ ⊃ Rk

Q, it follows that dim ker(Rk
Q) = 0.

Let us find codim Im (Rk
Q). We consider the equation

Rk
Qv = w (w ∈ W k+2(0, N + 1)). (33)

From Theorem (1) and Lemma (5), it follows that equation (33) has a
solution v ∈ Mk iff w satisfies the conditions

w(N + 1) =
∑

1≤i≤N+1, i 6=m+1

γ1iw(i− 1), w(m) =
∑

1≤i≤N, i 6=m

γ2iw(i), (34)

(Uv)
(µ)
l+1(0 + 0) = (Uv)

(µ)
l (1− 0) (µ = 1, . . . , k + 1). (35)

Since

(Uv)
(µ)
l+1(0 + 0) =

N+1∑

i=1

Bi,l+1

det R1

(Uw(µ))i(0 + 0),

(Uv)
(µ)
l (1− 0) =

N+1∑

i=1

Bil

det R1

(Uw(µ))i(1− 0),

conditions (35) will have the form

N+1∑

i=1

Bi,l+1w
(µ)(i− 1) =

N+1∑

i=1

Bilw
(µ)(i).

And, after regrouping the summands, we obtain, for µ = 1, . . . , k + 1,

B1,l+1w
(µ)(0) +

N∑

i=1

(Bi+1,l+1 −Bil)w
(µ)(i)−BN+1,lw

(µ)(N + 1) = 0. (36)

Thus a solution u of equation (33) belongs to Mk iff w satisfies conditions (34)
and (36). Further, as above, we can introduce k + 3 linear continuous func-
tionals over W k+2(0, N + 1), corresponding conditions (34), (36), and prove
that they are linearly independent. (To prove it one can use the condition
BN+1,l 6= 0 which follows from Conjecture (1) and the condition on the point
l.) And, as above, using the Riesz theorem, we get codim Im (Rk

Q) = k + 3.
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2. The boundary value problem for the differential–difference
equation with homogeneous boundary conditions. We consider the
differential–difference equation

−(Rv)′′(t) + (A1v)(t) = f0(t) (t ∈ (0, N + 1)) (37)

with homogeneous boundary conditions

v(t) = 0 (t ∈ [−N, 0] ∪ [N + 1, 2N + 1]). (38)

Here R : L2(R) → L2(R) is the difference operator defined by

(Rv)(t) =
N∑

j=−N

bjv(t + j),

bj ∈ R; N ∈ N; A1 : W̊ 1(0, N + 1) → L2(0, N + 1) is a linear bounded oper-
ator; f0 ∈ L2(0, N + 1). One can easily reduce a differential–difference equa-
tion with non-homogeneous boundary conditions to differential–difference
equation with homogeneous boundary conditions (see section 3). Therefore,
without loss of generality, we can study the equation (37) with homogeneous
boundary conditions (38).

Since the shifts t → t + j can map the points of the interval [0, N + 1]
into the set [−N, 0] ∪ [N + 1, 2N + 1], we consider the boundary conditions
for the equation (37) not only at the ends of the interval [0, N + 1], but also
on the set [−N, 0] ∪ [N + 1, 2N + 1].

Let AR : L2(0, N + 1) → L2(0, N + 1) be the unbounded operator given
by

D(AR) = M = {v ∈ W̊ 1(0, N + 1) : RQv ∈ W 2(0, N + 1)},
ARv = −(RQv)′′(t) + A1v (v ∈ D(AR)).

Definition 1. A function v ∈ D(AR) is called a generalized solution to
problem (37), (38) if ARv = f0.

Theorem 3. The operator AR is Fredholm and indAR = 0.

To prove Theorem (3) we shall first consider the bounded operator A :
W 2(0, N + 1) ∩W 1

γ (0, N + 1) → L2(0, N + 1) defined by the formula

Au = −u′′ + A1R
−1
Q u.

Here we suppose that the space W 2(0, N + 1)∩W 1
γ (0, N + 1) has a topology

of the space W 2(0, N + 1). Let us prove the following lemma.
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Lemma 6. The bounded operator A is Fredholm and indA = 0.

Proof. We introduce the bounded operator A2 : W 2(0, N+1)∩W 1
γ (0, N+

1) → L2(0, N + 1) defined by the formula

A2u = u′′(t).

Here we also suppose that the space W 2(0, N + 1) ∩ W 1
γ (0, N + 1) has a

topology of W 2(0, N + 1).

Thus we have A = −A2 + A1R
−1
Q . We show that the operator A2 is

Fredholm and indA2 = 0.

It is clear that the homogeneous equation A2u ≡ u′′(t) = 0 has a class of
solutions u(t) = c1t + c2 from W 2(0, N + 1). Therefore u belongs to ker(A2)
iff u satisfies conditions (5), (6) (for µ = 0)

c1[N + 1− ∑
2≤i≤N+1, i 6=m+1

γ1i(i− 1)] + c2[1− ∑
1≤i≤N+1, i 6=m+1

γ1i] = 0,

c1[m− ∑
1≤i≤N, i6=m

γ2ii] + c2[1− ∑
1≤i≤N, i 6=m

γ2i] = 0.
(39)

Parallel with the homogeneous equation, we shall consider the non-homoge-
neous equation

A2v ≡ v′′(t) = f(t) (f ∈ L2(0, N + 1)).

For any function f ∈ L2(0, N + 1), there exists a class of solutions v(t) =

d1t + d2 +
t∫
0
(t − τ)f(τ) dτ from W 2(0, N + 1). Therefore v belongs to the

domain of the operator A2 iff v satisfies conditions (5), (6) (for µ = 0)

d1[N + 1− ∑
2≤i≤N+1, i 6=m+1

γ1i(i− 1)] + d2[1− ∑
1≤i≤N+1, i 6=m+1

γ1i]

=
∑

1≤i≤N, i6=m
γ1,i+1

i∫
0
(i− τ)f(τ) dτ −

N+1∫
0

(N + 1− τ)f(τ) dτ,

d1[m− ∑
1≤i≤N, i6=m

γ2ii] + d2[1− ∑
1≤i≤N, i 6=m

γ2i]

=
∑

1≤i≤N, i6=m
γ2i

i∫
0
(i− τ)f(τ) dτ −

m∫
0
(m− τ)f(τ) dτ.

(40)

It is clear that Φi(f) ≡ (f, φi)L2(0,N+1) ≡
i∫
0
(i− τ)f(τ) dτ (i = 1, . . . , N +

1) are the linear continuous functionals over L2(0, N + 1) (here φi(τ) =
(i− τ)I(i− τ), where I(t) = 1, t ≥ 0; I(t) = 0, t < 0).
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It is not hard to prove that the functionals Φi (i = 1, . . . , N + 1) are
linearly independent. This implies that

F1(f) =
∑

1≤i≤N, i6=m
γ1,i+1Φi(f)− ΦN+1(f),

F2(f) =
∑

1≤i≤N, i6=m
γ2iΦi(f)− Φm(f)

are also non-zero linearly independent continuous functionals over L2(0, N +
1).

Thus system (40) will have the form

d1[N + 1− ∑
1≤i≤N+1, i 6=m+1

γ1i(i− 1)] + d2[1− ∑
1≤i≤N+1, i6=m+1

γ1i] = F1(f),

d1[m− ∑
1≤i≤N, i 6=m

γ2ii] + d2[1− ∑
1≤i≤N, i6=m

γ2i] = F2(f).

(41)
We analyse system (39) and system (41) simultaneously. Notice that the

matrix of system (39) coincides with the matrix of system (41). Denote this
matrix by M. Let us consider three cases.

1. Rank (M) = 2. It is easy to see that we have dim ker(A2) = 0,
codim Im (A2) = 0, i.e., indA2 = 0.

2. Rank (M) = 1. Clearly, dim ker(A2) = 1. Using the Riesz theorem,
we obtain codim Im (A2) = 1. Hence, in this case, we also have ind A2 = 0.

3. Rank (M) = 0. In this case, we see that dim ker(A2) = 2. Using again
the Riesz theorem, we obtain codim Im (A2) = 2, i.e., indA2 = 0.

Thus we have proved that A2 is Fredholm and ind A2 = 0.
It is not hard to check that the operator A1R

−1
Q : W 2(0, N + 1) ∩

W 1
γ (0, N+1) → L2(0, N+1) is bounded if the space W 2(0, N+1)∩W 1

γ (0, N+
1) has a topology of W 1(0, N +1). Therefore, by virtue of the compactness of
the embedding operator from W 2(0, N + 1) into W 1(0, N + 1), the operator
A1R

−1
Q : W 2(0, N +1)∩W 1

γ (0, N +1) → L2(0, N +1) is compact if the space
W 2(0, N + 1) ∩ W 1

γ (0, N + 1) has a topology of W 2(0, N + 1). Using the
theorem about the compact perturbations (see [3], theorem 16.4), we have
that the operator A = −A2 + A1R

−1
Q is Fredholm and ind A = 0.

Now let us prove Theorem (3).
Proof of Theorem (3). The operator AR can be presented as a composi-

tion AR = AR̃Q, where
A : W 2(0, N + 1) ∩W 1

γ (0, N + 1) → L2(0, N + 1) is given by

Au = −u′′ + A1R
−1
Q u,
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R̃Q : L2(0, N + 1) → W 2(0, N + 1) ∩W 1
γ (0, N + 1) ⊂ W 2(0, N + 1) is given

by

D(R̃Q) = D(AR) = M,

R̃Qu = RQu (u ∈ D(R̃Q)).

By virtue of Lemma (6) and Theorem (1), the operators A and R̃Q are
Fredholm and ind A = ind R̃Q = 0. Hence the operator AR = AR̃Q is also
Fredholm and indAR = 0 (see [3], theorem 12.2).

3. Smoothness of generalized solutions to boundary value prob-
lem. It is known that the smoothness of generalized solutions of differential–
difference equations can be broken even for infinitely differentiable right hand
sides of equations. But there exists the following result.

Theorem 4. Let f0 ∈ W k(0, N + 1) and v be a generalized solution to
boundary value problem (37), (38) such that A1v ∈ W k(0, N + 1).

Then v ∈ W k+2(Qs), s = 1, . . . , N + 1.

Proof. The proof follows from Lemma (4).

To obtain a smoothness of generalized solutions it is necessary to im-
pose some additional conditions on right hand side of the equation (and on
the boundary functions, in the case of non-homogeneous boundary condi-
tions). Now we shall find out a type of these conditions for the case of the
homogeneous boundary value problem.

We consider the bounded operator Ak
R : W k+2(0, N +1) → W k(0, N +1)

given by

D(Ak
R) = Mk,

Ak
Rv = −(RQv)′′(t),

and the bounded operator Bk
R : W̊ k+2(0, N + 1) → W k(0, N + 1) defined by

the formula Bk
Rv = −(RQv)′′(t).

Note that, by virtue of Lemma (5), Ak
R coincides with Bk

R if G1
1, G2

N+1

are linearly independent.

Theorem 5. The operator Ak
R (k ≥ 0) is Fredholm, dim ker(Ak

R) = 0,

codim Im (Ak
R) =

{
2(k + 1), if G1

1, G2
N+1 are linearly independent,

k + 1, if G1
1, G2

N+1 are linearly dependent.
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Proof. First we prove that dim ker(Ak
R) = 0. Let v ∈ ker(Ak

R). Then
(RQv)′′(t) = 0. Hence (RQv)(t) = c1 + c2t. Since det R1 6= 0, we obtain

v(t) = U−1R−1
1 U(c1 + c2t) (t ∈ (0, N + 1)).

Thus a function v is piecewise linear on the interval (0, N + 1). Therefore
v ∈ W 2(0, N +1)∩W̊ 1(0, N +1) if and only if v(t) = 0, i.e., dim ker(Ak

R) = 0.
Let us present the operator Ak

R as a composition Ak
R = A2R

k
Q. Here

Rk
Q : W k+2(0, N+1) → W k+2(0, N+1) is the operator introduced in section 1,

A2 : W k+2(0, N +1) → W k(0, N +1) is the bounded operator defined by the
formula (A2v)(t) = −v′′(t). It is obvious that A2 is Fredholm and ind A2 =
2. Therefore, using Theorem (2) and the theorem about a composition of
Fredholmian operators (see [3], theorem 12.2), we obtain the statement of
Theorem (5).

Theorem 6. The operator Bk
R (k ≥ 0) is Fredholm, dim ker(Bk

R) =
0, codim Im (Bk

R) = 2(k + 1).

Proof. The idea of the proof is analogous to the previous proof.

Now we shall generalize these results to the case of the boundary value
problem with non-homogeneous boundary conditions.

We consider the differential–difference equation

−(Ry)′′(t) + A1y = f0(t) (t ∈ (0, N + 1)) (42)

with non-homogeneous boundary conditions
{

y(t) = f1(t) (t ∈ [−N, 0]),
y(t) = f2(t) (t ∈ [N + 1, 2N + 1]),

(43)

where

(Ry)(t) =
N∑

j=−N

bjy(t + j),

bj ∈ R, N is a natural number; A1 : W 1(−N, 2N + 1) → L2(0, N + 1) is a
linear bounded operator, f = (f0, f1, f2) ∈ W(−N, 2N +1) = L2(0, N +1)×
W 1(−N, 0)×W 1(N + 1, 2N + 1).

We introduce the linear unbounded operator L : L2(−N, 2N + 1) →
W(−N, 2N + 1) with the domain D(L) = {y ∈ W 1(−N, 2N + 1) : PQRy ∈
W 2(0, N + 1)} by the formula

Ly =
(
−(PQRy)′′ + A1y, y|(−N,0), y|(N+1,2N+1)

)
.
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Definition 2. A function y ∈ D(L) is called a generalized solution to
problem (42), (43) if Ly = (f0, f1, f2).

To obtain the smoothness of the generalized solution in the interval
(−N, 2N + 1) we suppose that A1 : W k+1(−N, 2N + 1) → W k(0, N + 1) is
a bounded operator and f = (f0, f1, f2) ∈ Wk(−N, 2N + 1) = W k(0, N +
1)×W k+2(−N, 0)×W k+2(N + 1, 2N + 1).

We consider the linear bounded operator LB : W k+2(−N, 2N + 1) →
Wk(−N, 2N + 1) by the formula

LBy = Ly (y ∈ W k+2(−N, 2N + 1)).

Theorem 7. The operator LB is Fredholm and indLB = −2(k + 1).

Proof. By virtue of the compactness of the imbedding operator from
W k+2(−N, 2N + 1) into W k+1(−N, 2N + 1), we have that the operator
A1 : W k+2(−N, 2N +1) → W k(0, N +1) is compact. Therefore, by theorem
16.4, [3], it suffices to prove Theorem (7) in the case A1 = 0.

Let us assume now that A1 = 0
We introduce the function

ψ(t) =





f1(t) (t ∈ [−N, 0]),
f2(t) (t ∈ [N, 2N + 1]),

η(t)
k+1∑
i=0

f
(i)
1 (0)ti/i! + η(t−N − 1)

k+1∑
i=0

f
(i)
2 (N + 1)(t−N − 1)i/i!

(t ∈ (0, N + 1)),

where η ∈ Ċ∞(R), η(t) = 1 (|t| < 1/4), η(t) = 0 (|t| > 1/3). It is clear
that ψ ∈ W k+2(−N, 2N + 1). Denote w = y − ψ ∈ W k+2(0, N + 1) (y ∈
W k+2(−N, 2N +1)). We see that the equation LBy = f (f ∈ Wk(−N, 2N +
1)) has a solution y ∈ W k+2(−N, 2N + 1) iff w belongs to W̊ k+2(0, N + 1)
and is a solution of the equation

Bk
Rw = f0 + (Rψ)′′. (44)

By Theorem (6), equation (44) has a solution if and only if

(f0 + (Rψ)′′, ϕj)W k(0,N+1) = 0 (j = 1, . . . , 2(k + 1)) , (45)

where ϕj ∈ W k(0, N + 1) are linearly independent functions.
From the trace theorem and the Riesz theorem it follows that condi-

tions (45) will have the form

(f, Gj)Wk(−N, 2N+1) = 0 (j = 1, . . . , 2(k + 1)) , (46)
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where f = (f0, f1, f2), vector-valued functions Gj = (ϕj, B1ϕj, B2ϕj) are lin-
early independent (here B1 : W k(0, N +1) → W k+2(−N, 0), B2 : W k(0, N +
1) → W k+2(N + 1, 2N + 1) are linear bounded operators). Thus for A1 = 0
the equation LBy = f has a solution y ∈ W k+2(−N, 2N + 1) for f ∈
Wk(−N, 2N + 1) if and only if conditions (46) are fulfilled.

Furthermore, by Theorem (6), dim ker(LB) = 0.

If we demand the smoothness of the solution only in the interval (0, N +
1), we can weaken the conditions of orthogonality in some cases.

To formalize this statement we suppose that A1 : W 1(−N, 2N + 1) →
W k(0, N+1) is a compact operator. Let us introduce the unbounded operator
LA : W 1(−N, 2N+1) → W k(0, N+1)×W 1(−N, 0)×W 1(N+1, 2N+1) with
the domain D(LA) = {y ∈ W 1(−N, 2N +1) : PQy, PQRy ∈ W k+2(0, N +1)}
by the formula

LAy = Ly (y ∈ D(LA)).

Theorem 8. The operator LA is Fredholm and

indLA =

{ −2(k + 1), if G1
1, G2

N+1 are linearly independent,
−(k + 1), if G1

1, G2
N+1 are linearly dependent.

Proof. The proof is analogous to the previous proof. The main distinc-
tion refers to the operator on left hand side of equation (44) to which we
reduce boundary value problem (42), (43).

In this case, Ak
R takes the place of Bk

R.

Remark 2. Using Lemma (5), one can easily show that D(LA) =
W k+2(−N, 2N + 1) if G1

1, G2
N+1 are linearly independent. In this case, a

generalized solution has a proper smoothness in the whole interval (−N, 2N+
1).

Thus we see that the smoothness of generalized solutions to the boundary
value problem to differential–difference equations is not broken in the interval
(0, N +1) (in the interval (−N, 2N +1)) if we impose not only the conditions
of smoothness but also some conditions of orthogonality on the right hand
side of the differential–difference equation and on the boundary functions.
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