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1. The most difficult situation in the theory of ellip-
tic problems with nonlocal boundary value conditions
arises when the support of nonlocal terms intersects the
boundary of the domain [1–8]. In this case, solutions
may have power singularities near some points on the
boundary. In this paper, we find conditions necessary

and sufficient for any generalized solution 

 

u

 

 

 

∈

 

 (

 

G

 

)

 

to a nonlocal problem in a plane bounded domain 

 

G

 

 to

belong to 

 

(

 

G

 

)

 

. We study the case in which different
nonlocal conditions are set on different parts of the
boundary, the coefficients of the nonlocal terms sup-
ported near the points of conjugation of boundary con-
ditions are variable, and the nonlocal operators corre-
sponding to the nonlocal terms supported outside the
conjugation points are abstract. Both homogeneous and
nonhomogeneous nonlocal conditions are investigated.
We consider a nonlocal perturbation of the Dirichlet
problem for an elliptic equation of order two. However,
the obtained results can be generalized to elliptic equa-
tions of order 

 

2

 

m

 

 with general nonlocal conditions.

Let 

 

G

 

 

 

⊂ 

 

�

 

2

 

 be a bounded domain with boundary 

 

∂

 

G

 

.
We introduce a set 

 

�

 

 

 

⊂

 

 

 

∂

 

G

 

 consisting of finitely many

points. Let 

 

∂

 

G

 

\

 

�

 

 = 

 

, where 

 

Γ

 

i

 

 are open (in the

topology of 

 

∂

 

G

 

) 

 

C

 

∞

 

-curves. We assume that the domain

 

G

 

 is a plane angle in some neighborhood of each point

 

g

 

 

 

∈

 

 

 

�

 

. Let 

 

P

 

 denote a second-order differential opera-
tor with smooth complex-valued coefficients properly
elliptic in .

For any closed set 

 

�

 

, we set 

 

�

 

ε

 

(

 

�

 

) = {

 

y

 

 

 

∈

 

 

 

�

 

2

 

:

 

dist

 

(

 

y

 

, 

 

�

 

) < 

 

ε

 

}

 

, where 

 

ε

 

 > 0.

Now, we define the operators corresponding to the
nonlocal conditions near the set 

 

�

 

. Let 

 

Ω

 

is

 

 (

 

i

 

 = 1, 2, …,

 

N

 

; 

 

s

 

 = 1, 2, …, 

 

S

 

i

 

)

 

 denote 

 

C

 

∞

 

-diffeomorphisms taking a

 

1
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∪
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neighborhood 

 

�

 

i

 

 of the curve 

 

 

 

to the set

 

Ω

 

is

 

(

 

�

 

i

 

) 

 

in such a way that 

 

Ω

 

is

 

(

 

Γ

 

i

 

 

 

∩

 

 

 

�

 

ε

 

(

 

�

 

)) 

 

⊂ 

 

G

 

 

 

and 

 

Ω

 

is

 

(

 

g

 

)

 

∈

 

 

 

�

 

 

 

for 

 

g

 

 

 

∈ 

 

 

 

∩

 

 

 

�

 

. Thus, the transformations 

 

Ω

 

is

 

 map
the arcs 

 

Γ

 

i

 

 

 

∩

 

 

 

�

 

ε

 

(

 

�

 

)

 

 strictly inside the domain 

 

G

 

 and the

endpoints 

 

 

 

∩

 

 

 

�

 

 of these arc are mapped to endpoints.

Let us specify the structure of the transformations

 

Ω

 

is

 

 near the set 

 

�

 

. Let 

 

Ω

 

is

 

: 

 

�

 

i

 

 

 

→ Ω

 

is

 

(

 

�

 

i

 

)

 

 denote the trans-

formation  :

 

Ω

 

is

 

(

 

�

 

i

 

) 

 

→

 

 

 

�

 

i

 

, and let : 

 

Ω

 

is

 

(

 

�

 

i

 

) 

 

→

 

 

 

�i

be the transformation inverse to Ωis. The set of points

(… (g)) ∈ � (1 ≤ sj ≤ , j = 1, 2, …, q) is

called an orbit of the point g ∈ �. In other words, the
orbit of g ∈ � is formed by the points that can be
obtained by successively applying the transformations

 to g. For simplicity, we assume that the set � = {g1,
g2, …, gN} consists of only one orbit.

Let ε be so small that there exist neighborhoods
(gj) of the points gj ∈ � satisfying the following

conditions: (i) (gj) ⊃ �ε(gj), (ii) the boundary ∂G is

an angle in the neighborhood (gj), (iii)  ∩

 =  for any gj, gk ∈ � with k ≠ j, (iv) if gj ∈ 

and Ωis(gj) = gk, then �ε(gj) ⊂ �i and Ωis(�ε(gj)) ⊂
(gk).

For each point gj ∈  ∩ �, we fix a transformation
y � y'(gj) being a composition of the shift by the vector

–  and the rotation through some angle such that the

set (gj) is taken to a neighborhood (0) of the ori-

gin, whereas G ∩ (gj) and Γi ∩ (gj) are taken to

the intersection of the plane angle Kj = {y ∈ �2: r > 0,
|ω| < ωj} with (0) and to the intersection of the side

γjσ = {y ∈ �2: ω = (–1)σωj} (σ = 1 or σ = 2) of the angle
Kj with (0), respectively. Here, (ω, r) are the polar
coordinates of y and 0 < ωj < π.
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Condition 1. The transformation Ωis(y), where y ∈
�ε(gj) and gj ∈  ∩ �, corresponds to the composition
of a rotation and a homothety of the vector y' in the new
variables {y'}.

Let us introduce nonlocal operators  by the for-

mula u = (y)u(Ωis(y)) for y ∈ Γi ∩ �ε(�) and

u = 0 for y ∈ Γi\(Γi ∩ �ε(�)), where bis ∈ C∞(�2)

and suppbis ⊂ �ε(�). Since u = 0 whenever suppu ⊂

\ , we say that the operators  correspond

to the nonlocal terms supported near the set �.

Consider the operators  satisfying the following
condition [cf. (2.5) and (2.6) in [2] and (3.4) and (3.5)
in [6]].

Condition 2. There exist numbers κ1 > κ2 > 0 and
ρ > 0 such that the inequalities

(1)

hold for any u ∈ (G\ ) ∩ (Gρ); here, Gρ =
{y ∈ G: dist(y, ∂G) > ρ}, i = 1, 2, …, N, and c1, c2 > 0.

In particular, the first inequality in (1) means that

u = 0 whenever suppu ⊂ (�). For this reason,

we say that the operators  correspond to the nonlocal
terms supported outside the set �. Examples of opera-

tors  can be found in [2, 5].

Throughout the paper, we assume that Conditions 1
and 2 hold.

Consider the nonlocal elliptic boundary value
problem

(2)

(3)

We set (∂G) =  for integer

k ≥ 1. For any set X ∈ �2 having nonempty interior, we

use (X) to denote the set of functions infinitely dif-

ferentiable on  and supported on X.

Γi
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1 bis
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Bi
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N
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X

Definition 1. A function u ∈ (G) is called a gen-
eralized solution to problem (2), (3) with right-hand

side {f0, fi} ∈ L2(G) × (∂G) if u satisfies nonlocal
conditions (3) [where the equalities are understood as

those in (Γi)] and Eq. (2) in the sense of distribu-
tions.

Now, let us write a model nonlocal problem corre-
sponding to the points of the set (orbit) �. Let uj(y)

denote the function u(y) for y ∈ (gj). If gj ∈ , y ∈
�ε(gj), and Ωis (y) ∈ (gk), then u(Ωis(y)) denotes the
function uk(Ωis(y)). In this case, nonlocal problem (2),
(3) takes the following form in the ε-neighborhood of
the set (orbit) �:

where ψi = fi – u. Let y � y'(gj) be the change of

variables described above. We set  = Kj ∩ �ε(0) and

 = γjσ ∩ �ε(0) and introduce the functions

(4)

where σ = 1 (σ = 2) if the transformation y � y'(gj)
takes Γi to the side γj1 (γj2) of the angle Kj. In what fol-
lows, we write y instead of y'. Using Condition 1, we
can write problem (2), (3) as

(5)

(6)

Here (and in what follows, unless otherwise stated), j,
k = 1, 2, …, N; σ = 1, 2; s = 0, 1, …, Sjσk; Pj are second-
order elliptic differential operators with smooth coeffi-
cients; U = (U1, U2, …, UN); bjσks are smooth functions
such that bjσj0 (y) ≡ 1; �jσks is the operator being the
composition of rotation through an angle ωjσks and a
homothety with coefficient χjσks > 0 in the y-plane. More-
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Si
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Bi
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ε
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ε
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over, |(–1)σωj + ωjσks| < ωk for (k, s) ≠ (j, 0) and ωjσj0 =
χjσj0 = 1 (i.e., �jσj0y ≡ y).

Suppose that, at y = 0, the principal parts of the opera-

tors Pj in polar coordinates have the form r–2 ω, ,

r . Consider the analytic operator-valued function

: (–ωj, ωj) → L2(–ωj, ωj) × �2) defined

by ϕ = ω, , iλ ϕj, bjσks(0) ×

ϕk((–1)σωj + ωjσks) . The basic definitions and facts

concerning analytic operator-valued functions can be
found in [9]. For our purposes, it is important that the

spectrum of the operator  is discrete and, for any
numbers c1 < c2, the strip c1 < Imλ < c2 contains at most

finitely many eigenvalues of the operator  (see

[4]). The spectral properties of the operator  play
a central role in the study of smoothness of generalized
solutions.

2. Let λ = λ0 be an eigenvalue of the operator .

Definition 2. We say that λ0 is a proper eigenvalue
if none of the eigenvectors ϕ(ω) = (ϕ1(ω), ϕ2(ω), …,
ϕN(ω)) corresponding to λ0 has an associated vector

and the functions ϕj(ω), where j = 1, 2, …, N, are
polynomials in y1 and y2. An eigenvalue which is not
proper is said to be improper.

The notion of a proper eigenvalue was originally
suggested by Kondrat’ev [10] for studying “local”
boundary value problems in nonsmooth domains.

Theorem 1. (i) Suppose that the strip –1 ≤ Imλ < 0

contains no eigenvalues of the operator  and u ∈
(G) is a generalized solution to problem (2), (3)

with right-hand side {f0, fi} ∈ L2(G) × (∂G). Then,

u ∈ (G).

(ii) Suppose that the strip – 1 ≤ Imλ < 0 contains an

improper eigenvalue of the operator . Then, there

exists a generalized solution u ∈ (G) to problem (2),
(3) with right-hand side {f0, 0}, where f0 ∈ L2(G), such

that u ∉ (G).

It remains to study the case in which the following
condition holds.

�̃ j -
 ∂

∂ω
-------

∂
∂r
-----



�̃ λ( ) W2
2

j

∏ (
j

∏

�̃ λ( ) �̃ j -




 ∂

∂ω
------- 

 χ jσks( )iλ

k s,
∑





�̃ λ( )

�̃ λ( )

�̃ λ( )

�̃ λ( )

r
iλ0

�̃ λ( )
W2

1

W2
3/2

W2
2

�̃ λ( )
W2

1

W2
2

Condition 3. The strip –1 ≤ Imλ < 0 contains the

unique eigenvalue λ = – i of the operator , and
this eigenvalue is proper.

First, consider problem (2), (3) with nonhomoge-
neous nonlocal conditions.

Let τjσ denote the unit vector codirected with the ray γjσ.

Consider the operators (0)Uk(�jσksy) .

Using the chain rule, we write them as

(7)

where (Dy) are first-order differential operators
with constant coefficients. In particular, we have

(Dy) = , because �jσj0y ≡ y. Formally replac-

ing the nonlocal operators by the corresponding local
operators in (7), we introduce the operators

(8)

If Condition 3 holds, then system of operators (8) is lin-
early dependent [11]. Let

(9)

be a maximal linearly independent subsystem of sys-

tem (8). In this case, any operator  not
included in system (9) can be represented as

(10)

where  are some constants. Let Zjσ ∈ ( )

be arbitrary functions. We set (r) =

Zjσ . Clearly,  ∈ (0, ε).

Definition 3. Let βj 'σ' be the constants involved in
(10). If the relations

(11)

hold for all indices j, σ corresponding to the operators
of system (8) not included in system (9), then we say
that the functions Zjσ satisfy consistency condition (11).

�̃ λ( )

∂
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k s,
∑
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Let us formulate conditions which ensure that the
generalized solutions are smooth. First, we show that
the right-hand sides fi in nonlocal conditions (3) cannot

be arbitrary functions from the space (Γi).

Consider the change of variables y � y'(gj)
described in Section 1. Let us introduce the functions

[cf. functions (4)]. Let (∂G) denote the set consist-

ing of functions {fi} ∈ (∂G) such that the functions
Fjσ satisfy consistency condition (11). The set

(∂G) is not closed in the topology of (∂G)
(see [11, Lemma 3.2]).

Lemma 1. Suppose that Condition 3 holds. Then

there exists a function {f0, fi} ∈ L2(G) × (∂G),

where {fi} ∉ (∂G), and a function u ∈ (G) such
that u is a generalized solution to problem (2), (3) with

right-hand side {f0, fi} and u ∉ (G).

It follows from Lemma 1 that, if we want any gen-
eralized solution to problem (2), (3) to be smooth, then
we must take right-hand sides {f0, fi} from the space

L2(G) × (∂G).

Let v ∈ (G\ ) be an arbitrary function.

Consider again the change of variables y � y'(gj) from
Section 1. Let us introduce the functions

Condition 4. For any function v ∈ (G\ )
and any constant vector C = (C1, C2, …, CN), the func-

tions  and BjσC, respectively, satisfy consistency
condition (11).

Theorem 2. Suppose that Condition 3 holds. Then,
the following assertions are valid.

(i) If Condition 4 holds and u ∈ (G) is a gener-
alized solution to problem (2), (3) with right-hand side

{f0, fi} ∈ L2(G) × (∂G), then u ∈ (G);

(ii) If Condition 4 is violated, then there exists a gen-

eralized solution u ∈ (G) to problem (2), (3) with

right-hand side {f0, fi} ∈ L2(G) × (∂G) such that u ∉

(G).

W2
3/2

F jσ y '( ) f i y y '( )( ), y ' γ jσ
ε∈=


2
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W2
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2
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2
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1


2
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2

Now, consider problem (2), (3) with more regular

right-hand sides {fi} ∈ (∂G),  = 0, in particu-

lar, with homogeneous nonlocal conditions.
Definition 4. We say that a function v ∈
(G\ ) is admissible if there exists a constant

vector C = (C1, C2, …, CN) such that

(12)

Any vector C satisfying relations (12) is called an
admissible vector corresponding to the function v.

The set of admissible functions is linear. Clearly, the
function v = 0 is admissible, and the vector C = 0 is an
admissible vector corresponding to v = 0. Moreover,
it can be shown that any generalized solution to prob-
lem (2), (3) with homogeneous nonlocal conditions is
an admissible function.

Consider the following condition (which is weaker
than Condition 4).

Condition 4'. For any admissible function v and any
admissible vector C corresponding to v, the functions

 + BjσC satisfy consistency condition (11).

Theorem 2'. Suppose that Condition 3 holds. Then,
the following assertions are valid.

(i) If Condition 4' holds and u ∈ (G) is a gener-
alized solution to problem (2), (3) with right-hand side

{f0, fi} ∈ L2(G) × (∂G),  = 0, then u ∈ (G);

(ii) If Condition 4' is violated, then there exists a

generalized solution u ∈ (G) to problem (2), (3)

with right-hand side {f0, fi} ∈ L2(G) × (∂G),

 = 0, such that u ∉ (G).

The proofs of Theorems 1, 2, and 2' are based on
results concerning the solvability of model nonlocal
problems in plane angles in Sobolev spaces [11] and on
the asymptotic behavior of solutions to these problems
in weighted spaces [2, 12].
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