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The most difficult case in studying elliptic problems
with nonlocal conditions is that where the support of
nonlocal data intersects the boundary (see [1–4]). In
this case, the solutions have power singularities near
some set. Therefore, it is natural to consider nonlocal
elliptic problems in weight spaces (see [5, 6]). In
obtaining 

 

a priori

 

 estimates of solutions and construct-
ing right regularizers of nonlocal problems in bounded
domains, model nonlocal boundary value problems in
planar and dihedral angles arise (see [3, 4]). In this
paper, an approach to studying nonlocal problems
based on the use of the Green formula and conjugate
nonlocal problems is suggested. This approach makes it
possible to remove additional constraints imposed in
[3] on the corresponding local model problem and
obtain necessary and sufficient conditions for the Fred-
holm property of nonlocal problems in planar angles
and the unique solvability of nonlocal problems in
dihedral angles. As the conjugate problems, nonlocal
transmission problems arise; they were earlier consid-
ered for bounded domains with smooth boundaries in

 

�

 

n

 

 [7, 8] and in the one-dimensional case [9].

1. Consider the dihedral angle 
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 = {
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z
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with the faces 
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j
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} (
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 = 1, 2)

 

 and the edge 

 

M
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x
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z
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 = 0,
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n

 

 – 2

 

}

 

. Here, 

 

x
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y

 

, 

 

z

 

) 

 

∈ 

 

�

 

n
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y

 

 

 

∈ 

 

�

 

2

 

, and 

 

z
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�

 

n

 

 – 2

 

;

 

r

 

, 

 

and 

 

ϕ

 

 are the polar coordinates of the point 

 

y

 

; and 

 

0 <

 

b

 

1

 

 < 

 

b

 

2

 

 < 2

 

π

 

.

Let 
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y
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D
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j

 

µ
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y
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D

 

z
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, and 
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D
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z

 

)

 

 denote
homogeneous differential operators with constant com-
plex coefficients of orders 

 

2

 

m

 

, 

 

m

 

j

 

µ

 

 

 

≤

 

 2

 

m

 

 

 

– 1, and 

 

m

 

j

 

µ

 

 

 

≤

 

2

 

m

 

 – 1, respectively (

 

j

 

 = 1, 2

 

 and 

 

µ

 

 = 1, 2, …, 

 

m

 

).
We assume that the operator 

 

�

 

(

 

D

 

y

 

, 

 

D

 

z

 

)

 

 is properly ellip-

tic and the system of operators {

 

B

 

j

 

µ

 

(

 

D

 

y

 

, 

 

D

 

z

 

)

 

 is nor-
mal and covers 

 

�

 

(

 

D

 

y

 

, 

 

D

 

z

 

)

 

 on 

 

Γ

 

j

 

 for 

 

j

 

 = 1, 2 (see [10,
Chapter 2]).

B jµ
�

}µ 1=
m

 

Consider the following nonlocal boundary value
problem in the dihedral angle 

 

Ω

 

:

 

(1)

(2)

 

Here and in what follows, the subscripts 

 

j

 

 and 

 

µ

 

 take the

values 

 

j

 

 = 1, 2

 

 and 

 

µ

 

 = 1, 2, …, 

 

m

 

; we write (

 

(

 

D

 

y

 

,

Dz)U)(�jy, z) to denote that the expression ( (Dy',
Dz')U)(x') is taken at x' = (�j y, z), where �j is the oper-
ator of rotation through the angle ϕj and dilation by a
factor of χj in the plane {y} such that b1 < b1 + ϕ1 = b2 +
ϕ2 = b < b2 and 0 < χj. Note that we impose no con-

straints on the nonlocal operators (Dy, Dz) (except
the constraint on their order).

Let us introduce the space (Ω) being the comple-

tion of the set ( \M) in the norm  =

, where ( \M) is

the set of functions infinitely differentiable in  and

compactly supported on \M; a ∈ �; and l ≥ 0 is an

integer. By (Γ) (l ≥ 1), we denote the space of

traces on an (n – 1)-dimensional half-plane Γ ⊂  with

the norm  = inf  over w ∈  

such that w|Γ = ψ.

Consider the bounded operator

� Dy Dz,( )U f x( ), x Ω,∈=

� jµ Dy Dz,( )U B jµ Dy Dz,( )U Γ j
≡

+ B jµ
�

Dy Dz,( )U( ) � jy z,( ) Γ j
g jµ x( ), x Γ j.∈=

B jµ
�

B jµ
�

B jµ
�

Ha
l

C0
∞ Ω w

Ha
l Ω( )

r2 a l– α+( ) Dx
αw x( )

2
xd

Ω
∫

α l≤
∑ 

 
 

1
2
---

C0
∞ Ω

Ω
Ω

Ha

l
1
2
---–

Ω
ψ

Ha
l 1/2– Γ( )

w
Ha

l Ω( ) Ha
l Ω( )

� � Dy Dz,( ) � jµ Dy Dz,( ),{ } : =

Ha
2m Ω( )→ Ha

0 Ω( ) Ha

2m m jµ
1
2
---––

Γ j( )
j µ,
∏×
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corresponding to problem (1), (2).

2. Consider the auxiliary nonlocal boundary value
problem

(3)

(4)

where K = {y: b1 < ϕ < b2}; γj = {y: ϕ = bj}; and θ is an
arbitrary point of the unit sphere Sn – 3 = {z ∈ �n – 2:
|z| = 1}.

Let us introduce the space  being the comple-

tion of the set ( \{0}) in the norm  =

. By 

for l ≥ 1, we denote the space of traces on a γ ⊂  with

the norm  = inf  over w ∈   such

that w|γ = ψ.

Put (K, γ) = (K) × . Con-

sider the bounded operator �(θ): (K) → (K, γ)
defined by

The operator �(θ) corresponds to nonlocal boundary
value problem (3), (4). The solvability of problems (1),
(2) and (3), (4) is closely related to the arrangement of
the eigenvalues of some model nonlocal problem for an
ordinary differential equation. To obtain this problem,
we write the operators �(Dy, 0), Bjµ(Dy, 0), and

(Dy, 0) in the polar coordinates: �(Dy, 0) = r–2mP(ϕ,

Dϕ, rDr), Bjµ(Dy, 0) = Bjµ(ϕ, Dϕ, rDr), and (Dy,

0) = (ϕ, Dϕ, rDr), where Dϕ = –i  and Dr =

–i . Let us set θ = 0 and {f, gjµ} = 0 in (3) and (4),

introduce the new variable τ = lnr, and apply the Fou-
rier transform with respect to τ. We obtain the problem

(5)

(6)

� Dy θ,( )u f y( ), y K ,∈=

� jµ Dy θ,( )u B jµ Dy θ,( )u γ j
≡

+ � jµ
�

Dy θ,( )u( ) � jy( ) γ j
g jµ y( ), y γ j,∈=

Ea
l K( )

C0
∞ K w

Ea
l

K( )

r2a r2 α l–( ) 1+( ) Dy
αw y( )

2
yd

K

∫
α l≤
∑ 

 
 

1
2
---

Ea

l
1
2
---–

γ( )

K

ψ
Ea

l
1
2
---–

γ( )

w
Ea

l
K( )

Ea
l K( )

Ea
0 Ea

0 Ea

2m m jµ
1
2
---––

γ j( )
j µ,
∏

Ea
2m Ea

0

� θ( )u � Dy θ,( )u � jµ Dy θ,( )u,{ } .=

B jµ
�

r
m jµ–

B jµ
�

r
m jµ–

B jµ
�

ϕ∂
∂

r∂
∂

P ϕ Dϕ λ, ,( )w ϕ λ,( ) 0, b1 ϕ b2,< <=

B jµ ϕ Dϕ λ, ,( )w ϕ λ,( ) ϕ b j=

+ e
iλ m jµ–( ) χ jln

B jµ
� ϕ Dϕ λ, ,( )w ϕ ϕ j+ λ,( ) ϕ b j= 0,=

where

This problem is the ordinary differential equation of

form (5) for a function w ∈  (b1, b2) with nonlocal
conditions (6), which relate the values of the function w
and its derivatives at the point ϕ = bj to the values of the
function w and its derivatives at an interior point ϕ = b
of the interval (b1, b2).

Lemma 1. Suppose that the line Imλ = a + 1 – 2m
contains no eigenvalues of model problem (5), (6).

Then, for all u ∈  (K) and all θ ∈ Sn – 3, we have

(7)

where S = {y: 0 < R1 < r < R2} and c1 > 0 does not depend
on θ and u. If there exists θ ∈ Sn – 3 such that estimate

(7) holds for all u ∈ (K), then the line Imλ = a +
1 – 2m contains no eigenvalues of problem (5), (6).

Lemma 1 is proved in [3, Section 3]. It implies that
the operator �(θ) has a finite-dimensional kernel and
closed image. To prove that the cokernel of �(θ) is
finite-dimensional, we apply the Green formula to
problem (3), (4).

3. Consider Γ = {x = (y, z): ϕ = b, z ∈ �n – 2} and
γ = {y: ϕ = b}. The sets Γ and γ are the carriers of non-
local data in problems (1), (2) and (3), (4), respectively.
Set K1 = {y: b1 < ϕ < b} and K2 = {y: b < ϕ < b2}. Let
�(Dy, Dz) be the operator formally conjugate to �(Dy,
Dz). In the statement of the following theorem, � =
�(Dy, Dz), � = �(Dy, Dz), etc.

Theorem 1. For the operators �, Bjµ, and 
defined in Section 1, there exist (but are not unique)

(i) a system of operators  of orders 2m – 1 –

 normal on Γj with constant coefficients that com-

plements  to a Dirichlet system of order 2m

on Γj
1; (ii) a system {Bµ,  being a Dirichlet sys-

tem of order 2m on Γ such that the orders of the opera-
tors Bµ and  are 2m – µ and m – µ, respectively.

If a choice of such systems is made, then there exist

operators Cjµ, , Tν, and  (j = 1, 2; µ = 1, 2, …, m;
ν = 1, 2, …, 2m) with constant coefficients possessing
the following properties: (i) the orders of the operators

Cjµ, , Tν, and  are , 2m – 1 – mjµ, ν – 1, and

ν – 1, respectively; (ii) the system  covers the

1 The definition of a Dirichlet system is given in [10, Chapter 2,
Section 2.2].

w ϕ λ,( ) 2π( )
1
2
---–

u ϕ τ,( )e iλτ– τ .d

∞–

∞

∫=

W2
2m

Ea
2m

u
Ea

2m
K( )

c1 � θ( )u
Ea

0
K γ,( )

u L2 K S∩( )+( ),≤

Ea
2m

B jµ
�

B jµ'{ } µ 1=
m

m jµ'

B jµ{ } µ 1=
m

Bµ' } µ 1=
m

Bµ'

C jµ' T jν
�

C jµ' T jν
�

m jµ'

C jµ{ } µ 1=
m
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operator � on Γj and complements  to a
Dirichlet system of order 2m on Γj, and the system

 is a Dirichlet system of order 2m on Γ;

(iii) for any functions u ∈  and vj ∈

, the Green formula with parameter θ
holds:

(8)

Here, , , and (·, ·)γ are scalar products in

L2(Kj), L2(γj), and L2(γ), respectively; �ν(Dy, θ)v ≡
Tν(Dy, θ)v1|γ – Tν(Dy, θ)v2|γ +

;  is the operator of

rotation through the angle –ϕk and dilation by a factor

of  in the plane {y}; k = 1, 2; and ν = 1, 2, …, 2m.

Formula (8) generates the following problem for-
mally conjugate to problem (3), (4):

(9)

(10)

(11)

where, as above, j = 1, 2; µ = 1, 2, …, m; θ ∈ Sn – 3; and
v(y) ≡ vj(y) for y ∈ Kj. Here and in what follows, the
subscripts ν and k take the values ν = 1, 2, …, 2m, k =
1, 2. We call problem (9)–(11) a nonlocal transmission
problem.

C jµ'{ } µ 1=
m

Tν{ } ν 1=
2m

Ea
2m K( )

E–a 2m+
2m K j( )

� Dy θ,( )u v j,( )K j

j

∑

+ � jµ Dy θ,( )u C jµ' Dy θ,( )v j, γ j
( )γ j

j µ,
∑

+ Bµ Dy θ,( )u γ �µ Dy θ,( )v,( )γ
µ
∑

=  u � Dy θ,( )v j,( )K j

j

∑

+ B jµ' Dy θ,( )u γ j
C jµ Dy θ,( )v j γ j

,( )γ j

j µ,
∑

+ Bµ' Dy θ,( )u γ �m µ+ Dy θ,( )v,( )γ.
µ
∑

·, ·( )K j
·, ·( )γ j

Tkν
�

Dy θ,( )v k( ) �k
1–
y( ) γ

k

∑ �k
1–

1
χk

-----

� Dy θ,( )v j f j y( ), y K j,∈=

� jµ Dy θ,( )v C jµ Dy θ,( )v j γ j
≡ g jµ y( ),=

y γ j,∈

�ν Dy θ,( )v Tν Dy θ,( )v 1 γ Tν Dy θ,( )v 2 γ–≡

+ Tkν
�

Dy θ,( )v k( ) �k
1–
y( ) γ

k

∑ hν y( ), y γ,∈=

Let us introduce the notations  =

 ×  ×  and

 = . Consider the bounded

operator 	(θ):  →  defined as

Here, wj(y) ≡ �(Dy, θ)vj(y) for y ∈  Kj; vj is the restric-
tion of the function v to Kj . The operator 	(θ) corre-
sponds to nonlocal transmission problem (9)–(11).

Lemma 2. Suppose that the line Imλ = a + 1 – 2m
contains no eigenvalues of model problem (5), (6).

Then, for all v ∈  and θ ∈ Sn – 3, we have

(12)

where S' = {y: 0 <  < r < } and c2 > 0 does not
depend on θ and v. If there exists θ ∈ Sn – 3 such that

(12) holds for all v ∈  , then the line Imλ =
a + 1 – 2m contains no eigenvalues of problem (5), (6).

Lemma 2 implies that 	(θ) has a finite-dimensional
kernel and closed image.

4. For �(θ), consider the conjugate operator �*(θ):

( (K, γ))* → ( (K))* acting on F = {f, gjµ} ∈

( (K, γ))* by the rule

for any u ∈  (K). Here, 〈 ·, ·〉  stands for the sesquilin-
ear form on the corresponding dual pairs of spaces.

Let us establish the relation between the kernels of
the operators �*(θ) and 	(θ).

Lemma 3. The kernel of the operator �*(θ) coin-
cides with the set of values of the element {v, (Dy,

θ) } for all v ∈   and vj ∈  C∞( {0})

being solutions to problem (9)–(11) with {fj, gjµ, hν} = 0.
Lemmas 1–3 imply the following result.
Theorem 2. If the line Imλ = a + 1 – 2m contains no

eigenvalues of model problem (5), (6), then the opera-
tor �(θ) is Fredholm of index zero for all θ ∈ Sn – 3. If
the operator �(θ) is Fredholm of index zero at some
θ ∈ Sn – 3, then the line Imλ = a + 1 – 2m contains no
eigenvalues of problem (5), (6).

5. Let us examine the solvability of nonlocal bound-
ary-value problem (1), (2).


–a 2m+
0

K γ,( )

E–a 2m+
0 K( ) E–a 2m+

2m m jµ'
1
2
---––

γ j( )
j µ,
∏ E–a 2m+

2m ν 1
2
---+–

γ( )
ν

∏

–a 2m+

2m
K( ) E–a 2m+

2m K j( )
j

?÷ƒ?�


–a 2m+
2m

K( ) 
–a 2m+
0

K γ,( )

	 θ( )v w � jµ Dy θ,( )v �ν Dy θ,( )v, ,{ } .=


–a 2m+
2m

K( )

v

–a 2m+

2m
K( )

c2 	 θ( )v

–a 2m+

0
K γ,( )

v L2 K S'∩( )+( ),≤

R1' R2'


–a 2m+
2m

K( )

Ea
0 Ea

2m

Ea
0

u �∗ θ( )F,〈 〉 � Dy θ,( )u f,〈 〉=

+ � jµ Dy θ,( )u g jµ,〈 〉
j µ,
∑

Ea
2m

C jµ'

v j γ j

–a 2m+

2m
K( ) K j
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Theorem 3. If the line Imλ = a + 1 – 2m contains
no  eigenvalues of model problem (5), (6) and
dimker(�(θ)) = codim�(�(θ)) = 0 for all θ ∈ Sn – 3,
then the operator � is an isomorphism.

Theorem 4. If the operator � is Fredholm of index
zero, then the operator �(θ) is an isomorphism for all
θ ∈ Sn – 3.

Lemma 1 and Theorems 3 and 4 imply in particular
that, if the operator � is Fredholm of index zero, then
it is an isomorphism.

6. All results obtained in Sections 1–5 can be
extended over systems of equations for N functions
defined in N dihedral (planar) angles with nonlocal
conditions containing finitely many nonlocal terms and
relating the values of the functions and their derivatives
on the faces of the angles to the values of the functions
and their derivatives on some half-planes (rays) lying
strictly inside the angles. Application of a priori esti-
mates in weight spaces similar to the estimates
obtained in [3, 6] makes it possible to study the Fred-

holm property of the operator �(θ):  →

 ×  and the invertibility of

the operator �:  →  ×

 for any l = 1, 2, … .

ACKNOWLEDGMENTS

The author thanks Professor A.L. Skubachevskii for
attention.

This work was financially supported by the Russian
Foundation for Basic Research (project no. 01-01-
01030) and the Ministry of General and Professional
Education of Russia (project no. E00-1-195).

REFERENCES

1. Bitsadze, A.V., Dokl. Akad. Nauk SSSR, 1985, vol. 280,
no. 3, pp. 521–524.

2. Skubachevskii, A.L., Mat. Sb., 1986, vol. 129(171),
no. 2, pp. 279–302.

3. Skubachevskii, A.L., Differ. Uravn. Ikh Primen., 1990,
vol. 26, no. 1, pp. 120–131.

4. Skubachevskii, A.L., Differ. Uravn. Ikh Primen., 1991,
vol. 27, no. 1, pp. 128–139.

5. Kondrat’ev, V.A., Tr. Mosk. Mat. O–va, 1967, vol. 16,
pp. 209–292.

6. Nazarov, S.A. and Plamenevskii, B.A., Ellipticheskie
zadachi v oblastyakh s kusochno gladkoi granitsei
(Elliptic Problems in Domains with Piecewise Smooth
Boundaries), Moscow: Nauka, 1991.

7. Roitberg, Ya.A. and Sheftel’, Z.G., Dokl. Akad. Nauk
SSSR, 1971, vol. 201, no. 5, pp. 1059–1062.

8. Roitberg, Ya.A. and Sheftel’, Z.G., Sib. Mat. Zh., 1972,
vol. 13, no. 1, pp. 165–181.

9. Il’in, V.A. and Moiseev, E.I., Differ. Uravn. Ikh Primen.,
1988, vol. 24, no. 5, pp. 795–804.

10. Lions, J.-L. and Magenes, E., Problemes aux limites non
homogènes et applications, Paris: Dunod, 1968. Trans-
lated into English under the title Nonhomogeneous
Boundary Value Problems and Applications, Berlin:
Springer-Verlag, 1972. Translated into Russian under the
title Neodnorodnye granichnye zadachi i ikh prilo-
zheniya, Moscow: Mir, 1971.

Ea
l 2m+ K( )

Ea
l K( ) Ea

l 2m m jµ– 1
2
---–+

γ j( )
j µ,
∏

Ha
l 2m+ Ω( ) Ha

l Ω( )

Ha

l 2m m jµ– 1
2
---–+

Γ j( )
j µ,
∏


