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Abstract. We study smoothness of generalized solutions of nonlocal el-
liptic problems in plane bounded domains with piecewise smooth bound-
ary. The case where the support of nonlocal terms can intersect the
boundary is considered. We find conditions that are necessary and suffi-
cient for any generalized solution to possess an appropriate smoothness
(in terms of Sobolev spaces). Both homogeneous and nonhomogeneous
nonlocal boundary-value conditions are studied.

1. Introduction

Nonlocal elliptic problems arise in various areas such as plasma theory [28],
biophysics, theory of diffusion processes [10, 43, 29, 41, 11], control theory [4,
1], and so on.

In the one-dimensional case, nonlocal problems were studied since the be-
ginning of the 20th century by Sommerfeld [39], Picone [26], Tamarkin [42],
etc. In the two-dimensional case, one of the first works was due to Car-
leman [7], who treated the problem of finding a harmonic function, in a
plane bounded domain, satisfying a nonlocal condition which connects the
values of the unknown function at different points of the boundary. Further
investigation of elliptic problems with transformations mapping a bound-
ary onto itself has been carried out by Vishik [44], Browder [6], Beals [3],
Antonevich [2], and others.

In 1969 Bitsadze and Samarskii [5] considered the following nonlocal prob-
lem arising in plasma theory: to find a function u(y1, y2) harmonic on the
rectangular G = {y ∈ R

2 : −1 < y1 < 1, 0 < y2 < 1}, continuous on G, and
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satisfying the relations

u(y1, 0) = f1(y1), u(y1, 1) = f2(y1), −1 < y1 < 1,

u(−1, y2) = f3(y2), u(1, y2) = u(0, y2), 0 < y2 < 1,

where f1, f2, f3 are given continuous functions. This problem was solved
in [5] by reducing it to a Fredholm integral equation and by using the
maximum principle. For arbitrary domains and for general nonlocal con-
ditions, such a problem was formulated as an unsolved one (see also [22]).
Different generalizations of nonlocal problems with transformations map-
ping the boundary inside the closure of a domain were studied by many
authors [9, 27, 19, 18].

The most complete theory for elliptic equations of order 2m with general
nonlocal conditions was developed by Skubachevskii and his pupils [32, 33,
34, 35, 36, 21, 37, 15, 16]: a classification with respect to types of nonlo-
cal conditions was suggested, the Fredholm solvability in the corresponding
spaces was investigated, and asymptotics of solutions near special conju-
gation points was obtained. One can find other relevant references and
descriptions of applications in [37].

In the present paper, we consider a little-studied question concerning the
smoothness of solutions for nonlocal elliptic problems. For simplicity, we
study nonlocal perturbations of the Dirichlet problem for elliptic second-
order equations. However, the approach we are developing is also applicable
to elliptic equations of order 2m with general nonlocal conditions.

It appears that the most difficult situation is that where the support of
nonlocal terms can intersect the boundary of a domain [33, 38]. In this
case, solutions of nonlocal problems can have power-law singularities near
some points of the boundary even if the right-hand side is infinitely differ-
entiable and the boundary is infinitely smooth. It follows from our results
that solutions of nonlocal problems can have power-law singularities even
if the support of nonlocal terms lies strictly inside a domain. For this rea-
son, we use special weighted spaces to study nonlocal problems. These spaces
were originally proposed by Kondrat’ev [20] to study elliptic boundary-value
problems in nonsmooth domains.

Note that smoothness of solutions for “local” elliptic problems in non-
smooth domains is studied rather thoroughly (see [20, 25, 30, 8] and others);
here the principal difficulties are related to the presence of special singular
points on the boundary of a domain. In the theory of nonlocal problems,
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there appear principally different difficulties: violation of smoothness of so-
lutions is connected not only with the fact that the boundary may be non-
smooth but also with the presence of nonlocal terms in the boundary-value
conditions.

Consider the following example. Let ∂G = Γ1 ∪ Γ2 ∪ {g, h}, where the Γi

are open (in the topology of ∂G) C∞-curves; g, h are the end points of the
curves Γ1 and Γ2. Suppose that the domain G is the plane angle of opening
π in some neighborhood of each of the points g and h. We deliberately take
a smooth domain in this example to illustrate how the nonlocal terms can
affect the smoothness of solutions. Consider the following nonlocal problem
in the domain G:

Δu = f0(y) (y ∈ G), (1.1)

u|Γ1 + b1(y)u
(
Ω1(y)

)∣∣
Γ1

+ a(y)u
(
Ω(y)

)∣∣
Γ1

= f1(y) (y ∈ Γ1),

u|Γ2 + b2(y)u
(
Ω2(y)

)∣∣
Γ2

= f2(y) (y ∈ Γ2).
(1.2)

Here b1, b2, and a are real-valued C∞-functions; Ωi (Ω) are C∞-diffeomor-
phisms taking some neighborhood Oi (O1) of the curve Γi (Γ1) onto the set
Ωi(Oi) (Ω(O1)) in such a way that Ωi(Γi) ⊂ G, Ωi(g) = g, Ωi(h) = h, and
the transformation Ωi, near the points g, h, is the rotation of the boundary Γi

through the angle π/2 inwards to the domain G (respectively, Ω(Γ1) ⊂ G),
Ω(Γ1) ∩ {g, h} = ∅, and the approach of the curve Ω(Γ1) to the boundary
∂G can be arbitrary, cf. [33, 35]), see Figure 1.1.

Figure 1.1. Domain G with boundary ∂G = Γ1 ∪ Γ2 ∪ {g, h}.
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We say that g and h are the points of conjugation of nonlocal conditions
because they divide the curves on which different nonlocal conditions are
set. The closure of the set⋃

i=1,2

{y ∈ Ωi(Γi) : bi(Ω−1
i (y)) �= 0} ∪ {y ∈ Ω(Γ1) : a(Ω−1(y)) �= 0}

is referred to as the support of nonlocal terms. It is clear that, if b1(y) =
a(y) = 0 for y ∈ Γ1 and b2(y) = 0 for y ∈ Γ2, then the support of nonlocal
terms is the empty set. If, say, b1(y), a(y) �= 0 for y ∈ Γ1 and b2(y) �= 0 for
y ∈ Γ2, then the support of nonlocal terms is the set Ω1(Γ1)∪Ω2(Γ2)∪Ω(Γ1).

Denote by W k(G) = W k
2 (G) the Sobolev space. We say that a function

u ∈ W 1(G) is a generalized solution of problem (1.1), (1.2) with right-hand
side f0 ∈ L2(G), fi ∈ W 1/2(Γi) if u satisfies Equation (1.1) in the sense of
distributions and nonlocal conditions (1.2) in the sense of traces. Using the
notation of problem (1.1), (1.2), we can formulate the main questions of our
paper.

(1) Find a condition on the right-hand sides f0 ∈ L2(G), fi ∈ W 3/2(Γi)
and on the coefficients b1, b2, and a which is necessary and sufficient
for any generalized solution of problem (1.1), (1.2) to belong to the
space W 2(G).

(2) The same question for homogeneous nonlocal conditions, {fi} = 0.

It is relatively easy to prove that any generalized solution of problem (1.1),
(1.2) belongs to the space W 2 outside an arbitrarily small neighborhood of
the points g and h (see Section 3). Clearly, the behavior of solutions near
the points g and h is affected by the behavior of the coefficients b1, b2, and
a near these points. However, the influence of the coefficients bi is princi-
pally different from the influence of the coefficient a. This phenomenon is
explained by the fact that the coefficients bi (for y being in a small neigh-
borhood of the points g and h) correspond to nonlocal terms supported near
the set {g, h} (in the general case, such terms correspond to operators B1

i ),
whereas the coefficient a corresponds to a nonlocal term supported outside
some neighborhood of the set {g, h} (in the general case, such terms corre-
spond to abstract operators B2

i ). What we give below is a scheme for the
investigation of smoothness of generalized solutions near the point g (this
scheme is realized in Sections 2–6 for the general case and in Section 7 for
the particular case of problem (1.1), (1.2)).

Step 1. We construct a model nonlocal problem, with a parameter, for
ordinary differential equation corresponding to the point g. The structure
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of nonlocal conditions in the model problem depends only on the values of
the coefficients bi(g), i = 1, 2 (Section 2).

Step 2. We consider the values bi(g) for which the band −1 ≤ Im λ < 0
contains no eigenvalues of the model problem. In this case, any generalized
solution belongs to W 2 near the point g. Note that, in this case, we impose
no additional restrictions on the right-hand side or the coefficients b1, b2,
and a (Section 3 and Theorem 7.1).

Step 3. We consider the values bi(g) for which the band −1 ≤ Im λ <
0 contains only the proper eigenvalue λ = −i of the model problem (see
Definition 4.1). This is the most complicated situation, which we call a
“border case.” In this case, any generalized solution belongs to W 2 near the
point g if and only if the coefficients b1, b2, and a satisfy a certain consistency
condition near the point g. The type of the consistency condition depends on
whether we consider homogeneous or nonhomogeneous nonlocal conditions.
In the latter case, the consistency conditions must also be imposed on the
right-hand side {fi} (Section 4 and Theorems 7.2, 7.4, and Corollary 7.1).

Step 4. We consider the values bi(g) for which the band −1 ≤ Im λ < 0
contains an improper eigenvalue of the model problem (see Definition 4.1).
In this case, for any coefficient a, one can find right-hand sides f0 ∈ L2(G),
{fi} = 0 (f0 depends on the behavior of the coefficients bi near the point g
and does not depend on the coefficient a) and construct the corresponding
generalized solution u ∈ W 1(G) such that u does not belong to W 2 near the
point g (Section 5 and Theorem 7.3).

It turns out that the smoothness of generalized solutions is preserved
if b1(g) + b2(g) ≤ −2 or b1(g) + b2(g) > 0 and can be violated if −2 <
b1(g) + b2(g) < 0. If b1(g) + b2(g) = 0, we have the border case. The
necessary condition for the smoothness being preserved is the validity of a
consistency condition imposed on the right-hand side {fi} (see (7.8)). Let
us show that the presence of variable coefficients in nonlocal conditions may
affect the smoothness of generalized solutions. For simplicity, we assume
that a(y) ≡ 0. Let condition (7.10) hold; in particular, let bi(y) be constant
near the point g. Then the smoothness of generalized solutions is preserved
near the point g whenever the right-hand side {fi} satisfies the consistency
condition (7.8). However, if condition (7.10) fails (e.g., if b1(y) ≡ β1y2,
b2(y) ≡ β2y2, β1 �= β2, near the point g = 0, the axis Oy2 being tangent to
∂G at g = 0), then the smoothness of generalized solutions can be violated
even if the right-hand side {fi} satisfies the consistency condition (7.8). This
follows from Theorem 7.2.
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Now we illustrate another phenomenon arising in the border case. Assume
that b1(y) ≡ b2(y) ≡ 0. Let a(y) = 0 in some neighborhood of the point h
and Ω(g) ∈ G. Then the support of nonlocal terms lies strictly inside the
domain G. However, if a(g) �= 0 or (∂a/∂τg)|y=g �= 0, where τg denotes
the unit vector tangent to ∂G at the point g, then the smoothness of gen-
eralized solutions of problem (1.1), (1.2) (even with homogeneous nonlocal
conditions, {fi} = 0) can be violated. This follows from Corollary 4.3 (see
also Section 7.2).

Note that the smoothness of generalized solutions for some particular
nonlocal elliptic problems was earlier studied by Skubachevskii [33, 38]. In
these papers, a nonlocal perturbation of the Dirichlet problem for the Laplace
operator is treated; a condition which is necessary and sufficient for any
generalized solution of a problem with homogeneous nonlocal conditions to
belong to the space W 2(G) has been found. However, it was fundamental
that the “local” Dirichlet conditions are set on a part of the boundary and
the coefficients of nonlocal terms are constant.

In this paper, we suggest an approach for the study of smoothness, based
on the results concerning the solvability of model nonlocal problems in plane
angles in Sobolev spaces [15] and on the asymptotic behavior of solutions
of such problems in weighted spaces [33, 13]. Our approach enables one to
investigate the smoothness of generalized solutions when different nonlocal
conditions are set on different parts of the boundary, coefficients of nonlocal
terms supported near the conjugation points are variable, and nonlocal op-
erators corresponding to nonlocal terms supported outside the conjugation
points are abstract. Moreover, nonlocal boundary-value conditions can be
both homogeneous and nonhomogeneous.

2. Setting of Nonlocal Problems in Bounded Domains

2.1. Setting of the Problem. Let G ⊂ R
2 be a bounded domain with

boundary ∂G. Consider a set K ⊂ ∂G consisting of finitely many points.

Let ∂G \ K =
N⋃

i=1
Γi, where Γi are open (in the topology of ∂G) C∞-curves.

Assume that the domain G is a plane angle in some neighborhood of each
point g ∈ K.

For any set X in R
2 having a nonempty interior, we denote by C∞

0 (X)
the set of functions infinitely differentiable on X and compactly supported
on X.
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For an integer k ≥ 0, denote by W k(G) = W k
2 (G) the Sobolev space with

the norm
‖u‖W k(G) =

( ∑
|α|≤k

∫
G
|Dαu(y)|2 dy

)1/2

(set W 0(G) = L2(G) for k = 0). For an integer k ≥ 1, we introduce the
space W k−1/2(Γ) of traces on a smooth curve Γ ⊂ G with the norm

‖ψ‖W k−1/2(Γ) = inf ‖u‖W k(G) (u ∈ W k(G) : u|Γ = ψ). (2.1)

Along with Sobolev spaces, we will use weighted spaces (the Kondrar’ev
spaces). Let us introduce these spaces. Let Q = {y ∈ R

2 : r > 0, |ω| < ω0},
Q = {y ∈ R

2 : 0 < r < d, |ω| < ω0}, 0 < ω0 < π, d > 0, or Q = G. We
denote by M the set {0} in the first and second cases and the set K in the
third case. Introduce the space Hk

a (Q) = Hk
a (Q,M) as a completion of the

set C∞
0 (Q \M) with respect to the norm

‖u‖Hk
a (Q) =

( ∑
|α|≤k

∫
Q

ρ2(a−k+|α|)|Dαu(y)|2dy
)1/2

,

where a ∈ R, k ≥ 0 is an integer, and ρ = ρ(y) = dist(y,M). For an integer
k ≥ 1, denote by H

k−1/2
a (Γ) the set of traces on a smooth curve Γ ⊂ Q with

the norm

‖ψ‖
H

k−1/2
a (Γ)

= inf ‖u‖Hk
a (Q) (u ∈ Hk

a (Q) : u|Γ = ψ). (2.2)

For an integer k ≥ 1, we also set

Wk−1/2(∂G) =
N∏

i=1

W k−1/2(Γi), Hk−1/2
a (∂G) =

N∏
i=1

Hk−1/2
a (Γi).

Consider the operator

Pu =
2∑

i,k=1

pik(y)uyiyk
+

2∑
k=1

pk(y)uyk
+ p0(y)u,

where pik, i, k = 1, 2, and pk, k = 0, 1, 2, are complex-valued C∞-coefficients.
We assume throughout the paper that the operator P is properly elliptic on
G (see, e.g., [24, Chapter 2, Section 1]).

For any closed set M, we denote its ε-neighborhood by Oε(M), i.e.,

Oε(M) = {y ∈ R
2 : dist(y,M) < ε}, ε > 0.

Now we introduce operators corresponding to nonlocal terms supported near
the set K. Let Ωis (i = 1, . . . , N ; s = 1, . . . , Si) be C∞-diffeomorphisms
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taking some neighborhood Oi of the curve Γi ∩ Oε(K) to the set Ωis(Oi) in
such a way that Ωis(Γi ∩ Oε(K)) ⊂ G and

Ωis(g) ∈ K for g ∈ Γi ∩ K. (2.3)

Thus, the transformations Ωis take the curves Γi ∩Oε(K) strictly inside the
domain G and the set of their end points Γi ∩ K to itself.

Let us specify the structure of the transformations Ωis near the set K. De-
note by Ω+1

is the transformation Ωis : Oi → Ωis(Oi) and by Ω−1
is : Ωis(Oi) →

Oi the inverse transformation. The set of points Ω±1
iqsq

(. . .Ω±1
i1s1

(g)) ∈ K
(1 ≤ sj ≤ Sij , j = 1, . . . , q) is said to be an orbit of the point g ∈ K
and denoted by Orb(g). In other words, the orbit Orb(g) is formed by the
points (of the set K) that can be obtained by consecutively applying the
transformations Ω±1

ijsj
to the point g.

It is clear that either Orb(g) = Orb(g′) or Orb(g) ∩ Orb(g′) = ∅ for any
g, g′ ∈ K. In what follows, we assume that the set K consists of one orbit
only (the results we will obtain are easy to generalize for the case in which
K consists of finitely many disjoint orbits, see Section 6). The set (orbit) K
consists of N points. We denote these points by gj , j = 1, . . . , N .

Take a sufficiently small number ε (see Remark 2.3 below) such that there
exist neighborhoods Oε1(gj), Oε1(gj) ⊃ Oε(gj), satisfying the following con-
ditions:

(1) the domain G is a plane angle in the neighborhood Oε1(gj);
(2) Oε1(gj) ∩ Oε1(gk) = ∅ for any gj , gk ∈ K, k �= j;
(3) if gj ∈ Γi and Ωis(gj) = gk, then Oε(gj) ⊂ Oi and Ωis

(
Oε(gj)

)
⊂

Oε1(gk).

For each point gj ∈ Γi ∩ K, we fix a transformation Yj : y 
→ y′(gj) which
is a composition of the shift by the vector −−−→

Ogj and the rotation through
some angle so that

Yj(Oε1(gj)) = Oε1(0), Yj(G ∩ Oε1(gj)) = Kj ∩ Oε1(0),

Yj(Γi ∩ Oε1(gj)) = γjσ ∩ Oε1(0) (σ = 1 or σ = 2),

where

Kj = {y ∈ R
2 : r > 0, |ω| < ωj}, γjσ = {y ∈ R

2 : r > 0, ω = (−1)σωj}.

Here (ω, r) are the polar coordinates and 0 < ωj < π.
Consider the following condition (see Figure 2.1).
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Condition 2.1. Let gj ∈ Γi ∩ K and Ωis(gj) = gk ∈ K; then the transfor-
mation

Yk ◦ Ωis ◦ Y −1
j : Oε(0) → Oε1(0)

is the composition of rotation and homothety.

Figure 2.1. The transformation Y2 ◦ Ω11 ◦ Y −1
1 : Oε(0) →

Oε1(0) is a composition of rotation and homothety

Remark 2.1. Condition 2.1, together with the fact that Ωis(Γi) ⊂ G, im-
plies that, if g ∈ Ωis(Γi ∩K) ∩ Γj ∩K �= ∅, then the curves Ωis(Γi ∩Oε(K))
and Γj intersect at a nonzero angle at the point g.

Introduce the nonlocal operators B1
i by the formulas

B1
i u =

Si∑
s=1

bis(y)u(Ωis(y)), y ∈ Γi∩Oε(K), B1
i u = 0, y ∈ Γi \Oε(K),
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where bis ∈ C∞(R2) and supp bis ⊂ Oε(K). Since B1
i u = 0 whenever

suppu ⊂ G \ Oε1(K), we say that the operators B1
i correspond to nonlo-

cal terms supported near the set K.
Set Gρ = {y ∈ G : dist(y, ∂G) > ρ} for ρ > 0. Consider operators B2

i
satisfying the following condition (cf. [33, 36, 15]).

Condition 2.2. There exist numbers κ1 > κ2 > 0 and ρ > 0 such that

‖B2
i u‖W 3/2(Γi)

≤ c1‖u‖W 2(G\Oκ1 (K))
∀u ∈ W 2(G \ Oκ1(K)), (2.4)

‖B2
i u‖W 3/2(Γi\Oκ2 (K))

≤ c2‖u‖W 2(Gρ) ∀u ∈ W 2(Gρ), (2.5)

where i = 1, . . . , N , whereas c1, c2 > 0 do not depend on u.

In particular, inequality (2.4) implies that B2
i u = 0 whenever suppu ⊂

Oκ1(K). For this reason, we say that the operators B2
i correspond to nonlocal

terms supported outside the set K.
We assume that Conditions 2.1 and 2.2 are fulfilled throughout Sections 2–

5.
We study the following nonlocal elliptic boundary-value problem:

Pu = f0(y) (y ∈ G), (2.6)

u|Γi + B1
i u + B2

i u = fi(y) (y ∈ Γi; i = 1, . . . , N). (2.7)

Note that the points gj divide the curves on which different nonlocal con-
ditions are set; therefore, it is natural to say that gj , j = 1, . . . , N , are the
points of conjugation of nonlocal conditions. Problem (1.1), (1.2) is an exam-
ple of an elliptic problem with nonlocal conditions (2.7) (see also Section 7).

Definition 2.1. A function u ∈ W 1(G) is called a generalized solution of
problem (2.6), (2.7) with right-hand side {f0, fi} ∈ L2(G) ×W1/2(∂G) if u
satisfies nonlocal conditions (2.7) in the sense of traces and Equation (2.6)
in the sense of distributions. The latter is equivalent to the validity of the
integral identity

−
∫
G

2∑
i,k=1

uyi(pikw)yk
dy +

∫
G

( 2∑
k=1

pkuyk
+ p0u

)
w dy =

∫
G

f0w dy

for all w ∈ C∞
0 (G).

Remark 2.2. Generalized solutions a priori belong to W 1(G), whereas Con-
dition 2.2 is formulated for functions from the space W 2 inside the domain
and near a smooth part of the boundary. This formulation can be justified
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by the fact that any generalized solution belongs to the space W 2 outside
an arbitrarily small neighborhood of the set K (see Section 3).

Remark 2.3. We can assume that the number ε occurring in the definition
of the operators B1

i is sufficiently small (while κ1, κ2, ρ occurring in the
definition of the operators B2

i can be arbitrary). Let us show that this
assumption leads to no loss of generality.

Take a number ε̂, where 0 < ε̂ < ε. Set B̂1
i u =

Si∑
s=1

(
b̂is(y)u(Ωis(y)) for

y ∈ Γi ∩ Oε̂(K) and B̂1
i u = 0 for y ∈ Γi \ Oε̂(K), where b̂is ∈ C∞(R2),

supp bis ⊂ Oε̂(K), and b̂is(y) = bis(y) for y ∈ Γi ∩ Oε̂/2(K). It is clear that

B1
i + B2

i = B̂1
i + B̂2

i ,

where B̂2
i = B1

i − B̂1
i + B2

i . Since B1
i u − B̂1

i u = 0 near the set K, it follows
that the operator B1

i − B̂1
i satisfy Condition 2.2 for appropriate κ1, κ2, ρ

(see [15, Section 1] for details). Thus, we see that ε can be taken as small as
needed. However, one must remember that the operator B2

i and the values
of κ1, κ2, ρ may change if we change the value of ε.

2.2. Model Problems. When studying problem (2.6), (2.7), particular at-
tention must be paid to the behavior of solutions near the set K of conjuga-
tion points. In this subsection, we consider corresponding model problems.

Denote by uj(y) the function u(y) for y ∈ Oε1(gj). If gj ∈ Γi, y ∈ Oε(gj),
Ωis(y) ∈ Oε1(gk), then denote by uk(Ωis(y)) the function u(Ωis(y)). In this
case, the nonlocal problem (2.6), (2.7) acquires the following form in the
neighborhood of the set (orbit) K:

Puj = f0(y) (y ∈ Oε(gj) ∩ G),

uj(y)|Oε(gj)∩Γi
+

Si∑
s=1

bis(y)uk(Ωis(y))|Oε(gj)∩Γi
= ψi(y)

(
y ∈ Oε(gj) ∩ Γi; i ∈ {1 ≤ i ≤ N : gj ∈ Γi}; j = 1, . . . , N

)
,

where ψi = fi − B2
i u. Let y 
→ y′(gj) be the change of variables described

in Section 2.1. Set Kε
j = Kj ∩ Oε(0), γε

jσ = γjσ ∩ Oε(0) and introduce the
functions

Uj(y′) = u(y(y′)), Fj(y′) = f0(y(y′)), y′ ∈ Kε
j ,

Fjσ(y′) = fi(y(y′)), Bu
jσ(y′) = (B2

i u)(y(y′)),

Ψjσ(y′) = Fjσ(y′) − Bu
jσ(y′), y′ ∈ γε

jσ,

(2.8)
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where σ = 1 (σ = 2) if the transformation y 
→ y′(gj) takes Γi to the side γj1

(γj2) of the angle Kj . Denote y′ by y again. Then, by virtue of Condition 2.1,
the problem (2.6), (2.7) acquires the form

PjUj = Fj(y) (y ∈ Kε
j ), (2.9)

BjσU ≡
∑
k,s

bjσks(y)Uk(Gjσksy) = Ψjσ(y) (y ∈ γε
jσ). (2.10)

Here (and below unless otherwise stated) j, k = 1, . . . , N ; σ = 1, 2; s =
0, . . . , Sjσk; Pj are properly elliptic second-order differential operators with
variable complex-valued C∞-coefficients,

Pjv =
2∑

i,k=1

pjik(y)vyiyk
+

2∑
k=1

pjk(y)vyk
+ pj0(y)v;

U = (U1, . . . , UN ); bjσks(y) are smooth functions, bjσj0(y) ≡ 1; Gjσks is an
operator of rotation through an angle ωjσks and homothetic with a coeffi-
cient χjσks > 0 in the y-plane. Moreover,

|(−1)σωj + ωjσks| < ωk for (k, s) �= (j, 0)

(see Remark 2.1) and ωjσj0 = 0, χjσj0 = 1 (i.e., Gjσj0y ≡ y).
Let the principal homogeneous parts of the operators Pj at the point

y = 0 have the following form in the polar coordinates:
2∑

i,k=1

pjik(0)vyiyk
= r−2P̃j(ω, ∂/∂ω, r∂/∂r)v.

Consider the analytic operator-valued function

L̃(λ) :
∏
j

W 2(−ωj , ωj) →
∏
j

(L2(−ωj , ωj) × C
2)

given by

L̃(λ)ϕ =
{
P̃j(ω, ∂/∂ω, iλ)ϕj ,

∑
k,s

(χjσks)iλbjσks(0)ϕk((−1)σωj + ωjσks)
}
.

The main definitions and facts concerning analytic operator-valued functions
can be found in [12]. The following assertion is of particular importance
(see [34, Lemmas 2.1 and 2.2]).

Lemma 2.1. The spectrum of the operator L̃(λ) is discrete. For any num-
bers c1 < c2, the band c1 < Im λ < c2 contains at most finitely many eigen-
values of the operator L̃(λ).
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Spectral properties of the operator L̃(λ) play a crucial role in the study
of smoothness of generalized solutions.

3. Preservation of Smoothness of Generalized Solutions

First, we study the case in which the following condition holds.

Condition 3.1. The band −1 ≤ Im λ < 0 contains no eigenvalues of the
operator L̃(λ).

The main result of this section is as follows.

Theorem 3.1. Let Condition 3.1 hold, and let u ∈ W 1(G) be a general-
ized solution of problem (2.6), (2.7) with right-hand side {f0, fi} ∈ L2(G) ×
W3/2(∂G). Then u ∈ W 2(G).

Remark 3.1. By Theorem 3.1, any generalized solution of problem (2.6),
(2.7) belongs to W 2(G) whenever Condition 3.1 holds. The right-hand sides
fi in nonlocal conditions are naturally supposed to belong to the space
W 3/2(Γi). However, no additional assumptions (e.g., consistency condi-
tions) are imposed on the behavior of the functions fi and on the behavior
of the coefficients of nonlocal terms near the set K. In fact, the functions
fi ∈ W 3/2(Γi) are not quite arbitrary. For instance, if B1

i = 0, B2
i = 0 (i.e.,

we have a “local” problem), and a solution u belongs to W 2(G), then, by
Sobolev’s embedding theorem,

fi(g) = fj(g) for g ∈ Γi ∩ Γj �= ∅. (3.1)

Theorem 3.1 implies that, if Condition 3.1 holds, then the existence of a
generalized solution itself ensures the validity of relations of the same kind
as (3.1). In Section 4, we will see that, if Condition 3.1 fails, then we must
impose some consistency condition on the right-hand sides fi in order that
any generalized solution be smooth.

Since {f0, fi} ∈ L2(G) × W3/2(∂G) and the operators B2
i satisfy Condi-

tion 2.2, it follows from [17, Lemma 2.1] that1

u ∈ W 2
(
G \ Oδ(K)

)
∀δ > 0. (3.2)

Let Uj(y′) = uj(y(y′)), j = 1, . . . , N , be the functions corresponding to
the set (orbit) K and satisfying problem (2.9), (2.10) with right-hand side
{Fj ,Ψjσ} (see Section 2.2).

1See also [31].
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Set

Dχ = 2 max{χjσks}, dχ = min{χjσks}/2. (3.3)

Let ε > 0 be so small that Dχε < ε1.
Introduce the spaces of vector-valued functions

Wk(Kε) =
∏
j

W k(Kε
j ), Hk

a(Kε) =
∏
j

Hk
a (Kε

j ), k ≥ 0; (3.4)

Wk−1/2(γε) =
∏
j,σ

W k−1/2(γε
jσ), Hk−1/2

a (γε) =
∏
j,σ

Hk−1/2
a (γε

jσ), k ≥ 1.

(3.5)
Similarly, one can introduce the spaces Wk(K), Hk

a(K), Wk−1/2(γ), and
Hk−1/2

a (γ).
By virtue of relation (3.2),

Uj ∈ W 2(Kε1
j ∩ {|y| > δ}) ∀δ > 0. (3.6)

Furthermore, it follows from the fact that U ∈ W1(Kε1) and Lemma A.1
that

U ∈ H1
a(K

ε1) ⊂ H0
a−1(K

ε1), a > 0. (3.7)

Finally, we have (see (2.9), (2.10)) {Fj} ∈ W0(Kε) and, by the fact that
fi ∈ W 3/2(Γi), by relation (3.2), and by estimate (2.4), we have {Ψjσ} ∈
W3/2(γε). Therefore, using Lemma A.1, we obtain

{Fj} ∈ H0
1+a(K

ε), {Ψjσ} ∈ H3/2
1+a(γ

ε), a > 0. (3.8)

It follows from relations (3.6)–(3.8) and from Lemma A.8 that

U ∈ H2
1+a(K

ε), a > 0. (3.9)

To prove Theorem 3.1, it suffices to show that U ∈ W2(Kε).
Fix a sufficiently small number a, 0 < a < 1, such that the band a − 1 ≤

Im λ ≤ a contains no nonreal eigenvalues of the operator L̃(λ). The existence
of such an a follows from Lemma 2.1 and Condition 3.1.

Denote

Pjv =
2∑

i,k=1

pjik(0)vyiyk
, BjσU =

∑
k,s

bjσks(0)Uk(Gjσksy).
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Lemma 3.1. Let U ∈ W1(Kε) be a generalized solution2 of problem (2.9),
(2.10) with right-hand side {Fj ,Ψjσ} ∈ W0(Kε) ×W3/2(γε). Then

U = C + U ′, (3.10)

where U ′ ∈ H2
a(K

ε), a is the above number, and C = (C1, . . . , CN ) is a
constant vector. The function U ′ and the vector C are uniquely defined, and
the vector C satisfies the relation

BjσC = Ψjσ(0). (3.11)

Proof. 1. Write problem (2.9), (2.10) as follows:

PjUj = Fj(y) (y ∈ Kε
j ), BjσU = Ψjσ(0) + Ψ0

jσ(y) (y ∈ γε
jσ), (3.12)

where Ψ0
jσ(y) = Ψjσ(y) − Ψjσ(0). We claim that

{Fj} ∈ H0
a(K

ε), {Ψ0
jσ} ∈ H3/2

a (γε). (3.13)

Indeed, the first inclusion follows from the relation {Fj} ∈ W0(Kε), whereas
the second one is from the relations {Ψ0

jσ} ∈ W3/2(γε) and Ψ0
jσ(0) = 0 and

from Lemma A.2.
2. By Lemma A.10, there exists a function

W =
κ∑

l=0

1
l!

(i ln r)lw(l)(ω) ∈ H2
1+a(K

ε) (3.14)

such that

PjWj = 0 (y ∈ Kj), BjσW = Ψjσ(0) (y ∈ γjσ). (3.15)

Here κ = 0 if λ = 0 is not an eigenvalue of L̃(λ); otherwise, κ equals the
greatest of partial multiplicities of the eigenvalue λ = 0; w(l) ∈ ∏

j W 2(−ωj ,

ωj).
As we have proved before this lemma, the function U satisfies (3.9). Com-

bining this fact with relation (3.14) yields

U − W ∈ H2
1+a(K

ε). (3.16)

On the other hand, Lemma A.3 implies that

{PjUj − PjUj} ∈ H0
a(K

ε), {BjσU |γε
jσ

− BjσU |γε
jσ
} ∈ H3/2

a (γε). (3.17)

It follows from (3.12), (3.13), and (3.17) that

{Pj(Uj − Wj)} ∈ H0
a(K

ε), {Bjσ(U − W )|γε
jσ
} ∈ H3/2

a (γε). (3.18)

2That is U satisfies Eq. (2.9) in the sense of distributions and nonlocal conditions (2.10)
in the sense of traces.
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3. Applying Theorem A.1 concerning the asymptotic behavior of the
function U − W and using relations (3.16) and (3.18), we obtain

U − W =
∑

Im λn=0

Jn∑
q=1

κqn−1∑
m=0

c(m,q)
n W (m,q)

n + U ′. (3.19)

Here {λn} is a finite set of eigenvalues of the operator L̃(λ) lying on the line
Im λ = 0;

W (m,q)
n (ω, r) = riλn

m∑
l=0

1
l!

(i ln r)lϕ(m−l,q)
n (ω),

BjσW (m,q)
n |γjσ = 0; (3.20)

ϕ
(0,q)
n , . . . , ϕ

(κqn−1,q)
n ∈ ∏

j
W 2(−ωj , ωj) are an eigenvector and associated vec-

tors (a Jordan chain of length κqn ≥ 1) corresponding to the eigenvalue λn;
c
(m,q)
n are constants; finally, U ′ ∈ H2

a(K
ε).

Set
C = W +

∑
n,q,m

c(m,q)
n W (m,q)

n .

It is clear that U = C + U ′. Since U, U ′ ∈ W1(Kε), it follows that C ∈
W1(Kε). This relation and Lemma A.6 imply that C is a constant vector.
By virtue of (3.20) and (3.15),

BjσC|γε
jσ

= BjσW |γε
jσ

= Ψjσ(0).

Therefore, using the relation BjσC = const for C = const, we obtain (3.11).
4. Now suppose that the equality U = D + V ′ holds together with (3.10),

where V ′ ∈ H2
a(K

ε) and D = (D1, . . . , DN ) is a constant vector. Then we
have C − D = V ′ − U ′ ∈ H2

a(K
ε), hence C − D = 0 and V ′ − U ′ = 0. �

Lemma 3.2. Let the conditions of Lemma 3.1 be fulfilled, and let Condi-
tion 3.1 hold. Then U ∈ W2(Kε).

Proof. 1. By Lemma 3.1, it suffices to show that U ′ ∈ W2(Kε). The
function U ′ belongs to H2

a(K
ε), and, by virtue of relations (3.10) and (3.12),

it is a solution of the problem

PjU
′
j = Fj −PjCj (y ∈ Kε

j ), BjσU ′ = Ψjσ(0) + Ψ0
jσ(y)−BjσC (y ∈ γε

jσ).
(3.21)

Since {Fj} ∈ W0(Kε) and C = const, it follows that

{Fj − PjCj} ∈ H0
0(K

ε). (3.22)
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Further,

{Ψjσ(0) + Ψ0
jσ(y)|γε

j
− BjσC|γε

j
} ∈ W3/2(γε),(

Ψjσ(0) + Ψ0
jσ(y) − BjσC

)∣∣
y=0

= 0.
(3.23)

The latter relation follows from the fact that Ψ0
jσ(0) = 0 and BjσC|y=0 =

BjσC = Ψjσ(0) (see Lemma 3.1).
2. Since the line Imλ = −1 has no eigenvalues of L̃(λ) and relations (3.23)

hold, it follows from Lemma A.13 that there exists a function

V ∈ W2(K) ∩H2
a(K) (3.24)

such that

{PjVj} ∈ H0
0(K

ε), {BjσV |γε
jσ
−

(
Ψjσ(0)+Ψ0

jσ(y)−BjσC
)
|γε

jσ
} ∈ H3/2

0 (γε).
(3.25)

Therefore, U ′ − V ∈ H2
a(K

ε) and, due to (3.21)–(3.23) and (3.25), we have

{Pj(U ′
j − Vj)} ∈ H0

0(K
ε), {Bjσ(U ′ − V )|γε

jσ
} ∈ H3/2

0 (γε).

Further, Lemma A.3 implies that

{Pj(U ′
j − Vj)} ∈ H0

0(K
ε), {Bjσ(U ′ − V )|γε

jσ
} ∈ H3/2

0 (γε).

Since Condition 3.1 holds, we can apply Theorem A.1 concerning the as-
ymptotic behavior of the function U ′ − V , which yields

U ′ − V ∈ H2
0(K

ε) ⊂ W2(Kε).

Now the conclusion of the lemma follows from the latter relation, from (3.24),
and from (3.10). �

Theorem 3.1 results from (3.2) and from Lemma 3.2.

4. Border Case: Consistency Conditions

4.1. Behavior of Solutions near the Conjugation Points. Let λ = λ0

be an eigenvalue of the operator L̃(λ).

Definition 4.1. We say that λ0 is a proper eigenvalue if none of the corre-
sponding eigenvectors ϕ(ω) = (ϕ1(ω), . . . , ϕN (ω)) has an associated vector,
while the functions riλ0ϕj(ω), j = 1, . . . , N , are polynomials in y1, y2. An
eigenvalue which is not proper is said to be improper.
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The notion of proper eigenvalue was originally proposed by Kondrat’ev [20]
for “local” boundary-value problems in angular or conical domains.

Clearly, if λ0 is a proper eigenvalue, then Imλ0 ≤ 0 and Reλ0 = 0.
Therefore, the line Imλ = const can have at most one proper eigenvalue.

In this section, we suppose that the following condition holds.

Condition 4.1. The band −1 ≤ Im λ < 0 contains only the eigenvalue
λ = −i of the operator L̃(λ). This eigenvalue is a proper one.

The principal difference between the results of this section and those of
Section 3 is related to the behavior of generalized solutions near the set
K. If Condition 4.1 holds, then Lemma 3.1 remains valid. However, the
conclusion of Lemma 3.2 is no longer true because Lemma A.13 (proved
in [15]) is inapplicable when the line Imλ = −1 contains a proper eigenvalue
of L̃(λ). In this section, we make use of other results from [15]. To do this,
we impose certain consistency conditions on the behavior of the functions fi

and on the behavior of the coefficients of nonlocal terms near the set (orbit)
K.

Let τjσ be the unit vector co-directed with the ray γjσ. Consider the
operators

∂

∂τjσ
BjσU ≡ ∂

∂τjσ

( ∑
k,s

bjσks(0)Uk(Gjσksy)
)
.

Using the chain rule, we obtain
∂

∂τjσ
BjσU ≡

∑
k,s

(B̂jσks(Dy)Uk)(Gjσksy), (4.1)

where B̂jσks(Dy) are first-order differential operators with constant coeffi-
cients. In particular, B̂jσj0(Dy) = ∂/∂τjσ because Gjσj0y ≡ y. Formally re-
placing the nonlocal operators by the corresponding local operators in (4.1),
we introduce the operators

B̂jσ(Dy)U ≡
∑
k,s

B̂jσks(Dy)Uk(y). (4.2)

Let us prove that the system of operators (4.2) is linearly dependent if Con-
dition 4.1 holds. Let

B̂jσks(Dy) = bjσks1
∂

∂y1
+ bjσks2

∂

∂y2
, (4.3)

where bjσks1 and bjσks2 are complex constants. It suffices to show that
the following system of 2N equations for the 2N indeterminates qk1, qk2,
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k = 1, . . . , N , admits a nontrivial solution:∑
k,s

bjσks1qk1 + bjσks2qk2 = 0, j = 1, . . . , N, σ = 1, 2. (4.4)

Let ϕ(ω) = (ϕ1(ω), . . . , ϕN (ω)) be an eigenvector corresponding to the eigen-
value λ = −i. By Condition 4.1, the functions Qk(y) = rϕk(ω) are homoge-
neous polynomials of order one. Set qk1 = ∂Qk/∂y1, qk2 = ∂Qk/∂y2. Then,
using equalities (4.3), the fact that the first derivative of a polynomial of
order one is a constant, and relation (4.1), we obtain

∑
k,s

bjσks1qk1 + bjσks2qk2 =
∑
k,s

B̂jσks(Dy)Qk(y)

=
∑
k,s

(B̂jσks(Dy)Qk)(Gjσksy) =
∂

∂τjσ
BjσQ,

where Q = (Q1, . . . , QN ). Since λ = −i is an eigenvalue of L̃(λ) and ϕ is
the corresponding eigenvector, it follows that BjσQ|γjσ = 0; hence,(

∂(BjσQ)/∂τjσ

)
|γjσ = 0.

It follows from the latter relation and from the relation ∂(BjσQ)/∂τjσ =
const that ∂(BjσQ)/∂τjσ = 0. Thus, we have constructed a nontrivial so-
lution of system (4.4) and, therefore, proved that system (4.2) is linearly
dependent.

Let
{B̂j′σ′(Dy)} (4.5)

be a maximal linearly independent subsystem of system (4.2). In this case,
any operator B̂jσ(Dy) which does not enter system (4.5) can be represented
as follows:

B̂jσ(Dy) =
∑
j′,σ′

βj′σ′
jσ B̂j′σ′(Dy), (4.6)

where βj′σ′
jσ are some constants.

Let us introduce the notion of the consistency condition. Let {Zjσ} ∈
W3/2(γε) be arbitrary functions, each of which is defined on its own interval
γε

jσ. Consider the functions

Z0
jσ(r) = Zjσ(y)|y=(r cos ωj , r(−1)σ sin ωj).

Each of the functions Z0
jσ belongs to W 3/2(0, ε).
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Definition 4.2. Let βj′σ′
jσ be the constants occurring in (4.6). If the relations∫ ε

0
r−1

∣∣∣ d

dr

(
Z0

jσ −
∑
j′,σ′

βj′σ′
jσ Z0

j′σ′

)∣∣∣2dr < ∞ (4.7)

hold for all indices j, σ corresponding to the operators of system (4.2) which
do not enter system (4.5), then we say that the functions Zjσ satisfy the
consistency condition (4.7).

Remark 4.1. The relation {Zjσ} ∈ H3/2
0 (γε) is sufficient (but not necessary)

for the functions Zjσ to satisfy the consistency condition (4.7). This follows
from Lemma A.5.

Remark 4.2. In the paper [15], whose results we use in the present paper,
the consistency condition has the form

∂Zjσ

∂τjσ
−

∑
j′,σ′

βj′σ′
jσ

∂Zj′σ′

∂τj′σ′
∈ H1

0 (R2), (4.8)

where Zjσ ∈ W 2(R2) is a compactly supported extension of Zjσ to R
2 (appro-

priate theorems concerning extensions of functions in angular domains can
be found in [40]). Let us show that relations (4.7) are equivalent to (4.8).
Denote by Gjσ the operator of rotation through the angle (−1)σωj ; in par-
ticular, the operator Gjσ takes the positive half-line Oy1 onto the ray γjσ.
Consider the functions Z0

jσ(y) = Zjσ(Gjσy). It is clear that Z0
jσ ∈ W 2(R2)

and Z0
jσ(y1, 0) = Z0

jσ(y1). Suppose that relations (4.7) hold. Then, by
Lemma A.4, we have

∂Z0
jσ

∂y1
−

∑
j′,σ′

βj′σ′
jσ

∂Z0
j′σ′

∂y1
∈ H1

0 (R2), (4.9)

which is equivalent to

∂Zjσ

∂τjσ

(
Gjσy

)
−

∑
j′,σ′

βj′σ′
jσ

∂Zj′σ′

∂τj′σ′

(
Gj′σ′y

)
∈ H1

0 (R2) (4.10)

by the chain rule. However, by Lemma A.7, we have

∂Zjσ

∂τjσ

(
Gjσy

)
− ∂Zjσ

∂τjσ

(
y
)
∈ H1

0 (R2) (4.11)

for all Zjσ ∈ W 2(R2) because ∂Zjσ/∂τjσ ∈ W 1(R2). It follows from (4.10)
and (4.11) that relations (4.8) hold.
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Conversely, suppose that relations (4.8) hold. Using (4.11) again, we
obtain (4.10), hence (4.9). It follows from (4.9) and from the boundedness
of the trace operator in appropriate weighted spaces that

d

dr

(
Z0

jσ −
∑
j′,σ′

βj′σ′
jσ Z0

j′σ′

)
∈ H

1/2
0 (0, ε).

This relation and Lemma A.5 imply (4.7).

Now we will show that the following condition is necessary and sufficient
for a given generalized solution u to belong to W 2(G).

Condition 4.2. Let u ∈ W 1(G) be a generalized solution of problem (2.6),
(2.7), Ψjσ the right-hand sides in nonlocal conditions (2.10), and C the
constant vector appearing in Lemma 3.1. Then the functions Ψjσ − BjσC
satisfy the consistency condition (4.7).

Remark 4.3. 1. The validity of Condition 4.2 depends, in particular, on the
behavior of the function B2

i u near the set (orbit) K. Due to (2.4), the values
of the function B2

i u near the set K depend on the values of the function u

in G \ Oκ1(K). Therefore, the smoothness of the solution u near the set K
depends on the behavior of u outside K.

2. Let us explain how the validity of Condition 4.2 depends on the behav-
ior of the functions u(y), fi(y), bis(y), (B2

i u)(y) near the set K. On one hand,
the vector C appearing in Lemma 3.1 is defined by the behavior of u(y) near
the set K. On the other hand, the values of bis(y), y ∈ K, together with
the operators Gjσks, define the constants βjσ occurring in (4.6) and hence
in (4.7). Finally, the derivatives of fi(y), (B2

i u)(y), and bis(y) near the set K
must be consistent with each other in such a way that the absolute values of
the corresponding linear combinations of the first derivatives of Ψjσ −BjσC
are quadratically integrable, with the weight r−1, near the origin.

Throughout this section, we suppose that the number a is the same as in
Section 3. The existence of such an a follows from Lemma 2.1 and Condi-
tion 4.1.

Theorem 4.1. Let Condition 4.1 hold, and let u ∈ W 1(G) be a general-
ized solution of problem (2.6), (2.7) with right-hand side {f0, fi} ∈ L2(G) ×
W3/2(∂G). Then u ∈ W 2(G) if and only if Condition 4.2 holds.

Proof. 1. Necessity. Let u ∈ W 2(G), and let U = (U1, . . . , UN ) be a
function corresponding to the set (orbit) K. Clearly, U ∈ W2(Kε). It follows
from Lemma 3.1 that U = C+U ′, where U ′ ∈ H2

a(K
ε). Since we additionally
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have U ′ = U − C ∈ W2(Kε), it follows from Sobolev’s embedding theorem
that U ′(0) = 0. This relation and Lemma A.15 imply that the functions
Ψjσ − BjσC = BjσU ′ satisfy the consistency condition (4.7).

2. Sufficiency. Suppose that Condition 4.2 holds. Similarly to the proof
of Lemma 3.2, we infer that the function U ′ ∈ H2

a(K
ε) is a solution of

problem (3.21).
Using Condition 4.2 and relations (3.23), we can apply Lemma A.14, which

ensures the existence of a function V satisfying relations (3.24) and (3.25).
Further, similarly to the proof of Lemma 3.2, we obtain U ′−V ∈ H2

a(K
ε),

{Pj(U ′
j−Vj)} ∈ H0

0(K
ε), {Bjσ(U ′−V )|γε

jσ
} ∈ H3/2

0 (γε). It follows from these
relations and from Lemma A.11 that all the second derivatives of the function
U ′ − V belong to W0(Kε). Combining this fact with the relations

U ′ − V ∈ H2
a(K

ε) ⊂ H1
a−1(K

ε) ⊂ W1(Kε)

yields U ′ − V ∈ W2(Kε). Now the conclusion of the theorem results from
(3.24) and (3.10). �

Note that Theorem 4.1 enables us to conclude whether or not a given
solution u is smooth near the set K, provided that we know the asymptotics
for u of the same type as (3.10) near the set K (i.e., if we know the value
of the constant3 C). Theorem 4.1 shows what affects the smoothness of
solutions in principle. Below, this will enable us to obtain a constructive
condition which is necessary and sufficient for any generalized solution to
belong to W 2(G).

4.2. Problem with Nonhomogeneous Nonlocal Conditions. If any
generalized solution of problem (2.6), (2.7) belongs to W 2(G), then we say
that smoothness of generalized solutions is preserved. If there exists a gen-
eralized solution of problem (2.6), (2.7) which does not belong to W 2(G),
then we say that smoothness of generalized solutions can be violated.

In this subsection, we formulate necessary and sufficient conditions for the
smoothness of solutions to be preserved. First of all, we show that right-
hand sides fi in nonlocal conditions (2.7) cannot be arbitrary functions from
W 3/2(Γi); they must satisfy the consistency condition (4.7).

Denote by S3/2(∂G) the set of functions {fi} ∈ W3/2(∂G) such that the
functions Fjσ (see (2.8)) satisfy the consistency condition (4.7).

It follows from [15, Lemma 3.2] that the set S3/2(∂G) is not closed in the
space W3/2(∂G).

3As for the calculation of the constant C, see [13, 14].



Nonlocal elliptic problems 327

Smoothness of generalized solutions of problem (2.6), (2.7) can be violated
if right-hand sides in nonlocal conditions (2.7) do not satisfy the consistency
condition. The following result is valid.

Theorem 4.2. Let Condition 4.1 hold. Then there exist a function {f0, fi} ∈
L2(G) ×W3/2(∂G), {fi} /∈ S3/2(∂G), and a function u ∈ W 1(G) such that
u is a generalized solution of problem (2.6), (2.7) with the right-hand side
{f0, fi} and u /∈ W 2(G).

To prove Theorem 4.2, we preliminarily establish two auxiliary results.

Lemma 4.1. Let f ∈ W 2(R2) and f(0) = 0. Then there exists a sequence
fn ∈ C∞

0 (R2), n = 1, 2, . . . , such that fn(y) = 0 in some neighborhood of
the origin (depending on n) and fn → f in W 2(R2).

Proof. As is well known, the set C∞
0 (R2) is dense in W 2(R2). On the other

hand, it follows from Sobolev’s embedding theorem and Riesz’s theorem on
the general form of a linear continuous functional in a Hilbert space that the
set {u ∈ W 2(R2) : u(0) = 0} is a closed subspace in W 2(R2) of codimension
one. Therefore, by [23, Lemma 8.1], the set C∞

0 (R2)∩{u ∈ W 2(R2) : u(0) =
0} is dense in {u ∈ W 2(R2) : u(0) = 0}. Hence, it suffices to prove the
lemma for a function f ∈ C∞

0 (R2) such that f(0) = 0. Introduce a function
ξ ∈ C∞

0 [0,∞) such that 0 ≤ ξ(t) ≤ 1, ξ(t) = 1 for t < 1, and ξ(t) = 0 for
t > 2. Consider the sequence

ξn(y) = ξ
(
− ln r

n

)
,

where r = |y|. Clearly, 0 ≤ ξn(y) ≤ 1, ξn(y) = 0 for |y| < e−2n, ξn(y) = 1
for |y| > e−n, |ξn

yk
| ≤ c1/(rn), |ξn

yiyk
| ≤ c2/(r2n), where c1, c2 > 0 do not

depend on n and y.
Let us show that the sequence ξnf converges to f in W 2(R2) as n → ∞.

Clearly, ∫
R2

|f − ξnf |2dy ≤
∫
|y|<e−n

|f |2dy → 0. (4.12)

Further,
∫

R2

|(f − ξnf)yk
|2dy ≤ 2

[ ∫
|y|<e−n

|fyk
|2dy +

c2
1

n2

∫
e−2n<|y|<e−n

|f |2 1
r2

dy
]
→ 0.

(4.13)
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Indeed, the first bracketed term tends to zero because e−n → 0, whereas the
second term can be estimated from above by the following expression:

2π max
y∈R2

|f |2 c2
1

n2

∫ e−n

e−2n

dr

r
= 2π max

y∈R2
|f |2 c2

1

n
→ 0.

Finally,∫
R2

|(f − ξnf)yiyk
|2dy ≤ 4

[ ∫
|y|<e−n

|fyiyk
|2dy

+
c2
1

n2

∫
e−2n<|y|<e−n

(|fyi |2 + |fyk
|2) 1

r2
dy +

c2
2

n2

∫
e−2n<|y|<e−n

|f |2 1
r4

dy
]
→ 0.

(4.14)

Indeed, the first and the second bracketed terms tend to zero because of the
reasons similar to the above. To prove that the third term tends to zero,
we recall that f ∈ C∞

0 (R2) and f(0) = 0. Therefore, by the Taylor formula,
f(y) = O(r) as r → 0, and hence the third term can be estimated from
above similarly to the second one. �

Set
ε′ = dχ min(ε, κ2), (4.15)

where dχ is defined in (3.3).

Lemma 4.2. Let Condition 4.1 hold. Let a function {Zjσ} ∈ W3/2(γε)
be such that supp {Zjσ} ⊂ Oε/2(0), Zjσ(0) = 0, and the functions Zjσ do
not satisfy the consistency condition (4.7). Then there exists a function
U ∈ H2

a(K) ∩ W1(K) such that suppU ⊂ Oε′(0), U /∈ W2(Kε), and U
satisfies the relations

{PjUj} ∈ W0(Kε), {BjσU |γε
jσ

− Zjσ} ∈ H3/2
0 (γε). (4.16)

Proof. By Lemma 4.1, there exists a sequence of vector-valued functions
{Zn

jσ} ∈ W3/2(γ), n = 1, 2, . . . , such that suppZn
jσ ⊂ Oε(0), Zn

jσ(0) = 0, Zn
jσ

satisfy the consistency condition (4.7) (because the functions Zn
jσ vanish near

the origin), and Zn
jσ → Zjσ in W 3/2(γj). Now we apply Lemma 3.5 in [15],

which ensures the existence of a sequence V n = (V n
1 , . . . , V n

N ) satisfying the
following conditions: V n ∈ W2(Kd) ∩H1

0(K
d) for any d > 0,

PjV
n
j = 0 (y ∈ Kj), BjσV n = Zn

jσ(y) (y ∈ γjσ), (4.17)

and the sequence V n converges to some function V ∈ H1
0(K

d) in H1
0(K

d)
for any d > 0. Passing to the limit in the first equality in (4.17) in the sense
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of distributions and in the second equality in W 1/2(γd
jσ) for any d > 0, we

obtain

PjVj = 0 (y ∈ Kj), BjσV = Zjσ(y) (y ∈ γjσ). (4.18)

In particular, it follows from these relations and from Lemma 3.1 that V =
C + V ′, where V ′ ∈ H2

a(K
ε) and C = (C1, . . . , CN ) is a constant vector.

Therefore, C = V − V ′ ∈ H1
0(K

ε), and hence C = 0. Thus, we have proved
that

V ∈ H2
a(K

d) ∩W1(Kd) ∀d > 0. (4.19)

Consider a cut-off function ξ ∈ C∞
0 (|y| < ε′) equal to one near the origin.

Set U = ξV . Clearly, suppU ⊂ Oε′(0) and, by virtue of (4.19),

U ∈ H2
a(K) ∩W1(K). (4.20)

2. We claim that U is the desired function. Indeed, using Leibniz’ formula,
relations (4.18) and Lemma A.3, we infer (4.16).

It remains to prove that U /∈ W2(Kε). Assume the contrary. Let U ∈
W2(Kε). In this case, it follows from Sobolev’s embedding theorem and
from the fact that U ∈ H2

a(K
ε) that U(0) = 0. Combining this fact with

Lemma A.15 implies that the functions BjσU |γε
jσ

satisfy the consistency
condition (4.7). However, the functions BjσU |γε

jσ
− Zjσ do not satisfy the

consistency condition (4.7) in that case. This contradicts (4.16) (see Re-
mark 4.1). �

Proof of Theorem 4.2. 1. We will construct a generalized solution u sup-
ported near the set K (so that B2

i u = 0 due to (2.4)) and such that u /∈
W 2(G).

It was shown in the course of the proof of Lemma 3.2 in [15] that there
exists a function {Zjσ} ∈ W3/2(γ) such that suppZjσ ⊂ Oε/2(0), Zjσ(0) = 0,
and the functions Zjσ do not satisfy the consistency condition (4.7). By
Lemma 4.2, there exists a function U ∈ H2

a(K)∩W1(K) such that suppU ⊂
Oε′(0), U /∈ W2(K), and U satisfies relations (4.16). Therefore, {PjUj} ∈
W0(Kε), {BjσU |γε

jσ
} ∈ W3/2(γε), and the functions BjσU |γε

jσ
do not satisfy

the consistency condition (4.7).
2. Introduce a function u(y) such that u(y) = Uj(y′(y)) for y ∈ Oε′(gj)

and u(y) = 0 for y /∈ Oε′(K), where y′ 
→ y(gj) is the change of variables
inverse to the change of variables y 
→ y′(gj) from Section 2.1. Since suppu ⊂
Oκ1(K), it follows that B2

i u = 0. Therefore, u(y) is the desired generalized
solution of problem (2.6), (2.7). �
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Theorem 4.2 shows that, if we want any generalized solution of prob-
lem (2.6), (2.7) to be smooth, then we must take right-hand sides {f0, fi}
from the space L2(G) × S3/2(∂G).

Let v be an arbitrary function from the space W 2(G \Oκ1(K)). Consider
the change of variables y 
→ y′(gj) from Section 2.1 again and introduce the
functions

Bv
jσ(y′) = (B2

i v)(y(y′)), y′ ∈ γε
jσ

(cf. functions (2.8)). We prove that the following condition is necessary and
sufficient for any generalized solution to be smooth.

Condition 4.3. (1) For any v ∈ W 2(G \ Oκ1(K)), the functions Bv
jσ

satisfy the consistency condition (4.7).
(2) For any constant vector C = (C1, . . . , CN ), the functions BjσC|γε

jσ

satisfy the consistency condition (4.7).

Note that the validity of Condition 4.3, unlike Condition 4.2, does not
depend on a generalized solution. It depends only on the operators B1

i and
B2

i and on the geometry of the domain G near the set (orbit) K. This is
quite natural because we study the smoothness of all generalized solutions
in this section (while in Section 4.1, we have investigated the smoothness of
a fixed solution).

Theorem 4.3. Let Condition 4.1 hold. Then the following assertions are
true.

(1) If Condition 4.3 is fulfilled and u ∈ W 1(G) is a generalized solution of
problem (2.6), (2.7) with right-hand side {f0, fi} ∈ L2(G)×S3/2(∂G),
then u ∈ W 2(G).

(2) If Condition 4.3 fails, then there exists a right-hand side {f0, fi} ∈
L2(G) × S3/2(∂G) and a generalized solution u ∈ W 1(G) of prob-
lem (2.6), (2.7) such that u /∈ W 2(G).

Proof. 1. Sufficiency. Let Condition 4.3 hold, and let u ∈ W 1(G) be an
arbitrary generalized solution of problem (2.6), (2.7) with right-hand side
{f0, fi} ∈ L2(G) × S3/2(∂G). By (3.2), we have u ∈ W 2(G \ Oκ1(K)).
Therefore, by Condition 4.3, the functions Bu

jσ satisfy the consistency condi-
tion (4.7). Let C be a constant vector defined by Lemma 3.1. Using Condi-
tion 4.3 again, we see that the functions BjσC satisfy the consistency condi-
tion (4.7). Since {fi} ∈ S3/2(∂G), it follows that the functions Fjσ satisfy the
consistency condition (4.7). Therefore, the functions Ψjσ = Fjσ − Bu

jσ and
BjσC satisfy Condition 4.2. Applying Theorem 4.1, we obtain u ∈ W 2(G).
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2. Necessity. Let Condition 4.3 fail. In this case, there exist a function
v ∈ W 2(G \ Oκ1(K)) and a constant vector C = (C1, . . . , CN ) such that the
functions Bv

jσ +BjσC do not satisfy the consistency condition (4.7) (one can
assume that either v = 0, C �= 0 or v �= 0, C = 0). Extend the function v to
the domain G in such a way that v(y) = 0 for y ∈ Oκ1/2(K) and v ∈ W 2(G).

Consider functions F ′
jσ ∈ C∞(γjσ) such that

F ′
jσ(y) = Bv

jσ(0) + (BjσC)(0), |y| < ε/2, F ′
jσ(y) = 0, |y| > ε.

Since ∂F ′
jσ/∂τjσ = 0 near the origin, it follows that the functions F ′

jσ satisfy
the consistency condition (4.7). By construction,

{F ′
jσ − Bv

jσ − BjσC|γε
jσ
} ∈ W3/2(γε), (F ′

jσ − Bv
jσ − BjσC)|y=0 = 0,

and the functions F ′
jσ − Bv

jσ − BjσC do not satisfy the consistency condi-
tion (4.7). By Lemma 4.2, there exists a function U ′ ∈ H2

a(K)∩W1(K) such
that suppU ′ ⊂ Oε′(0), U ′ /∈ W2(Kε), and

{PjU
′
j} ∈ W0(Kε), (4.21)

{(
BjσU ′ − (F ′

jσ − Bv
jσ − BjσC)

)
|γε

jσ

}
∈ H3/2

0 (γε).

One can also write the latter relation as follows:

{Bjσ(U ′ + C)|γε
jσ

+ Bv
jσ − F ′

jσ} ∈ H3/2
0 (γε). (4.22)

Introduce a function u′(y) such that u′(y) = U ′
j(y

′(y)) + ξj(y)Cj for y ∈
Oε′(gj) and u′(y) = 0 for y /∈ Oε′(K), where y′ 
→ y(gj) is the change of
variables inverse to the change of variables y 
→ y′(gj) from Section 2.1, while
ξj ∈ C∞

0 (Oε′(gj)), ξj(y) = 1 for y ∈ Oε′/2(gj), and ε′ is given by (4.15). Let
us prove that the function u = u′+v is the desired one. Clearly, u ∈ W 1(G),
u /∈ W 2(G), and u satisfies relations (3.2). It follows from the fact that
v ∈ W 2(G) and from relations (4.21) that

Pu ∈ L2(G).

Consider the functions fi = u|Γi + B1
i u + B2

i u. It follows from the fact
that v ∈ W 2(G), from relations (3.2), and from inequality (2.4) that fi ∈
W 3/2

(
Γi \ Oδ(K)

)
for any δ > 0. Consider the behavior of fi near the

set K. Note that B2
i u

′ = 0 by (2.4). Furthermore, v|Γi + B1
i v = 0 for

y ∈ Oκ1/Dχ
(K). Therefore,

fi = u′|Γi + B1
i u

′ + B2
i v (y ∈ Oκ1/Dχ

(K)). (4.23)
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Introduce the functions Fjσ(y′) = fi(y(y′)), where y 
→ y′(gj) is the change
of variables from Section 2.1. It follows from (4.23) and from (4.22) that
{Fjσ − F ′

jσ} ∈ H3/2
0 (γε). Therefore, {Fjσ} ∈ W3/2(γε) and the functions

Fjσ, together with F ′
jσ, satisfy the consistency condition (4.7). Hence {fi} ∈

S3/2(∂G), which completes the proof. �

4.3. Problem with Regular and Homogeneous Nonlocal Conditions.

Definition 4.3. We say that a function v ∈ W 2(G \ Oκ1(K)) is admissible
if there exists a constant vector C = (C1, . . . , CN ) such that

Bv
jσ(0) + (BjσC)(0) = 0, j = 1, . . . , N, σ = 1, 2. (4.24)

Any vector C satisfying relations (4.24) is said to be an admissible vector
corresponding to the function v.

Remark 4.4. The set of admissible functions is linear. It is clear that
the function v = 0 is admissible, while the vector C = 0 is an admissible
vector corresponding to the function v = 0. In fact, the set of admissible
functions is much wider. In particular, it contains all generalized solutions of
problem (2.6), (2.7) with homogeneous nonlocal conditions for all f ∈ L2(G)
(see the proof of Theorem 4.4 below). Therefore, this set consists of infinitely
many elements due to Theorem 2.1 in [17].4

As for the set of admissible vectors corresponding to an admissible func-
tion v, it is an affine space of the form

{C + C̃ : C̃ = const, (BjσC̃)(0) = 0}, (4.25)

where C is a fixed admissible vector corresponding to v (if the relations
(BjσC̃)(0) = 0, j = 1, . . . , N , σ = 1, 2, hold for C̃ = 0 only, then the set of
admissible vectors corresponding to v consists of a unique vector). Indeed,
if a constant vector D belongs to the set (4.25), then (Bjσ(D − C))(0) = 0
and, therefore,

Bv
jσ(0) + (BjσD)(0) = Bv

jσ(0) + (BjσC)(0) = 0

due to (4.24), i.e., the vector D is admissible. Conversely, if D is an admis-
sible vector corresponding to v, then

Bv
jσ(0) + (BjσD)(0) = 0.

Subtracting (4.24) from this equality yields (Bjσ(D − C))(0) = 0.

4Theorem 2.1 in [17] asserts that problem (2.6), (2.7) has the Fredholm property.
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Definition 4.4. Right-hand sides fi in nonlocal conditions (2.7) are said to
be regular if {fi} ∈ S3/2(∂G) and fi|Γi∩K = 0, i = 1, . . . , N .

In particular, right-hand sides {fi} ∈ H3/2
0 (∂G) are regular due to the

Sobolev embedding theorem and Remark 4.1. In this subsection, we prove
that the following condition is necessary and sufficient for any generalized
solution of problem (2.6), (2.7) with regular fi to be smooth.

Condition 4.4. For each admissible function v and for each admissible
vector C corresponding to v, the functions Bv

jσ+BjσC satisfy the consistency
condition (4.7).

Note that Condition 4.4 is, in general, weaker than Condition 4.3.

Theorem 4.4. Let Condition 4.1 hold. Then the following assertions are
true.

(1) If Condition 4.4 is fulfilled and u ∈ W 1(G) is a generalized solution of
problem (2.6), (2.7) with right-hand side {f0, fi} ∈ L2(G)×S3/2(∂G),
where fi are regular, then u ∈ W 2(G).

(2) If Condition 4.4 fails, then there exists a right-hand side {f0, fi} ∈
L2(G) × H3/2

0 (∂G) and a generalized solution u ∈ W 1(G) of prob-
lem (2.6), (2.7) such that u /∈ W 2(G).

Proof. 1. Sufficiency. Let Condition 4.4 hold, and let u ∈ W 1(G) be an
arbitrary generalized solution of problem (2.6), (2.7) with right-hand side
{f0, fi} ∈ L2(G) × S3/2(∂G), fi|Γi∩K = 0. By (3.2), we have u ∈ W 2(G \
Oκ1(K)).

It follows from the properties of fi that the right-hand sides in nonlocal
conditions (2.10) have the form

Ψjσ = Fjσ − Bu
jσ, (4.26)

where Fjσ ∈ W3/2(γε), Fjσ(0) = 0, and Fjσ satisfy the consistency condi-
tion (4.7).

Further, let U = C + U ′, where U ′ ∈ H2
a(K

ε) and C are the function and
the constant vector defined in Lemma 3.1. It follows from (2.10) and (4.26)
that

BjσU ′ = Fjσ − (Bu
jσ + BjσC).

Since {Bu
jσ + BjσC|γε

jσ
− Fjσ} ∈ W3/2(γε) and U ′ ∈ H2

a(K
ε), it follows that

{Bu
jσ + BjσC|γε

jσ
− Fjσ} = {−BjσU ′} ∈ W3/2(γε) ∩H3/2

a (γε).
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Therefore, Bu
jσ(0)+ (BjσC)(0) = 0 (since Fjσ(0) = 0 due to the above), i.e.,

u is an admissible function and C is an admissible vector corresponding to
u. Hence, by virtue of (4.26) and by Condition 4.4, Condition 4.2 holds.
Combining this fact with Theorem 4.1 implies u ∈ W 2(G).

2. Necessity. Let Condition 4.4 fail. In this case, there exists a function
v ∈ W 2(G \ Oκ1(K)) and a constant vector C = (C1, . . . , CN ) such that
Bv

jσ(0) + (BjσC)(0) = 0 and the functions Bv
jσ + BjσC do not satisfy the

consistency condition (4.7).
We must find a function u ∈ W 1(G) such that u /∈ W 2(G) and

Pu ∈ L2(G), u|Γi + B1
i u + B2

i u ∈ H
3/2
0 (Γi).

To do this, one can repeat the proof of assertion 2 of Theorem 4.3, assuming
that v is the above function, C is the above constant vector, and F ′

jσ(y) ≡ 0
(which is possible due to the relation Bv

jσ(0) + (BjσC)(0) = 0). �
Corollary 4.1. Let Condition 4.1 hold. If Condition 4.4 fails, then there
exist a right-hand side {f0, fi} ∈ L2(G) × H3/2

0 (∂G), where fi(y) = 0 for
y ∈ Γi ∩ Oκ2(K), and a generalized solution u ∈ W 1(G) of problem (2.6),
(2.7) such that u /∈ W 2(G).

The proof of this corollary results from assertion 2 in Theorem 4.4, from
the embedding H2

0 (G) ⊂ W 2(G), and from assertion 1 of the following
lemma.

Lemma 4.3. (1) Let fi ∈ H
3/2
0 (Γi), i = 1, . . . , N . Then there exists a

function u0 ∈ H2
0 (G) such that

suppu0 ⊂ Oκ1(K),

u0|Γi = fi(y), y ∈ Γi ∩ Oκ2(K), i = 1, . . . , N,

B1
i u0 = B2

i u0 = 0, i = 1, . . . , N. (4.27)

(2) Let fi ∈ H
3/2
0 (Γi) and supp fi ⊂ Oκ2(K), i = 1, . . . , N . Then there

exists a function u0 ∈ H2
0 (G) such that

suppu0 ⊂ Oκ2(K),

u0|Γi = fi(y), y ∈ Γi, i = 1, . . . , N,

and relations (4.27) are valid.

Proof. 1. Using Lemma A.12 and a partition of unity, one can construct a
function u0 ∈ H2

0 (G) such that

suppu0 ⊂ Oκ1(K), (4.28)
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u0|Γi = fi(y), y ∈ Γi ∩ Oκ2(K), i = 1, . . . , N, (4.29)
B1

i u0 = 0.

By (4.28) and (2.4), we have B2
i u0 = 0. Therefore, u0 is the desired function.

2. If supp fi ⊂ Oκ2(K), we can assume that supp u0 ⊂ Oκ2(K). In this
case, the equality in (4.29) holds for y ∈ Γi. �

Now we find sufficient conditions for the violation of smoothness of gen-
eralized solutions in the case of homogeneous nonlocal conditions. The fol-
lowing corollary results from assertion 2 of Theorem 4.4.

Corollary 4.2. Suppose that Condition 4.1 holds and Condition 4.4 fails.
Let {f0, fi} ∈ L2(G) ×H3/2

0 (∂G) be a function constructed in assertion 2 of
Theorem 4.4, and let there exist a function u0 ∈ W 2(G) such that

u0|Γi + B1
i u0 + B2

i u0 = fi(y), y ∈ Γi, i = 1, . . . , N. (4.30)

Then there is a right-hand side {f0, 0}, where f0 ∈ L2(G), and a generalized
solution u ∈ W 1(G) of problem (2.6), (2.7) such that u /∈ W 2(G).

We do not have an algorithm allowing one to construct a function u0 satis-
fying relations (4.30) in the general case of abstract operators B2

i . However,
one can guarantee the existence of u0 in some particular cases which are
described in Corollaries 4.3 and 4.4 below (see also Section 7.2).

Corollary 4.3. Suppose that the operators B2
i satisfy the following condition

for some ρ > 0:

‖B2
i v‖W 3/2(Γi)

≤ c‖v‖W 2(Gρ) for all v ∈ W 2(Gρ). (4.31)

Let Condition 4.1 hold, and let Condition 4.4 fail. Then the conclusion of
Corollary 4.2 is true.

The proof of this corollary results from Corollary 4.2, from the embedding
H2

0 (G) ⊂ W 2(G), and from the following lemma.

Lemma 4.4. Let fi ∈ H
3/2
0 (Γi), and let the operators B2

i satisfy condi-
tion (4.31). Then there exists a function u0 ∈ H2

0 (G) satisfying (4.30).

Proof. Using Lemma A.12 and a partition of unity, one can construct a
function u0 ∈ H2

0 (G) such that

suppu0 ⊂ G \ Gρ, (4.32)

u0|Γi = fi(y), y ∈ Γi; i = 1, . . . , N.

B1
i u0 = 0.

By (4.32) and (4.31), we have B2
i u0 = 0. Therefore, u0 satisfies (4.30). �
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Remark 4.5. Condition (4.31), which is stronger than Condition 2.2, means
that the operators B2

i correspond to nonlocal terms supported inside the
domain G.

Corollary 4.4. Let Condition 4.1 hold. Suppose that Condition 4.4 fails for
an admissible function v such that

supp (v|Γi + B1
i v + B2

i v) ⊂ Γi ∩ Oκ2(K). (4.33)

Then the conclusion of Corollary 4.2 is true.

Proof. If supp (v|Γi + B1
i v + B2

i v) ⊂ Γi ∩Oκ2(K), then the function {fi} ∈
H3/2

0 (∂G) constructed in the proof of assertion 2 of Theorem 4.4 is also
supported in Oκ2(K). Therefore, applying assertion 2 of Lemma 4.3, we
obtain a function u0 satisfying (4.30). Using Corollary 4.2, we complete the
proof. �

5. Violation of Smoothness of Generalized Solutions

It remains to study the case in which the following condition holds.

Condition 5.1. The band −1 ≤ Im λ < 0 contains an improper eigenvalue
of the operator L̃(λ).

In this section, we show that the smoothness of generalized solutions can
be violated for any operators B2

i even if nonlocal conditions (2.7) are homo-
geneous.

Theorem 5.1. Let Condition 5.1 hold. Then there exists a right-hand side
{f0, 0}, where f0 ∈ L2(G), and a generalized solution u ∈ W 1(G) of prob-
lem (2.6), (2.7) such that u /∈ W 2(G).

Proof. 1. By assertion 2 of Lemma 4.3, it suffices to find a function u ∈
W 1(G) such that u /∈ W 2(G) and

Pu ∈ L2(G), u|Γi + B1
i u + B2

i u ∈ H
3/2
0 (Γi),

supp (u|Γi + B1
i u + B2

i u) ⊂ Γi ∩ Oκ2(K).
(5.1)

Let λ = λ0 be an improper eigenvalue of the operator L̃(λ), −1 ≤ Im λ0 < 0.
Consider the function

W = riλ0

m∑
l=0

1
l!

(i ln r)lϕ(m−l)(ω),
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where ϕ(0), . . . , ϕ(κ−1) are an eigenvector and associated vectors (a Jordan
chain of length κ ≥ 1) of the operator L̃(λ) corresponding to the eigenvalue
λ0. The number m (0 ≤ m ≤ κ − 1) occurring in the definition of W is such
that the function W is not a polynomial vector in y1, y2. Such an m does exist
because λ0 is not a proper eigenvalue (if Imλ �= −1 or Im λ = −1, Re λ �= 0,
then we can take m = 0). It follows from Lemma A.9 that

PjWj = 0, BjσW |γjσ = 0. (5.2)

Consider a cut-off function ξ ∈ C∞
0 (Oε′(0)) equal to one near the origin,

where ε′ is given by (4.15). Set U = ξW . Clearly, suppU ⊂ Oε′(0) and

U ∈ H2
1(K) ∩W1(K).

It follows from this relation, from (5.2), from Leibniz’ formula, and from
Lemma A.3 that

{PjUj} ∈ W0(Kε), {BjσU |γε
jσ
} ∈ H3/2

0 (γε), (5.3)

while the relation suppU ⊂ Oε′(0) implies

suppBjσU |γjσ ⊂ γjσ ∩ Oκ2(0). (5.4)

Moreover, we claim that
U /∈ W2(K). (5.5)

Indeed, if −1 < Im λ0 < 0, then one can directly verify the validity of (5.5);
if Imλ0 = −1, then (5.5) follows from Lemma A.6 and from the fact that
W is not a polynomial vector.

2. Consider the function u(y) given by u(y) = Uj(y′(y)) for y ∈ Oε′(gj)
and u(y) = 0 for y /∈ Oε′(K), where y′ 
→ y(gj) is the change of variables
inverse to the change of variables y 
→ y′(gj) from Section 2.1. The function
u is the desired one. Indeed, u /∈ W 2(G) due to (5.5). Furthermore, B2

i u =
0 due to inequality (2.4) because suppu ⊂ Oκ1(K). It follows from the
equality B2

i u = 0 and from relations (5.3) and (5.4) that the function u
satisfies (5.1). �

6. The Case of Several Orbits

6.1. Model Problems and Preservation of Smoothness. In this sec-
tion, we generalize the results of Sections 2–5 to the case where the set K
consists of more than one orbit. Let

K =
T⋃

t=1

Kt,
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where K1, . . . ,KT are disjoint orbits forming the set K of conjugation points.
Let the orbit Kt consists of points gt,1, . . . , gt,Nt .

Take a sufficiently small number ε such that there exist neighborhoods
Oε1(gt,j), Oε1(gt,j) ⊃ Oε(gt,j), satisfying the following conditions:

(1) The domain G is a plane angle in the neighborhood Oε1(gt,j);
(2) Oε1(gt,j) ∩ Oε1(gτ,k) = ∅ for any gt,j , gτ,k ∈ K, (t, j) �= (τ, k);
(3) If gt,j ∈ Γi and Ωis(gt,j) = gt,k, then Oε(gt,j) ⊂ Oi, Ωis

(
Oε(gt,j)

)
⊂

Oε1(gt,k).

For each point gt,j ∈ Γi ∩ K, we fix a transformation Yt,j : y 
→ y′(gt,j)
which is a composition of the shift by the vector −−−−→

Ogt,j and the rotation
through some angle so that

Yt,j(Oε1(gt,j)) = Oε1(0), Yt,j(G ∩ Oε1(gt,j)) = Kt,j ∩ Oε1(0),

Yt,j(Γi ∩ Oε1(gt,j)) = γt,jσ ∩ Oε1(0) (σ = 1 or σ = 2),

where

Kt,j = {y ∈ R
2 : r > 0, |ω| < ωt,j},

γt,jσ = {y ∈ R
2 : r > 0, ω = (−1)σωt,j}.

Here (ω, r) are the polar coordinates and 0 < ωt,j < π.
Consider the following condition instead of Condition 2.1.

Condition 2.1′. Let gt,j ∈ Γi ∩ K and Ωis(gt,j) = gt,k ∈ Kt; then the
transformation

Yt,k ◦ Ωis ◦ Y −1
t,j : Oε(0) → Oε1(0)

is the composition of rotation and homothety.

We assume throughout this section that Conditions 2.1′ and 2.2 are ful-
filled.

Let y 
→ y′(gt,j) be the above change of variables. Set

Kε
t,j = Kt,j ∩ Oε(0), γε

t,jσ = γt,jσ ∩ Oε(0)

and introduce the functions

Ut,j(y′) = u(y(y′)), Ft,j(y′) = f0(y(y′)), y′ ∈ Kε
t,j ,

Ft,jσ(y′) = fi(y(y′)), Bu
t,jσ(y′) = (B2

i u)(y(y′)),

Ψjσ(y′) = Ft,jσ(y′) − Bu
t,jσ(y′), y′ ∈ γε

t,jσ,

(6.1)
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where σ = 1 (σ = 2) if the transformation y 
→ y′(gt,j) takes Γi to the side
γt,j1 (γt,j2) of the angle Kt,j . Similarly to (2.9), (2.10), using Condition 2.1′,
we obtain the following model nonlocal problem for each t = 1, . . . , T :

Pt,jUt,j = Ft,j(y) (y ∈ Kε
t,j , j = 1, . . . Nt), (6.2)

Bt,jσUt ≡
Nt∑

k=1

St,jσk∑
s=1

bt,jσks(y)Uk(Gt,jσksy) = Ψt,jσ(y)

(y ∈ γε
t,jσ, j = 1, . . . Nt, σ = 1, 2).

(6.3)

Here Pt,j are properly elliptic second-order differential operators with vari-
able complex-valued C∞-coefficients, Ut = (Ut,1, . . . , Ut,Nt), bt,jσks(y) are
smooth functions, bt,jσj0(y) ≡ 1; Gt,jσks is an operator of rotation through
an angle ωt,jσks and homothetic with a coefficient χt,jσks > 0 in the y-plane.
Moreover,

|(−1)σωt,j + ωt,jσks| < ωt,k for (k, s) �= (j, 0)

and ωt,jσj0 = 0, χt,jσj0 = 1 (i.e., Gt,jσj0y ≡ y).
Let the principal homogeneous parts of the operators Pt,j at the point y =

0 have the following form in the polar coordinates: r−2P̃t,j(ω, ∂/∂ω, r∂/∂r)v.
Consider the analytic operator-valued function

L̃t(λ) :
Nt∏
j=1

W 2(−ωt,j , ωt,j) →
Nt∏
j=1

(L2(−ωt,j , ωt,j) × C
2)

given by

L̃t(λ)ϕ =
{
P̃t,j(ω, ∂/∂ω, iλ)ϕj ,∑

k,s

(χt,jσks)iλbt,jσks(0)ϕk((−1)σωt,j + ωt,jσks)
}
.

First, we study the case in which the following condition holds.

Condition 6.1. The band −1 ≤ Im λ < 0 contains no eigenvalues of the
operators L̃t(λ), t = 1, . . . , T .

The following result can be proved similarly to Theorem 3.1.

Theorem 6.1. Let Condition 6.1 hold, and let u ∈ W 1(G) be a general-
ized solution of problem (2.6), (2.7) with right-hand side {f0, fi} ∈ L2(G) ×
W3/2(∂G). Then u ∈ W 2(G).
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6.2. Border Case and Violation of Smoothness. Now we assume that
the border case occurs for some of the orbits. Let the following condition
hold.

Condition 6.2. The band −1 ≤ Im λ < 0 contains only the eigenvalue
λ = −i of the operators L̃t(λ), t = 1, . . . , t1, t1 ≤ T , and this eigenvalue is
a proper one. If t1 < T , then the operators L̃t(λ), t = t1 + 1, . . . , T , have no
eigenvalues in the band −1 ≤ Im λ < 0.

Analogously to Section 4.1, we will introduce the notion of the consistency
condition for each orbit Kt, t = 1, . . . , t1. For each t = 1, . . . , t1, we denote
by

{B̂t,jσ(Dy)}, j = 1, . . . , Nt, σ = 1, 2, (6.4)

the system of operators (4.2) corresponding to the orbit Kt. It has been
proved in Section 4.1 that this system is linearly dependent. Let

{B̂t,j′σ′(Dy)} (6.5)

be a maximal linearly independent subsystem of system (6.4). In this case,
any operator B̂t,jσ(Dy) which does not enter system (6.5) can be represented
as follows:

B̂t,jσ(Dy) =
∑
j′,σ′

βj′σ′
t,jσ B̂t,j′σ′(Dy), (6.6)

where βj′σ′
t,jσ are some constants.

To introduce the notion of the consistency condition, we consider arbitrary
functions {Zjσ} ∈ W3/2(γε

t ), each of which is defined on its own interval γε
t,jσ.

Consider the functions

Z0
jσ(r) = Zjσ(y)|y=(r cos ωt,j , r(−1)σ sin ωt,j).

Each of the functions Z0
jσ belongs to W 3/2(0, ε).

Definition 6.1. Let βj′σ′
t,jσ be the constants occurring in (6.6). If the relations

∫ ε

0
r−1

∣∣∣ d

dr

(
Z0

jσ −
∑
j′,σ′

βj′σ′
t,jσZ0

j′σ′

)∣∣∣2dr < ∞ (6.7)

hold for all indices j, σ corresponding to the operators of system (6.4) which
do not enter system (6.5), then we say that the functions Zjσ satisfy the
consistency condition (6.7).
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Denote by S3/2(∂G) the set of functions {fi} ∈ W3/2(∂G) such that the
functions Ft,jσ (see (6.1)) satisfy the consistency condition (6.7) for each
t = 1, . . . , t1.

The following result can be proved similarly to Theorem 4.2

Theorem 6.2. Let Condition 6.2 hold. Then there exist a function {f0, fi} ∈
L2(G) ×W3/2(∂G), {fi} /∈ S3/2(∂G), and a function u ∈ W 1(G) such that
u is a generalized solution of problem (2.6), (2.7) with the right-hand side
{f0, fi} and u /∈ W 2(G).

Now we assume that {fi} ∈ S3/2(∂G) and prove that the following con-
dition is necessary and sufficient for any generalized solution to be smooth.

Condition 6.3. (1) For any v ∈ W 2(G \ Oκ1(K)), the functions Bv
t,jσ

satisfy the consistency condition (6.7), where t = 1, . . . , t1.
(2) For any vector Ct = (Ct,1, . . . , Ct,Nt) with constant elements, the

functions Bt,jσCt|γε
t,jσ

satisfy the consistency condition (6.7), where
t = 1, . . . , t1.

Set ε′ = d′χ min(ε, κ2), where d′χ = min{χt,jσks}/2.

Theorem 6.3. Let Condition 6.2 hold. Then the following assertions are
true.

(1) If Condition 6.3 is fulfilled and u ∈ W 1(G) is a generalized solution of
problem (2.6), (2.7) with right-hand side {f0, fi} ∈ L2(G)×S3/2(∂G),
then u ∈ W 2(G).

(2) If Condition 6.3 fails, then there exists a right-hand side {f0, fi} ∈
L2(G) × S3/2(∂G) and a generalized solution u ∈ W 1(G) of prob-
lem (2.6), (2.7) such that u /∈ W 2(G).

Proof. The proof of this theorem is similar to the proof of Theorem 4.3.
For instance, we prove assertion 2. Let Condition 6.3 be violated, e.g., for
the orbit K1. In this case, there exist a function v ∈ W 2(G \ Oκ1(K)) and
a constant vector C1 = (C1,1, . . . , C1,N1) such that the functions Bv

1,jσ +
B1,jσC1 do not satisfy the consistency condition (6.7) for t = 1 (one can
assume that either v = 0, C1 �= 0 or v �= 0, C1 = 0). Extend the function
v to the domain G in such a way that v(y) = 0 for y ∈ Oκ1/2(K) and
v ∈ W 2(G).

Consider functions F ′
t,jσ ∈ C∞(γt,jσ) such that

F ′
t,jσ(y) = Bv

t,jσ(0) + (Bt,jσCt)(0), |y| < ε/2, F ′
t,jσ(y) = 0, |y| > ε,
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where t = 1, . . . , T , C1 is the above vector, and C2, . . . , CT are arbitrary (but
fixed) constant vectors.

Since the Ft,jσ are constant near the origin, it follows that they satisfy
the consistency condition (6.7) for each t = 1, . . . , t1. By construction,

{F ′
t,jσ−Bv

t,jσ−Bt,jσCt|γε
t,jσ

} ∈ W3/2(γε), (F ′
t,jσ−Bv

t,jσ−Bt,jσCt)|y=0 = 0,

where t = 1, . . . , T . Moreover, the functions F ′
1,jσ − Bv

1,jσ − B1,jσC1 do not
satisfy the consistency condition (6.7) for t = 1.

By Lemma 4.2, there exists a function U ′
1 ∈ H2

a(K1) ∩W1(K1) such that
suppU ′

1 ⊂ Oε′(0), U ′
1 /∈ W2(Kε

1), and

{P1,jU
′
1,j} ∈ W0(Kε

1), (6.8)
{(

B1,jσU ′
1 − (F ′

1,jσ − Bv
1,jσ − B1,jσC1)

)
|γε

1,jσ

}
∈ H3/2

0 (γε
1).

One can also write the latter relation as follows:

{B1,jσ(U ′
1 + C1)|γε

1,jσ
+ Bv

1,jσ − F ′
1,jσ} ∈ H3/2

0 (γε
1). (6.9)

Let t = 2, . . . , t1. It follows from Lemma 4.2 (if the functions

F ′
t,jσ − Bv

t,jσ − Bt,jσCt (6.10)

do not satisfy the consistency condition (6.7)) or from Lemma A.14 (if the
functions (6.10) satisfy the consistency condition (6.7)) that there exists a
function U ′

t ∈ H2
a(Kt) ∩W1(Kt) such that suppU ′

t ⊂ Oε′(0) and

{Pt,jU
′
t,j} ∈ W0(Kε

t ), (6.11)

{Bt,jσ(U ′
t + Ct)|γε

t,jσ
+ Bv

t,jσ − F ′
t,jσ} ∈ H3/2

0 (γε
t ). (6.12)

(If Lemma A.14 has been applied, then U ′
t ∈ W2(Kε

t ).)
Finally, let t = t1 + 1, . . . , T . In this case, by Lemma A.13, there exists

a function U ′
t ∈ H2

a(Kt) ∩ W2(Kt) such that suppU ′
t ⊂ Oε′(0) and rela-

tions (6.11) and (6.12) hold.
Introduce a function u′(y) such that u′(y) = U ′

t,j(y
′(y)) + ξt,j(y)Ct,j for

y ∈ Oε′(gt,j) and u′(y) = 0 for y /∈ Oε′(K), where y′ 
→ y(gt,j) is the
change of variables inverse to the change of variables y 
→ y′(gt,j), while
ξt,j ∈ C∞

0 (Oε′(gt,j)), ξt,j(y) = 1 for y ∈ Oε′/2(gt,j). Similarly to the proof of
assertion 2 in Theorem 4.3, using relations (6.8), (6.9), (6.11), and (6.12),
one can verify that the function u = u′ + v is the desired one. �

Now we consider problem (2.6), (2.7) with regular and homogeneous non-
local conditions.
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Definition 6.2. We say that a function v ∈ W 2(G \ Oκ1(K)) is admissible
if there exist constant vectors Ct = (Ct,1, . . . , Ct,Nt), t = 1, . . . , T , such that

Bv
t,jσ(0) + (Bt,jσCt)(0) = 0, j = 1, . . . , N, σ = 1, 2, t = 1, . . . T. (6.13)

Vectors Ct, t = 1, . . . T , satisfying relations (6.13) are said to be admissible
vectors corresponding to the function v.

Definition 6.3. Right-hand sides fi in nonlocal conditions (2.7) are said to
be regular if {fi} ∈ S3/2(∂G) and fi|Γi∩Kt

= 0, t = 1, . . . T (i.e., fi|Γi∩K = 0).

We prove that the following condition is necessary and sufficient for any
generalized solution of problem (2.6), (2.7) with regular fi to be smooth.

Condition 6.4. For each admissible function v and for each admissible
vector Ct, t = 1, . . . , t1, corresponding to v, the functions Bv

t,jσ + Bt,jσCt

satisfy the consistency condition (6.7).

Theorem 6.4. Let Condition 6.2 hold. Then the following assertions are
true.

(1) If Condition 6.4 is fulfilled and u ∈ W 1(G) is a generalized solution of
problem (2.6), (2.7) with right-hand side {f0, fi} ∈ L2(G)×S3/2(∂G),
where fi are regular, then u ∈ W 2(G).

(2) If Condition 6.4 fails, then there exists a right-hand side {f0, fi} ∈
L2(G) × H3/2

0 (∂G) and a generalized solution u ∈ W 1(G) of prob-
lem (2.6), (2.7) such that u /∈ W 2(G).

Proof. The proof of the theorem is similar to the proof of Theorem 4.4.
For instance, let us prove assertion 2. If Condition 6.4 fails, there exists a
function v ∈ W 2(G \ Oκ1(K)) and constant vectors Ct = (Ct,1, . . . , Ct,Nt),
t = 1, . . . , T , such that Bv

t,jσ(0) + (Bt,jσCt)(0) = 0 and, e.g., the functions
Bv

1,jσ + B1,jσC1 do not satisfy the consistency condition (6.7).
We must find a function u ∈ W 1(G) such that u /∈ W 2(G) and

Pu ∈ L2(G), u|Γi + B1
i u + B2

i u ∈ H
3/2
0 (Γi).

To do this, one can repeat the proof of assertion 2 in Theorem 6.3, assuming
that v is the above function, Ct, t = 1, . . . , T , are the above vectors, and
F ′

t,jσ(y) ≡ 0, t = 1, . . . , T (which is possible due to the relations Bv
t,jσ(0) +

(Bt,jσCt)(0) = 0). �
Remark 6.1. It is easy to see that Corollaries 4.1–4.4 (in which Condi-
tions 4.1 and 4.4 and Theorem 4.4 must be replaced by Conditions 6.2 and 6.4
and Theorem 6.4, respectively) are true in the case of several orbits.
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It remains to study the case in which the following condition holds.

Condition 6.5. There is a number t ∈ {1, . . . , T} such that the band −1 ≤
Im λ < 0 contains an improper eigenvalue of the operator L̃t(λ).

The proof of the following result is similar to the proof of Theorem 5.1.

Theorem 6.5. Let Condition 6.5 hold. Then there exist a right-hand side
{f0, 0}, where f0 ∈ L2(G), and a generalized solution u ∈ W 1(G) of prob-
lem (2.6), (2.7) such that u /∈ W 2(G).

7. Example

7.1. Problem with Nonhomogeneous Nonlocal Conditions. In this
section, we apply the results of Sections 2–6 to the study of the smoothness
of generalized solutions for problem (1.1), (1.2). We recall the setting of this
problem.

Let ∂G \ K = Γ1 ∪ Γ2, where Γi are open (in the topology of ∂G) C∞-
curves and K = Γ1 ∩Γ2 = {g, h}, where g, h are the end points of the curves
Γ1 and Γ2. Suppose that the domain G is the plane angle of opening π in a
neighborhood of each of the points g, h. Thus, the boundary of G is infinitely
smooth. We consider the following nonlocal problem in G:

Δu = f0(y) (y ∈ G), (7.1)

u|Γ1 + b1(y)u
(
Ω1(y)

)∣∣
Γ1

+ a(y)u
(
Ω(y)

)∣∣
Γ1

= f1(y) (y ∈ Γ1),

u|Γ2 + b2(y)u
(
Ω2(y)

)∣∣
Γ2

= f2(y) (y ∈ Γ2).
(7.2)

Here b1, b2, and a are real-valued C∞-functions; Ωi and Ω are C∞-diffeo-
morphisms described in the Introduction (see Figure 1.1).

Let us show that the nonlocal conditions (7.2) can be represented in the
form (2.7). To do this, we take a small ε such that the sets Oε(g) and Oε(h)
do not intersect with the curve Ω(Γ1).

Consider a function ζ ∈ C∞
0 (R2) such that ζ(y) = 1 for y ∈ Oε/2(K) and

supp ζ ⊂ Oε(K). Introduce the operators

B1
i u = ζ(y)bi(y)u(Ωi(y))|Γi ,

B2
1u = (1 − ζ(y))b1(y)u(Ω1(y))|Γ1 + a(y)u(Ω(y))|Γ1 ,

B2
2u = (1 − ζ(y))b2(y)u(Ω2(y))|Γ2 .

In this example, the set K is formed by two orbits; the first orbit consists
of the point g and the second orbit of the point h. Since the support of ζ is
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contained in a neighborhood of the set K, one can assume that the transfor-
mations Ωi occurring in the definition of the operators B1

i are also defined
in a neighborhood of the set K and satisfy Condition 2.1′. Furthermore, due
to the arguments of [15, Section 1.2], the operators B2

i satisfy Condition 2.2
with κ1 = ε/2 and some κ2 < κ1 and ρ. Therefore, nonlocal conditions (7.2)
can be represented in the form (2.7).

Write a model problem corresponding to the point g (one can similarly
write a model problem corresponding to the point h). To be definite, we
assume that the point g coincides with the origin, g = 0, while the axis Oy1

is directed inside the domain G, perpendicularly to the boundary. Consider
the sets

Kε = {y ∈ R
2 : 0 < r < ε, |ω| < π/2},

γε
σ = {y ∈ R

2 : 0 < r < ε, ω = (−1)σπ/2}.
Take a small number ε such that Oε(0) ∩ G = Kε. The model problem
acquires the form

ΔU = F (y) (y ∈ Kε), (7.3)

U(y) + bσ(y)U(Gσy) = Ψσ(y) (y ∈ γε
σ, σ = 1, 2). (7.4)

Here Gσ =
(

0 (−1)σ

(−1)σ+1 0

)
is the operator of rotation through the angle

(−1)σ+1π/2,

F (y) = f0(y), y ∈ Kε, Ψσ(y) = fσ(y) − Bu
σ(y), y ∈ γε

σ;

moreover,

Bu
1 (y) = a(y)u

(
Ω(y)

)
, y ∈ γ

ε/2
1 , Bu

2 (y) = 0, y ∈ γ
ε/2
2 ,

because (1 − ζ(y))bσ(y)u(Ωσ(y)) = 0 for y ∈ γ
ε/2
σ , σ = 1, 2.

The eigenvalue problem has the form

ϕ′′(ω) − λ2ϕ(ω) = 0 (|ω| < π/2), (7.5)

ϕ(−π/2) + b1(0)ϕ(0) = 0, ϕ(π/2) + b2(0)ϕ(0) = 0. (7.6)

Set I1 = (−∞,−2] ∪ (0,∞) and I2 = (−2, 0). Simple calculations [16,
Section 9] show that the eigenvalues of problem (7.5), (7.6) are distributed
in the band −1 ≤ Im λ < 0 as follows.

Case 1 (b1(0) + b2(0) ∈ I1): the band −1 ≤ Im λ < 0 contains no
eigenvalues.
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Case 2 (b1(0) + b2(0) = 0): the band −1 ≤ Im λ < 0 contains the
unique eigenvalue λ = −i, and this eigenvalue is proper.

Case 3 (b1(0) + b2(0) ∈ I2): the band −1 ≤ Im λ < 0 contains the im-
proper eigenvalue λ = 2π−1i arctan

(√
4 − (b1(0) + b2(0))2/(b1(0) +

b2(0))
)
.

Consider Case 1.

Theorem 7.1. Let b1(0) + b2(0) ∈ I1 and b1(h) + b2(h) ∈ I1. Let u ∈
W 1(G) be a generalized solution of problem (7.1), (7.2) with right-hand side
{f0, fi} ∈ L2(G) ×W3/2(∂G). Then u ∈ W 2(G).

Proof. In the case under consideration, the band −1 ≤ Im λ < 0 contains
no eigenvalues of problem (7.5), (7.6) (and no eigenvalues of the analogous
problem corresponding to the point h). Therefore, this theorem follows from
Theorem 6.1. �

Note that we impose no consistency conditions on the coefficients bi and
a and on the right-hand sides fi in Case 1.

Consider Case 2. To be definite, we assume that b1(h) + b2(h) ∈ I1. In
this case, the consistency condition (6.7) is considered only near the origin.
Let us find out the form of this condition in terms of problem (7.1), (7.2).
Let τσ denote the vector with the coordinates (0, (−1)σ). Then ∂/∂τσ =
(−1)σ∂/∂y2 and

∂

∂τ1

(
U(y) + b1(0)U(G1y)

)
= −Uy2(y) + b1(0)Uy1(G1y),

∂

∂τ2

(
U(y) + b2(0)U(G2y)

)
= Uy2(y) + b2(0)Uy1(G2y).

Therefore,
B̂σ(Dy)U = (−1)σUy2 + bσ(0)Uy1 , σ = 1, 2.

Since b1(0) + b2(0) = 0, it follows that the operators B̂1(Dy) and B̂2(Dy)
are linearly dependent, B̂1(Dy) + B̂2(Dy) = 0. Thus, the consistency condi-
tion (6.7) for functions Zσ ∈ W 3/2(γε

σ) acquires the form∫ ε

0
r−1

∣∣∣∂Z1

∂y2

∣∣∣
y=(0,−r)

− dZ2

dy2

∣∣∣
y=(0,r)

∣∣∣2dr < ∞. (7.7)

Due to (7.7), the space S3/2(∂G) consists of the functions {fi} ∈ W3/2(∂G)
such that ∫ ε

0
r−1

∣∣∣∂f1

∂y2

∣∣∣
y=(0,−r)

− ∂f2

∂y2

∣∣∣
y=(0,r)

∣∣∣2dr < ∞. (7.8)
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By Theorem 6.2, the validity of the condition {fi} ∈ S3/2(∂G) is necessary
for any generalized solution of problem (7.1), (7.2) to belong to W 2(G).

Theorem 7.2. Let b1(0) + b2(0) = 0 and b1(h) + b2(h) ∈ I1. Then the
following assertions are true.

(1) If

a(0) = 0,
∂a

∂y2

∣∣∣
y=0

= 0, (7.9)
∫ ε

0
r−1

∣∣∣∂b1

∂y2

∣∣∣
y=(0,−r)

− ∂b2

∂y2

∣∣∣
y=(0,r)

∣∣∣2dr < ∞, (7.10)

and u ∈ W 1(G) is a generalized solution of problem (7.1), (7.2) with
right-hand side {f0, fi} ∈ L2(G) × S3/2(∂G), then u ∈ W 2(G).

(2) If condition (7.9)–(7.10) fails, then there exists a right-hand side
{f0, fi} ∈ L2(G) × S3/2(∂G) and a generalized solution u ∈ W 1(G)
of problem (7.1), (7.2) such that u /∈ W 2(G).

Proof. 1. By Theorem 6.3, it suffices to prove that condition (7.9)–(7.10)
is equivalent to Condition 6.3.

For any function v ∈ W 2(G \ Oκ1(K)), set vΩ(y) = v
(
Ω(y)

)
, y ∈ Γ1. In

this case, we have

Bv
1(y) = a(y)vΩ(y), y ∈ γ

ε/2
1 , Bv

2(y) = 0, y ∈ γ
ε/2
2 .

Therefore, the functions Bv
σ satisfy the consistency condition (7.7) if and

only if∫ ε/2

0
r−1

∣∣∣∂(avΩ)
∂y2

∣∣∣
y=(0,−r)

∣∣∣2dr =
∫ ε/2

0
r−1

∣∣∣( ∂a

∂y2
vΩ+a

∂vΩ

∂y2

)∣∣∣
y=(0,−r)

∣∣∣2dr < ∞.

(7.11)
We take ε/2 instead of ε as the upper limit of integration because the func-
tions Bv

σ look simpler in this case; clearly, this change does not affect the
convergence of the integral.

Let us prove that condition (7.11) is equivalent to (7.9). Suppose that
(7.11) holds. Take a function v such that vΩ(y) = y2 near the origin; then
we have

∂(avΩ)
∂y2

∣∣∣
y=0

= a(0).

Since the function ∂(avΩ)/∂y2 is continuous near the origin, it follows from
the latter relation and from (7.11) that a(0) = 0. In a similar way, substitut-
ing a function v such that vΩ(y) = 1 near the origin into (7.11), we obtain
(∂a/∂y2)|y=0 = 0.
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Conversely, suppose that (7.9) holds. By virtue of smoothness of the
transformation Ω, we have

vΩ,
∂vΩ

∂y2
∈ W 1/2(γε

1) ⊂ H
1/2
1 (γε

1)

for any v ∈ W 2(G \ Oκ1(K)). It follows from this relation, from (7.9), and
from Lemma A.3 that ∂(avΩ)/∂y2 ∈ H

1/2
0 (γε

1). Therefore, by Lemma A.5,
relation (7.11) follows. Thus, we have proved that part 1 of Condition 6.3 is
equivalent to condition (7.9).

2. Part 2 of Condition 6.3 is fulfilled if and only if the functions C+b1(y)C
and C + b2(y)C satisfy the consistency condition (7.7) for any constant C.
The latter is equivalent to (7.10). �

Thus, we see that, in Case 2, the smoothness of generalized solutions
depends on the values of the first derivatives of the coefficients b1, b2 near
the origin as well as on the values of the coefficient a and its first derivative
at the origin.

Consider Case 3.

Theorem 7.3. Let b1(0) + b2(0) ∈ I2 or b1(h) + b2(h) ∈ I2. Then there
exists a right-hand side {f0, 0}, where f0 ∈ L2(G), and a generalized solution
u ∈ W 1(G) of problem (7.1), (7.2) such that u /∈ W 2(G).

Proof. The band −1 ≤ Im λ < 0 contains an improper eigenvalue of prob-
lem (7.5), (7.6) (or an improper eigenvalue of the analogous problem cor-
responding to the point h). Therefore, this theorem follows from Theo-
rem 6.5. �

Thus, in Case 3, the smoothness of generalized solutions can be violated
irrespective of the behavior of the coefficient a and of the derivatives of the
coefficients b1, b2 near the point g.

7.2. Problem with Regular and Homogeneous Nonlocal Conditions.
Consider problem (7.1), (7.2) with regular and homogeneous nonlocal con-
ditions. By Theorems 7.1 and 7.3, the smoothness of generalized solutions
is preserved in Case 1 and can be violated in Case 3. Case 2 (the border
case) is of particular interest.

First, we study the case of regular right-hand sides. To be definite, we
again assume that

b1(h) + b2(h) ∈ I1.
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Theorem 7.4. Let b1(0) + b2(0) = 0 and b1(h) + b2(h) ∈ I1. Then the
following assertions are true.

(1) If

a(0) = 0,
∂a

∂y2

∣∣∣∣
y=0

= 0 (7.12)

and u ∈ W 1(G) is a generalized solution of problem (7.1), (7.2) with
right-hand side {f0, fi} ∈ L2(G) × S3/2(∂G), where fi(0) = 0, then
u ∈ W 2(G).

(2) If condition (7.12) fails, then there exists a right-hand side {f0, fi} ∈
L2(G) ×H3/2

0 (∂G), where fi(y) = 0 in a neighborhood of the origin,
and a generalized solution u ∈ W 1(G) of problem (7.1), (7.2) such
that u /∈ W 2(G).

Proof. 1. By virtue of Theorem 6.4 and Corollary 4.1, it suffices to prove
that condition (7.12) is equivalent to Condition 6.4.

By Definition 6.2, a function v ∈ W 2(G \ Oκ1(K)) is admissible if there
exist constants C and Ch such that

a(0)vΩ(0) + C + b1(0)C = 0, C + b2(0)C = 0,

a(h)vΩ(h) + Ch + b1(h)Ch = 0, Ch + b2(h)Ch = 0,
(7.13)

where vΩ(y) = v
(
Ω(y)

)
, y ∈ Γ1.

Let ξ ∈ C∞(R2) be a cut-off function such that

supp ξ ⊂ Oδ(Ω(0)), ξ(y) = 1, y ∈ Oδ/2(Ω(0)),

where δ > 0 is so small that Ω(h) /∈ Oδ(Ω(0)). Since b1(h) + b2(h) ∈ I1, the
consistency condition (6.7) is considered only near the origin. Therefore, if v
is an admissible function, C, Ch are admissible constants corresponding to v,
and Condition 6.4 holds (fails) for v and C, then the function ξv is admissible,
C, 0 are admissible constants corresponding to ξv, and Condition 6.4 holds
(respectively, fails) for ξv and C. Thus, it suffices to consider only functions
v supported in Oδ(Ω(0)) (i.e., functions vΩ supported near the origin) and
assume that Ch = 0.

First, we study the situation in which b2(0) �= −1. In this case, according
to (7.13), a function v supported in Oδ(Ω(0)) is admissible if and only if

a(0)vΩ(0) = 0, (7.14)

while the corresponding set of admissible vectors (constants in our case)
consists of the unique constant C = 0 (recall that Ch is supposed to equal
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zero). Therefore, Condition 6.4 holds if and only if the relation∫ ε/2

0
r−1

∣∣∣∂(avΩ)
∂y2

∣∣∣
y=(0,−r)

∣∣∣2dr =
∫ ε/2

0
r−1

∣∣∣( ∂a

∂y2
vΩ+a

∂vΩ

∂y2

)∣∣∣
y=(0,−r)

∣∣∣2dr < ∞
(7.15)

holds for any vΩ satisfying (7.14). Suppose that (7.12) is fulfilled. Then
any function v supported in Oδ(Ω(0)) is admissible (because a(0) = 0), and
repeating the arguments of the proof of Theorem 7.2 yields (7.15).

Conversely, suppose that (7.15) holds for any function vΩ satisfying (7.14).
Clearly, a function v such that vΩ(y) = y2 near the origin satisfies (7.14).
Substituting the function vΩ into (7.15), we obtain a(0) = 0 (cf. the proof
of Theorem 7.2). Therefore, any function v supported in Oδ(Ω(0)) is admis-
sible. Substituting vΩ(y) = 1 into (7.15), we obtain (∂a/∂y2)|y=0 = 0.

2. It remains to study the situation in which b2(0) = −1. This implies
b1(0) = 1. In this case, according to (7.13), any function v supported in
Oδ(Ω(0)) is admissible, while the corresponding set of admissible vectors
(constants in our case) consists of the unique constant C = −a(0)vΩ(0)/2
(while Ch is supposed to equal zero). Therefore, Condition 6.4 holds if and
only if the relation

∫ ε/2

0
r−1

∣∣∣∂(avΩ)
∂y2

∣∣∣
y=(0,−r)

+ C
(∂b1

∂y2

∣∣∣
y=(0,−r)

− ∂b2

∂y2

∣∣∣
y=(0,r)

)∣∣∣2dr

=
∫ ε/2

0
r−1

∣∣∣( ∂a

∂y2
vΩ + a

∂vΩ

∂y2

)∣∣∣
y=(0,−r)

− a(0)vΩ(0)
2

(∂b1

∂y2

∣∣∣
y=(0,−r)

− ∂b2

∂y2

∣∣∣
y=(0,r)

)∣∣∣2dr < ∞ (7.16)

holds for any v supported in Oδ(Ω(0)). Suppose that condition (7.12) is
fulfilled. Then, similarly to the above, we see that (7.15) holds for any
function vΩ; hence, (7.16) also holds for any vΩ (because a(0) = 0).

Conversely, suppose that (7.16) is fulfilled. Consider a function v such that
vΩ(y) = y2 near the origin and substitute it into (7.16). Since vΩ(0) = 0 and
(∂vΩ/∂y2)|y=0 = 1, we infer from (7.16) that a(0) = 0 similarly to the above.
Therefore, relation (7.16) coincides with (7.15). Now, repeating the above
arguments, we obtain (∂a/∂y2)|y=0 = 0, which completes the proof. �

Clearly, condition (7.12) is weaker than condition (7.9)–(7.10): we impose
no restrictions on the behavior of the coefficients b1, b2 in condition (7.12).
The absence of those restrictions is “compensated” by the fact that nonlocal
conditions are regular, i.e., {fi} ∈ S3/2(∂G) and fi(0) = 0.
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Finally, we consider the case of homogeneous nonlocal conditions. In this
case, assertion 1 of Theorem 7.4 implies that the validity of condition (7.12) is
sufficient for any generalized solution to be smooth. We prove that this con-
dition is also necessary in the following cases (see Figures 7.1, 7.2, and 7.3):

Case A: supp a(Ω−1(y))|Ω(Γ1) ⊂ G.

Figure 7.1. Case A.

Case B: Ω(0) ∈ G and Ω(0) /∈ Ω1(Γ1) ∪ Ω2(Γ2).
Case C: We have

Ω(0) ∈ Γ1, Ω(Ω(0)) /∈ Ω1(Γ1) ∪ Ω2(Γ2). (7.17)

a(Ω(0)) �= 0. (7.18)

Corollary 7.1. Let b1(0) + b2(0) = 0 and b1(h) + b2(h) ∈ I1. Suppose
that either Case A, or Case B, or Case C takes place. If condition (7.12)
fails, then there exists a right-hand side {f0, 0}, where f0 ∈ L2(G), and a
generalized solution u ∈ W 1(G) of problem (7.1), (7.2) such that u /∈ W 2(G).
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Figure 7.2. Case B.

Figure 7.3. Case C.

Proof. 1. First, we assume that Case A takes place. It follows from the
continuity of the transformations Ωi and Ω that the operators B2

i satisfy con-
dition (4.31) with any ρ such that 0 < ρ < dist(supp a(Ω−1(y))|Ω(Γ1), ∂G).
Therefore, the conclusion of this corollary follows from Corollary 4.3 and
Remark 6.1.

2. Now we assume that Case B takes place. As before, we can suppose
that Condition 6.4 is violated for an admissible function v supported in an
arbitrarily small δ-neighborhood Oδ(Ω(0)) of the point Ω(0). The number δ
can be chosen so small that

v(y)|Γi ≡ 0, v(Ωi(y))|Γi = 0, supp v(Ω(y))|Γ1 ⊂ Γ1 ∩ Oκ2(0).
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Therefore, the function v satisfies relations (4.33), and the conclusion of this
corollary follows from Corollary 4.4 and Remark 6.1.

3. Finally, we assume that Case C takes place. Again we can suppose that
Condition 6.4 is violated for an admissible function v supported in Oδ(Ω(0)).
By virtue of relations (7.17), the number δ can be chosen so small that

v(Ωi(y))|Γi ≡ 0, (7.19)

supp v(Ω(y))|Γ1 ⊂ Γ1 ∩ Oκ2(0). (7.20)

Let fi be the functions from assertion 2 of Theorem 4.4, constructed ac-
cording to the scheme suggested in the proof of Theorem 6.4 . It follows
from (7.19) and (7.20) that

supp f1 ⊂ Γ1 ∩
(
Oκ2(0) ∪ Oδ(Ω(0))

)
, supp f2 ⊂ Γ2 ∩ Oκ2(0).

If we construct a function u1 ∈ H2
0 (G) such that

u1|Γi + B1
i u1 + B2

i u1 = fi(y), y ∈ Γi \ Oκ2(K), i = 1, . . . , N, (7.21)

u1|Γi + B1
i u1 + B2

i u1 = 0, y ∈ Γi ∩ Oκ2(K), i = 1, . . . , N, (7.22)

then the conclusion of this corollary will follow from Lemma 4.3, Corol-
lary 4.2, and Remark 6.1.

Let us construct the function u1. To do this, we consider a function
u1Ω ∈ W 2

(
Oδ(Ω(0))

)
supported in Oδ(Ω(0)) (see Figure 7.3) such that

u1Ω(y) = f1(y)/a(y), y ∈ Γ1 ∩ Oδ(Ω(0)),

where δ is so small that a(y) �= 0 for y ∈ Oδ(Ω(0)) (the existence of such a
δ follows from (7.18) and from the continuity of a(y)).

Now we set u1(y) = u1Ω(Ω−1(y)) for y ∈ Ω
(
Oδ(Ω(0))

)
and u1(y) = 0 for

y /∈ Ω
(
Oδ(Ω(0))

)
. Suppose that δ is so small that

Γi∩Ω
(
Oδ(Ω(0))

)
= ∅, Ωi(Γi)∩Ω

(
Oδ(Ω(0))

)
= ∅, Oδ(Ω(0))∩Oκ2(0) = ∅

(the existence of such a δ follows from (7.17) and from the continuity of the
transformation Ω). Then we have

u1|Γi = 0, u1(Ωi(y))|Γi = 0,

a(y)u1(Ω(y)) = f1(y), y ∈ Γ1 \ Oκ2(0),

u1(Ω(y)) = 0, y ∈ Γ1 ∩ Oκ2(0).

Therefore, the function u1 satisfies relations (7.21) and (7.22), and the the-
orem is proved. �
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Appendix A

This appendix is included for the reader’s convenience. Here we have col-
lected some known results on weighted spaces and on properties of nonlocal
operators, which are most frequently referred to in the main part of the
paper.

A.1. Properties of weighted spaces. In this subsection, we formulate
some results concerning properties of weighted spaces introduced in Section
2.1. Set

K = {y ∈ R
2 : r > 0, |ω| < ω0},

γσ = {y ∈ R
2 : r > 0, ω = (−1)σω0} (σ = 1, 2).

Lemma A.1 (see Lemma 4.9 in [20]). Let a function u ∈ W k(K), where
k ≥ 1, be compactly supported. Then u ∈ Hk

b (K) for any b > k − 1.

Lemma A.2 (see Lemma 2.1 in [15]). Let a function u ∈ W 2(K) be com-
pactly supported, and let u(0) = 0. Then u ∈ H2

b (K) for any b > 0.

Lemma A.3 (see Lemma 3.3′ in [20]). Let a function u ∈ Hk
b (K), where

k ≥ 0 and b ∈ R, be compactly supported. Suppose that p ∈ Ck(K) and
p(0) = 0. Then pu ∈ Hk

b−1(K).

Lemma A.4 (see Lemma 4.8 in [20]). Let a function u ∈ W 1(K) be com-
pactly supported. Suppose that∫

γσ

r−1|u|2dr < ∞,

where σ = 1 or σ = 2. Then u ∈ H1
0 (K).

Lemma A.5 (see Lemma 4.18 in [20]). Let a function ϕ ∈ H
1/2
0 (γσ), where

σ = 1 or σ = 2, be compactly supported. Then∫
γσ

r−1|ϕ|2dr < ∞.

Lemma A.6 (see Lemma 4.20 in [20]). The function riλ0Φ(ω) lns r, where
Im λ0 = −(k − 1), belongs to W k(K ∩ {|y| < 1}) if and only if it is a
homogeneous polynomial in y1, y2 of order k − 1.

Denote by G the operator which is the composition of rotation about the
origin and homothety.

Lemma A.7 (see Lemma 2.2 in [15]). Let a function u ∈ W 1(R2) be com-
pactly supported. Then u(Gy) − u(y) ∈ H1

0 (R2).
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A.2. Nonlocal Problems in Plane Angles in Weighted Spaces. In
this subsection and in the next one, we formulate some properties of solutions
of problem (2.9), (2.10) in the spaces (3.4) and (3.5). First, we consider the
case of weighted spaces.

For convenience, we rewrite the problem:
PjUj = Fj(y) (y ∈ Kε

j ),

BjσU ≡
∑
k,s

bjσks(y)Uk(Gjσksy) = Φjσ(y) (y ∈ γε
jσ), (A.1)

where

Pjv =
2∑

i,k=1

pjik(y)vyiyk
+

2∑
k=1

pjk(y)vyk
+ pj0(y)v

(see Section 2.2). Along with problem (A.1), we consider the following model
problem in the unbounded angles:

PjUj = Fj(y) (y ∈ Kj),

BjσU ≡
∑
k,s

bjσks(0)Uk(Gjσksy) = Φjσ(y) (y ∈ γjσ), (A.2)

where

Pjv =
2∑

i,k=1

pjik(0)vyiyk
.

Lemma A.8 (see Lemma 2.3 in [17]). Let U be a solution of problem (A.1)
(or (A.2)) such that

Uj ∈ W 2(KDχε
j ∩ {|y| > δ}) ∀δ > 0,

U ∈ H0
b−2(K

Dχε),
where Dχ is given by (3.3) and b ∈ R. Suppose that {Fj} ∈ H0

b(K
ε), {Φjσ} ∈

H3/2
b (γε). Then U ∈ H2

b(K
ε).

Consider the asymptotics of solutions of problem (A.2).

Lemma A.9 (see Lemma 2.1 in [13]). The function

U = riλ0

m∑
l=0

1
l!

(i ln r)lϕ(m−l)(ω), (A.3)

is a solution of homogeneous problem (A.2) if and only if λ0 is an eigenvalue
of the operator L̃(λ) and ϕ(0), . . . , ϕ(κ−1) is a Jordan chain corresponding to
the eigenvalue λ0; here m ≤ κ − 1.
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Any solution of the same kind as (A.3) is called a power solution.

Theorem A.1 (see Theorem 2.2 and Remark 2.2 in [13]). Let {Fj} ∈
H0

b(K) ∩ H0
b′(K) and {Φjσ} ∈ H3/2

b (γ) ∩ H3/2
b′ (γ), where b > b′. Suppose

that the line Im λ = b′ − 1 contains no eigenvalues of the operator L̃(λ). If
U is a solution of problem (A.2) belonging to the space H2

b(K), then

U =
n0∑

n=1

Jn∑
q=1

κqn−1∑
m=0

c(m,q)
n W (m,q)

n (ω, r) + U ′.

Here λ1, . . . , λn0 are eigenvalues of L̃(λ) located in the band b′ − 1 < Im λ <
b − 1;

W (m,q)
n (ω, r) = riλn

m∑
l=0

1
l!

(i ln r)lϕ(m−l,q)
n (ω)

are power solutions of homogeneous problem (A.2);

{ϕ(0,q)
n , . . . , ϕ

(κqn−1,q)
n : q = 1, . . . , Jn}

is a canonical system of Jordan chains of the operator L̃(λ) corresponding to
the eigenvalue λn; c

(m,q)
n are some complex constants; finally, U ′ is a solution

of problem (A.2) belonging to the space H2
b′(K).

If the right-hand sides of problem (A.2) are of a particular form, then
there exist solutions of a particular form. Let

Fj(ω, r) = riλ0−2
M∑
l=0

1
l!

(i ln r)lf
(l)
j (ω), Φjσ(r) = riλ0

M∑
l=0

1
l!

(i ln r)lψ
(l)
jσ ,

(A.4)
where f

(l)
j ∈ L2(−ωj , ωj), ψ

(l)
jσ ∈ C, λ0 ∈ C. If λ0 is an eigenvalue of the

operator L̃(λ), then denote by κ(λ0) the greatest of the partial multiplicities
(see [12]) of this eigenvalue; otherwise, set κ(λ0) = 0.

Lemma A.10 (see Lemma 4.3 in [13]). For problem (A.2) with right-hand
side {Fj ,Φjσ} given by (A.4), there exists a solution

U = riλ0

M+κ(λ0)∑
l=0

1
l!

(i ln r)lu(l)(ω), (A.5)
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where u(l) ∈ ∏
j

W 2(−ωj , ωj). A solution of such a form is unique if κ(λ0) =

0 (i.e., λ0 is not an eigenvalue of L̃(λ)). If κ(λ0) > 0, then the solu-
tion (A.5) is defined accurate to an arbitrary linear combination of power
solutions (A.3) corresponding to the eigenvalue λ0.

Note that Theorem A.1 and Lemma A.10 were earlier proved in [33] for
the case in which the operators Gjσks are rotations only (but not homothety).

The following result is a modification of Theorem A.1 for the case in which
the line Im λ = −1 contains the unique eigenvalue λ0 = −i of L̃(λ) and this
eigenvalue is proper (see Definition 4.1).

Lemma A.11 (see Lemma 3.4 in [15]). Let U ∈ H2
b(K), where b > 0, be

a solution of problem (A.2) with right-hand side {Fj} ∈ H0
b(K) ∩ H0

0(K),
{Φjσ} ∈ H3/2

b (γ)∩H3/2
0 (γ). Suppose that the closed band −1 ≤ Im λ ≤ b− 1

contains only the eigenvalue λ0 = −i of L̃(λ) and this eigenvalue is proper.
Then DαU ∈ H0

0(K) for |α| = 2.

Finally, we formulate the result that allows one to reduce nonlocal prob-
lems with nonhomogeneous boundary conditions to those with homogeneous
boundary conditions.

Lemma A.12 (see Lemma 8.1 in [16]). For any function {Φjσ} ∈ H3/2
b (γ),

there exists a function U ∈ H2
b(K) such that

Uj(y)|γjσ = fjσ(y),
∑

(k,s) �=(j,σ)

bjσks(y)Uk(Gjσksy)|γjσ = 0 (y ∈ γjσ).

A.3. Nonlocal Problems in Plane Angles in Sobolev Spaces. In this
subsection, we formulate properties of solutions of problems (A.1) and (A.2)
with right-hand sides from Sobolev spaces.

The following lemma deals with the case in which the line Im λ = −1 is
free of eigenvalues of L̃(λ).

Lemma A.13 (see Lemma 2.4 and Corollary 2.1 in [15]). Suppose the line
Im λ = −1 contains no eigenvalues of L̃(λ). Suppose that

{Φjσ} ∈ W3/2(γε), Φjσ(0) = 0.

Then there exists a compactly supported function V ∈ W2(K)∩H2
b(K), where

b is an arbitrary positive number, such that

{PjVj} ∈ H0
0(K

ε), {BjσV |γε
jσ

− Φjσ} ∈ H3/2
0 (γε).
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Now we consider the situation where the line Im λ = −1 contains the
unique eigenvalue λ0 = −i of L̃(λ) and it is proper (see Definition 4.1). In
this case, we will use the following result instead of Lemma A.13.

Lemma A.14 (see Lemma 3.3 and Corollary 3.1 in [15]). Suppose the line
Im λ = −1 contains the unique eigenvalue λ0 = −i of L̃(λ) and it is proper.
Suppose that

{Φjσ} ∈ W3/2(γε), Φjσ(0) = 0,

and the functions Φjσ satisfy the consistency condition (4.7). Then there
exists a compactly supported function V ∈ W2(K) ∩ H2

b(K), where b is an
arbitrary positive number, such that

{PjVj} ∈ H0
0(K

ε), {BjσV |γε
jσ

− Φjσ} ∈ H3/2
0 (γε).

Lemma A.15 (see Lemma 3.1 in [15]). Suppose the line Im λ = −1 contains
the unique eigenvalue λ0 = −i of L̃(λ) and it is proper. Suppose that U ∈
W2(K) is a compactly supported solution of problem (A.1) (or (A.2)) and
U(0) = 0. Then the functions Φjσ satisfy the consistency condition (4.7).
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