POLYTOPES IN THE 0/1-CUBE WITH BOUNDED CHVÁTAL-GOMORY RANK

Yohann Benchetrit, Samuel Fiorini, Tony Huynh
Université Libre de Bruxelles

Stefan Weltge
ETH Zürich
CUTTING-PLANE PROOFS AND CHVÁTAL-GOMORY CLOSURES
Given linear inequalities

\[a_i^T x \geq b_i \quad (i = 1, \ldots, m) \quad (1) \]

an inequality \(a^T x \geq b \) with \(a \in \mathbb{Z}^n \) is derived from (1) if

- \(a = \sum_{i=1}^{m} \lambda_i a_i \) for some \(\lambda_1, \ldots, \lambda_m \geq 0 \)
- \(\lfloor \sum_{i=1}^{m} \lambda_i b_i \rfloor \geq b \)

Clear: every \(x \in \mathbb{Z}^n \) that satisfies (1) also satisfies \(a^T x \geq b \)
Example

\[\begin{align*}
 x_1 + x_2 &\leq 1,
 x_2 + x_3 &\leq 1,
 x_3 + x_4 &\leq 1,
 x_4 + x_5 &\leq 1,
 x_1 + x_5 &\leq 1
\end{align*} \]

\[\Rightarrow 2x_1 + \cdots + 2x_5 \leq 5 \]

\[\Rightarrow x_1 + \cdots + x_5 \leq 2.5 \]

\[\Rightarrow x_1 + \cdots + x_5 \leq \lfloor 2.5 \rfloor = 2 \]
Definition

Given linear inequalities

\[a_i^T x \geq b_i \quad (i = 1, \ldots, m) \]

a sequence of linear inequalities

\[a_{m+k}^T x \geq b_{m+k} \quad (k = 1, \ldots, M) \]

is a **cutting-plane proof** for \(a^T x \geq b \) if for every \(k = 1, \ldots, M \)

- \(a_{m+k} \in \mathbb{Z}^n \),
- \(a_{m+k}^T x \geq b_{m+k} \) is derived from the previous inequalities,

and \(a^T x \geq b \) is a nonnegative multiple of \(a_{m+M}^T x \geq b_{m+M} \).

Its length is \(M \).
Theorem (Gomory)

If $a^i x \geq b_i$ ($i = 1, \ldots, m$) define a polytope P, then every linear inequality with integer coefficients that is valid for $P \cap \mathbb{Z}^n$ has a cutting-plane proof of finite length.

How long do cutting-plane proofs need to be?
Chvátal-Gomory

<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
</table>
| Given a polytope $P \subseteq \mathbb{R}^n$, the first Chvátal-Gomory (CG) closure of P is

$$P' := \{x \in \mathbb{R}^n : c^T x \geq \left\lfloor \min_{y \in P} c^T y \right\rfloor \ \forall \ c \in \mathbb{Z}^n\}$$

$P^{(0)} := P$, $P^{(t)} := (P^{(t-1)})'$ is the t-th CG closure of P. |

<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>The smallest t such that $P^{(t)} = \text{conv}(P \cap \mathbb{Z}^n)$ is the CG-rank of P.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem (Chvátal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>The CG-rank of every polytope is finite.</td>
</tr>
</tbody>
</table>
Fact
Let $a_i^T x \geq b_i$ ($i = 1, \ldots, m$) define a polytope P with CG-rank k. Then every linear inequality with integer coefficients that is valid for $P \cap \mathbb{Z}^n$ has a cutting-plane proof of length at most
\[
(n^{k+1} - 1)/(n - 1).
\]

Fact
Even in dimension 2, the CG-rank of a polytope can be arbitrarily large.

Eisenbrand, Schulz 2003; Rothvoß, Sanità 2013
The CG-rank of any polytope contained in $[0, 1]^n$ is at most $O(n^2 \log n)$; and this bound is tight up to the log-factor.
Definition

Let $S \subseteq \{0, 1\}^n$. A polytope $R \subseteq [0, 1]^n$ is a relaxation of S iff $R \cap \mathbb{Z}^n = S$.

Question

Let $S \subseteq \{0, 1\}^n$. What properties of S ensure that every relaxation of S has bounded CG rank (by a constant independent of n)?
Fix k to be a constant.

Remark
Polytopes in \mathbb{R}^n with CG-rank k have cutting-plane proofs of length polynomial in n.

Remark
Maximizing/minimizing a linear functional over the integer points of a polytope with CG-rank k is in $\text{NP} \cap \text{coNP}$ (but not known to be in P).
Previous work

- $\tilde{S} := \{0, 1\}^n \setminus S$
- $H[\tilde{S}] :=$ undirected graph with vertices \tilde{S}, two vertices are adjacent iff they differ in one coordinate

Easy

If $H[\tilde{S}]$ is a stable set, then the CG-rank of any relaxation of S is at most 1.

Cornuéjols, Lee (2016)

If $H[\tilde{S}]$ is a forest, then the CG-rank of any relaxation of S is at most 3.

Cornuéjols, Lee (2016)

If the treewidth of $H[\tilde{S}]$ is at most 2, then the CG-rank of any relaxation of S is at most 4.
WHAT MAKES THE CG-RANK LARGE?
A large pitch!

Definition

The pitch of $S \subseteq \{0, 1\}^n$ is the smallest number $p \in \mathbb{Z}_{\geq 0}$ such that every p-dimensional face of $[0, 1]^n$ intersects S.

(If the pitch is p, there is a $p-1$-dimensional face of $[0, 1]^n$ disjoint from S)

Fact

Let $S \subseteq \{0, 1\}^n$ with pitch p. Then there is a relaxation of S with CG-rank at least $p - 1$.
Large coefficients!

Definition

The gap of $S \subseteq \{0, 1\}^n$ is the smallest number $\Delta \in \mathbb{Z}_{\geq 0}$ such that $\text{conv}(S)$ can be described by inequalities of the form

$$
\sum_{i \in I} c_i x_i + \sum_{j \in J} c_j (1 - x_j) \geq \delta
$$

with $I, J \subseteq [n]$ disjoint, $\delta, c_1, \ldots, c_n \in \mathbb{Z}_{\geq 0}$ with $\delta \leq \Delta$.

Fact

Let $S \subseteq \{0, 1\}^n$ with gap Δ. Then there is a relaxation of S with CG-rank at least $\frac{\log \Delta}{\log n} - 1$.
Theorem

Let \(S \subseteq \{0, 1\}^n \) with pitch \(p \) and gap \(\Delta \). Then the CG-rank of any relaxation of \(S \) is at most \(p + \Delta - 1 \).

Corollary

Let \(S \subseteq \{0, 1\}^n \) and let \(t \) be the treewidth of \(H[\bar{S}] \). Then the CG-rank of any relaxation of \(S \) is at most \(t + 2t^{t/2} \).
Comparing to treewidth

Bounded treewidth implies bounded pitch and gap:

Proposition

Let $S \subseteq \{0, 1\}^n$ with pitch p and gap Δ. If t is the treewidth of $H[\bar{S}]$, then we have $p \leq t + 1$ and $\Delta \leq 2t^{t/2}$.

\[\text{clique of size 6}\]
Proof idea

• induction on the rhs of the inequality to obtain

• every inequality of the form \(\sum_{i \in I} x_i \geq 1 \) can be obtained after \(n + 1 - |I| \) rounds of CG.

• note that \(n + 1 - |I| \leq p \)

• \(\Rightarrow \) all inequalities with rhs 1 can be obtained after \(p \) rounds.

• for inequalities with larger rhs, proof by example
Proof idea (2)

- suppose that $7x_1 + 3x_2 + 2x_3 \geq 5$ is valid for S, then also

 $$(7 - 1)x_1 + 3x_2 + 2x_3 \geq 4$$

 $$7x_1 + (3 - 1)x_2 + 2x_3 \geq 4$$

 $$7x_1 + 3x_2 + (2 - 1)x_3 \geq 4$$

 are valid for S

- thus, $(7 - \varepsilon)x_1 + (3 - \varepsilon)x_2 + (2 - \varepsilon)x_3 \geq 4$ is valid for S

- thus, $7x_1 + 3x_2 + 2x_3 \geq 4 + \varepsilon''$ is valid for S

- induction ...

- rounding up the rhs, we obtain the desired inequality
FURTHER PROPERTIES OF SETS WITH BOUNDED PITCH
Proposition

For every $S \subseteq \{0, 1\}^n$ with pitch p and every $c \in \mathbb{R}^n$, the problem $\min\{c^T s : s \in S\}$ can be solved using $\mathcal{O}(n^p)$ oracle calls to S.

Why?

- may assume that $0 \leq c_1 \leq \cdots \leq c_n$
- note: optimal solution over $\{0, 1\}^n$ would be \emptyset
- claim: only need to check all vectors with support at most p
Bounded pitch allows for fast approximation:

Corollary

Let \(S \subseteq \{0, 1\}^n \) with pitch \(p \) and let \(R \) be any relaxation of \(S \). Let \(\varepsilon \in (0, 1) \) with \(p\varepsilon^{-1} \in \mathbb{Z} \). If

\[
\sum_{i \in I} c_i x_i + \sum_{j \in J} c_j (1 - x_j) \geq \delta
\]

with \(\delta \geq c_1, \ldots, c_n \geq 0 \) is valid for \(S \), then the inequality

\[
\sum_{i \in I} c_i x_i + \sum_{j \in J} c_j (1 - x_j) \geq (1 - \varepsilon)\delta
\]

is valid for \(R^{(p\varepsilon^{-1} - 1)} \).
Theorem

Let $S \subseteq \{0, 1\}^n$ with pitch p such that there exists a depth-D Boolean circuit (with AND and OR gates of fan-in 2, and NOT gates of fan-in 1) that decides S.

Then $\text{conv}(S)$ is a linear projection of a polytope with $O(n \cdot 2^{pD})$ many facets.