
May 23th, 2013

Zahlentheorie II

Exercise sheet 71

Exercise 1 (5 Points). Let R be a local ring with residue field k. In the lecture you proved that
in some cases R contains a field K, such that the canonical map R � k maps K isomorphically
to k. Such a field K is called coefficient field of R. A subfield K of R is called maximal, if for
any subfield L of R with L ⊃ K it follows that L = K.

(a) Show that any coefficient field of R is a maximal subfield.
(b) Show that every local ring which contains a field also contains a maximal subfield. (Hint:

Zorn’s Lemma)
(c) Show that if R is a complete local ring containing a field of characteristic 0, then every

maximal subfield is a coefficient field. (Hint: Use Hensel’s Lemma as presented in the
lecture or in Serre’s Local Fields, Chap. II, Prop. 7)

(d) Let k be a field of characteristic p > 0, and R := k(t)JxK. Show that k(tp + x) is a
maximal subfield of R but not a coefficient field of R.

Exercise 2 (3 Points). Let f ∈ Q[x] be an irreducible polynomial.

(a) Show that the local ring R := Q[x](f) does not contain a coefficient field, if deg f > 1.

(b) Show that the completion R̂ := lim←−n
R/(fR)n contains a unique coefficient field (Hint:

Use Hensel’s Lemma as presented in the lecture or in Serre’s Local Fields, Chap. II,
Prop. 7).

Exercise 3 (6 Points). Let R be a commutative ring. For n ∈ N, an element ξ ∈ R is called
n-th root of unity, if ξn = 1. The set of n-th roots of unity in R is denoted by µn(R), and it is
a subgroup of R×.

Let p ∈ Z be a prime number, and Zp := lim←−n
Z/pnZ the p-adic integers. From the lecture

you know that if Qp denotes the completion of Q with respect to the p-adic absolute value,
then Zp can be identified with the valuation ring of Qp.

(a) Show that for every n ∈ N the group µn(Zp) is cyclic.
(b) For n ∈ N compute the order of µn(Zp) whenever n is prime to p (Hint: Think about

roots of unity in Fp and then use Hensel’s Lemma).
(c) If we write µ′(Zp) for the group of elements ξ ∈ Zp such that ξn = 1 for some n prime

to p, then show that µ′(Zp) is finite and compute its order.

Exercise 4 (8 Points). Again let p ∈ Z be a prime number. Write U := 1 + pZp ⊂ Z×p . Clearly
U is a subgroup of Z×p . In the rest of this exercise, assume that p > 2.

(a) Consider the ideal pZp as a subgroup of the additive group of Zp. For an element
a ∈ pZp, show that the exponential series

exp(a) :=
∞∑
n=0

an

n!

converges in Zp, and that exp induces a homomorphism of groups pZp → U .

1For questions or remarks, feel free to come to A3.112A or to write to kindler@math.fu-berlin.de. At the
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(b) For an element 1 + b ∈ U , show that the series

log(1 + b) :=
∞∑
n=1

(−1)n+1 b
n

n
= b− b2

2
+
b3

3
− . . .

converges in Zp, and that log induces a homomorphism of groups U → pZp.
(c) Show that exp and log are mutually inverse, and hence U ∼= pZp

∼= Zp as abelian groups.
Actually this is a homeomorphism of topological groups, but you do not need to prove
this.

(d) Show that there is a split short exact sequence of abelian groups

0→ Zp
exp(p· )−−−−→ Z×p → (Z/pZ)× → 0,

and hence that Z×p ∼= Zp × (Z/pZ)×. (Hint: Use Exercise 3 to show that the sequence
is split)

(e) Finally compute the order of µn(Zp) for (n, p) > 1, conclude that Zp only contains
finitely many roots of unity. How many are there?

Hints. • Recall that since the p-adic absolute value is non-archimedian, a series
∑

n≥0 an
with an ∈ Zp converges if and only if the sequence (an)n≥0 converges to 0. Hence, to
show that, e.g., exp(a) converges, it would suffice to show that vp(

an

n!
) gets larger and

larger.
• To check relations like

(1) log((1 + a)(1 + b)) = log(1 + a) + log(1 + b),

you may use the following facts: If a formal power series F (X, Y ) ∈ QJX, Y K vanishes
on a nonempty open subset of R2, then F (X, Y ) = 0 as an element of QJX, Y K. Next,
if the formal power series F (X, Y ) converges on an open subset of Qp, then one may
rearrange its summands without changing the limit.

This allows you to use your knowledge about the real logarithm and exponential
function to prove, e.g., (1).

To check that exp and log are mutually inverse, you can use the same reasoning for
formal power series in one variable.


