Number Theory I

Prof. H. Esnault, Dr. V. Di Proietto

Exercise sheet 12^1

Exercise 1. Let A be a ring. Let P_0, \ldots, P_n be prime ideals, we say that $P_0 \subset \cdots \subset P_n$ is a chain if the inclusions are strict; the length of the chain is n. We define the dimension of A and we write dim(A) to be the supremum of the lengths of all chains of prime ideals in A. Let $A \subseteq B$ be an integral extension, prove using the "Going up" theorem that dim(A) = dim(B).

Exercise 2. Let $A \subseteq B$, and B integral over A.

- (i) If $x \in A$ is a unit in B, then it is a unit in A.
- (ii) Let J_A be the Jacobson radical of A, and let J_B the Jacobson radical of B; prove that $J_A = J_B \cap A$.

Exercise 3. Let A be an integral domain, K its field of fractions. Show that the following conditions are equivalent

- (i) A is a valuation ring of K
- (ii) If I and J are two ideals of A, then either $I \subseteq J$ or $J \subseteq I$.

Deduce that if A is a valuation ring and P is a prime ideal of A, then A_P and A/P are valuation ring of their field of fractions.

Exercise 4. Let Γ be a totally ordered abelian group (written additively), this means an abelian group Γ with identity element given by e, equipped with a relation such that $g \leq h$ or $h \leq g$ for every $g, h \in \Gamma$ and such that \leq is antisymmetric (if $g \leq h$ and $h \leq g$ then g = h, for $g, h \in \Gamma$) and transitive (if $g \leq h$ and $h \leq t$, then $g \leq t$ for every $g, h, t \in \Gamma$) and such that if $g, h, t \in \Gamma, g \leq h$ implies $g + t \leq h + t$.

Let K be a field. A valuation with values in Γ is a map $v:K^{\times}\to \Gamma$ such that

(i) v(xy) = v(x) + v(y)

(ii)
$$v(x+y) \ge \min(v(x), v(y))$$

for all $x, y \in K^{\times}$. Let $\overline{\Gamma}$ be $\Gamma \cup \{\infty\}$ where ∞ is a symbol such that $\gamma \leq \infty$ for every $\gamma \in \Gamma$. We extend v to $\overline{v} : K \to \overline{\Gamma}$ setting $\overline{v}(x) = v(x)$ for every $x \in K^{\times}$ and $\overline{v}(0) = \infty$. Show that the set of elements $x \in K$ such that $v(x) \geq e$ is a valuation ring of K.

¹If you want your solutions of this exercise to be corrected, please hand them in before the exercise class on January 22th.