
Valuation rings

Definition 1 ([AK2017, 23.1]). A discrete valuation on a field K is a surjective
function

v : K× → Z
such that for every x, y ∈ K×,

(1) v(xy) = v(x) + v(y),
(2) v(x+ y) ≥ min{v(x), v(y)} if x 6= −y.

A = {x ∈ K | v(x) ≥ 0}
is called the discrete valuation ring of v. A discrete valuation ring, or DVR, is a
ring which is a valuation ring of a discrete valuation.

Example 2.

(1) The field C((t)) = {
∑∞
n=N ant

n | N ∈ N, an ∈ C} of Laurent series without
an essential singularity at t = 0 is the protypical example of a discrete va-
lution ring. The valuation v : C((t))→ Z sends a series f(t) =

∑∞
n=N ant

n

with aN 6= 0 to N . That is, v(f) is the order of the zero of f at 0 ∈ C
(or minus the order of the pole) when f is considered as a meromorphic
function on some neighbourhood of 0 ∈ C. This can be generalised to any
field k by defining

k((t)) = {
∞∑
n=N

ant
n | N ∈ N, an ∈ k}.

(2) Moreover, if A contains a field k in such a way that k → A/〈π〉 is an
isomorphism for π ∈ A with v(π) = 1, then one can show that there is an
induced inclusion of fields K ⊂ k((t)), and the valuation of K is induced
by that of k((t)). We do not always have such a subfield k ⊂ A, as we shall
soon see. However, by defining k = A/〈π〉 and choose a splitting of sets
σ : k ⊂ A, we can construct an inclusion of sets K ⊂ k((t)) induced by v,
σ, and π.

(3) Any irreducible polynomial f(x1, . . . , xn) ∈ C[x1, . . . , xn] defines a discrete
valuation vf on the field C(x1, . . . , xn) = FracC[x1, . . . , xn] as follows. For
a nonzero g ∈ C(x1, . . . , xn) write g = fN g0

g1
with g0, g1 ∈ C[x1, . . . , xn]

polynomials not divisible by f . Then the order of g is N . In other words,
vf (g) is the order of the zero (or minus the order of the pole) of g along
the subvariety {a ∈ Cn | f(a) = 0}.

Exercise: Describe the valuation of C(t) associated to t.
(4) Every discrete valuation on C(t) is of the form vt−a for some a ∈ C except

one: v∞( f0f1 ) = deg f1 − deg f0. Extending C to an analytic variety CP1 by

adjoining a “point at infinity”, every element of C(t) extends to a mero-
morphic function on CP1 and v∞ measures the order of the zero (or minus
the order of the pole) at infinity.

This is a general principle: For any field extension K of C of transcen-
dence degree one there is a bijection between the discrete valuations v of
K with v(C) = 0, and the points of the corresponding Riemann surface.

(5) Any subring of the valuation ring C[[t]] of C((t)) not contained in C[[t]]×

inherits a discrete valuation. For example, if γ(t) ∈ C[[t]] is any power
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series which does not satisfy an algebraic equation in C[t](X) (for example

γ(t) = et − 1 =
∑∞
n=1

tn

n! ), then x 7→ t, y 7→ γ(t) defines a monomorphism
C(x, y) ⊂ C((t)), and we get an induced discrete valuation on C(x, y).
Heuristically, this measures the order of the zero (or minus the order of the
pole) of an element of C(x, y) along the graph {(a, γ(a)) ∈ C2 | a ∈ C} of
γ(t).

(6) Here is an arithmetic analogue of the example (2). Let p ∈ Z be a prime.
Given x ∈ Q, write x = pN a

b with a, b prime to p. Then define vp(x) = N .
Then vp is a discrete valuation whose valuation ring is the localisation Z(p)

of Z at p.
(7) More generally, if K ⊂ C is a finite algebraic extension of Q, and OK is

the normalisation of Z in K, then every local ring of OK (except K) is a
discrete valuation ring.

(8) Here is an arithmetic analoque of example (1). Let p ∈ Z be a prime. The
p-adic numbers Qp admit a unique discrete valuation. Its valuation ring is
the ring of p-adic integers.

(9) More generally, ifK/Qp is a finite algebraic extension, then there is a unique
extension of the discrete valuation vQp

of Qp to a valuation vK on K. Note
that we may have vK ◦ ι = e · vQp

for some e ∈ N where ι : Qp → K is the
inclusion. In this case we say K is ramified.

Definition 3. An integral domain A is called a valuation ring if for every element
a ∈ (FracA)×, we have a ∈ A or a−1 ∈ A.

Example 4. Consider C(x) = FracC[x]. For f ∈ C[x] define

vx(f) = max{i such that xi|f}
and for f/g ∈ C(x) define vx(f/g) = vx(f)− vx(g).

Consider C(x, y) = FracC[x, y]. For f ∈ C[x, y] define

vy(f) = max{i such that yi|f}
and for f/g ∈ C(x, y) define vy(f/g) = vy(f)− vy(g).

Next, for any f ∈ C(x, y), note that y−v(f)f ∈ C[x, y](y) and so y−v(f)f has a
well defined image in C(x) ∼= C[x, y](y)/yC[x, y](y). Define

v′x(f) = vx(y−v(f)f).

Finally, consider

A =

{
f ∈ C(x, y)

∣∣∣∣ vy(f) > 0, or
vy(f) = 0 and v′x(f) ≥ 0

}
This is a valuation ring such that C(x, y)×/A× ∼= Z×Z. One integer measures the
order of the zero along V (y) = C× {0} ⊂ C2 (or minus the order of the pole), and
the other integer measures the order of the zero (or minus the order of the pole) of
the residue at (0, 0) ∈ C2 (i.e., after the zero or pole along V (y) has been removed
by multiplying with yn for some n). Note, if we give Z × Z the lexicographical
order, then it becomes a totally ordered set, and (A− {0})/A× is the preimage of
the elements greater than zero.

Lemma 5. For any discrete valuation v on a field K with valuation ring A, we
have

A× = v−1(0).
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Consequently, v induces an isomorphism K×/A× ∼= Z with (A− {0})/A× ∼= N. In
particular, every DVR is a valuation ring.

Proof. An easy exercise using the fact v(x−1) = −v(x). �

The converse is true as well. So the valuation is actually unnecessary information.
Everything is determined by the ring structure of A.

Lemma 6. A valuation ring A with fraction field K is a discrete valuation ring if
and only if the quotient group K×/A× is isomorphic to Z.

Proof. We have already observed the “only if” so we prove the “if”. Suppose that
A is a valuation ring and φ : K×/A× ∼= Z. Note (A− {0})/A× is a submonoid, so
either φ((A − {0})/A×) ⊂ N or φ((A − {0})/A×) ⊂ −N. If the latter is the case,
replace φ with −φ. We claim that φ−1(N) = (A − {0})/A×, and the composition
v : K× → K×/A× → Z is a discrete valuation.

We clearly have v(ab) = v(a) + v(b) for every a, b ∈ K×. In particular, v(a−1) =
−v(a). Suppose that a ∈ K× has v(a) ∈ N. Either a ∈ A or a−1 ∈ A. The latter
would imply that −n ∈ N since φ((A − {0})/A×) ⊂ N, so we must have a ∈ A,
and we have proven the claim that φ−1(N) = (A − {0})/A×. In particular, we
now know that v(a) ≥ 0 if and only if a ∈ A − {0}. Consider a, b ∈ K×, and,
without loss of generality, suppose that a

b ∈ A (so min{v(a), v(b)} = v(b)). Then

also a
b + 1 = a+b

b ∈ A, so v(a+ b) ≥ v(b) = min{v(a), v(b)}. �

Definition 7. Recall that a domain A is said to be normal if given any a ∈ FracA,
if f(a) = 0 for some monic f(X) ∈ A[X], then a ∈ A.

Lemma 8. Every valuation ring is normal. Every valuation ring is a local ring.

Proof. Let A be the valuation ring and K = FracA.
A is normal: Let f(X) = Xd+1 +

∑
0≤i≤d aiX

i be a monic in A[X], and b ∈ K
an element such that f(b) = 0. If b ∈ A we are done, so suppose b−1 ∈ A. But
since f(b) = 0 the element −

∑
0≤i≤d aib

i/bd = bd+1/bd = b is also in A.

A is local: We will show that the set A−A× of non-units is an ideal. If a ∈ A−A×
and b ∈ A, then clearly ab ∈ A − A× since otherwise a−1 = b(ab)−1 ∈ A. Let
a, b ∈ A−A×. Without loss of generality, suppose that a

b ∈ A. If a+ b ∈ A×, then

(ab + 1) 1
a+b = a+b

b
1
a+b = 1

b ∈ A. A contradiction. �

Theorem 9. Let A be a subring of a field K. The following are equivalent.

(1) A is a valuation ring.
(2) The set of principal ideals of A is totally ordered by inclusion.
(3) The set of ideals of A is totally ordered by inclusion.
(4) A is a local ring and every finitely generated ideal of A is principal.

Proof.

(1) ⇒ (2) Recall that the set of principal ideals of a domain A is in canonical bijection
with A − {0}/A×. Define a partial order on K×/A× by a ≤ b if b/a ∈
A − {0}/A×. Then the definition of a valuation ring implies that this is a
total order.

(2) ⇒ (3) Now suppose that I, J ⊂ A are ideals with I 6⊂ J . Choose some a ∈ I
which is not in J , and let b be any element of J . Since a 6∈ J , a 6∈ (b), and
so (b) ⊂ (a) ⊂ I. Since this is true for any b ∈ J , we see that J ⊂ I.
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(3) ⇒ (4) Since the ideals are totally ordered, the maximal ideal which exists by Zorn’s
Lemma is unique. By induction it suffices to show that ideals generated by
two elements are principal. Suppose that I = 〈f, g〉 is such an ideal. Either
(f) ⊂ (g) or (g) ⊂ (f), so I = (f) or (g).

(4) ⇒ (1) Let a, b ∈ A − {0}, and let m be the maximal ideal. Since I = 〈a, b〉 is
principal, I/mI is a one dimensional A/m-vector space, so there are c, d ∈ A
with ac = bd with at least one of c, d not in m, i.e., at least one of c, d is a
unit (since A is local A× = A−m). Say c is the unit. Then d/c = a/b ∈ A.

�

The totally ordered set K×/A× we associated to a valuation ring in the previous
proof (a ≤ b if b/a ∈ (A− {0}/A×) contains even more information than we might
expect.

Lemma 10. Let A be a valuation ring. Then the map v : A − {0} → K×/A×

induces a bijection between the ideals of A, and the “right-closed” proper subsets of
(A− {0})/A×. I.e., those subsets S which satisfy γ ∈ S, γ ≤ γ′ =⇒ γ′ ∈ S.

To make the notation easier, define Γ = K×/A× ∪ {∞} with γ ≤ ∞ for all
γ ∈ K×/A× and extend v to K/A× defining v(0) =∞. The bijection is then given
by:

I 7→ v(I)

v−1S ← [ S

Warning: this does not imply by any means that all ideals are principal. For
example, we may have K×/A× ∼= Q or R or indeed, any subgroup of R.

Proof. For γ ∈ Γ, we will write Γ≥γ for {γ ∈ Γ | γ ≤ γ′}.
Let I be an ideal. Let us show that v(I) is “right closed”. Suppose γ, γ′ ∈ Γ

are non-infinite elements with γ ∈ v(I) and γ′ ≥ γ. Clearly, v : A − {0} →
(A − {0})/A× = Γ≥0 is surjective. Choose a, a′ ∈ A such that v(a) = γ and

v(a′) = γ′. Then γ′ ≥ γ implies a′/a ∈ A, so a′ = a′

a a ∈ I, and therefore

γ′ = v(a′) ∈ v(I). Now we show that v−1v(I) = I. Choose a, b ∈ A such that a ∈ I
and v(a) = v(b). Then b/a ∈ A, so b = a ba ∈ I.

Let S ⊂ Γ≥0 be a non-empty “right-closed” proper subset. We claim that v−1S

is an ideal. Indeed, for any a ∈ A, b ∈ v−1S, we have v(ab) ≥ v(b) since ab
b ∈ A,

so ab ∈ v−1S. Moreover, consider a, b ∈ v−1S and suppose that v(a) ≥ v(b). Then
a/b ∈ A so a/b+ 1 = a+b

b ∈ A, so v(a+ b) ≥ v(b), so a+ b ∈ v−1S since S is “right-

closed”. The fact v(v−1(S)) = S follows directly from the fact that A → Γ≥0 is
surjective. �

Corollary 11. A DVR is a PID. More specficially, if m = 〈π〉, then all ideals of
the DVR are of the form mn = 〈πn〉.

Proof. We have seen above that if A is a DVR, then A− {0}/A× is isomorphic to
N. Then we notice that the “right-closed” proper subsets of N are all of the form
N≥n, and therefore correspond to ideals 〈a〉 with v(a) = n. �

Lemma 12. Let A be a ring. The following conditions are equivalent.

(1) Every ascending chain of ideals stabilisers.
(2) Every ideal is finitely generated.
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Proof. (1) ⇒ (2). Let I be an ideal. Choose elements a0 ∈ I, a1 ∈ I − 〈a0〉, a2 ∈
I − 〈a0, a1〉, etc. Since the chain 〈a0〉 ⊂ 〈a0, a1〉 ⊂ 〈a0, a1, a2〉 ⊂ . . . stabilises, we
must have I = 〈a0, . . . , an〉 for some n. That is I is finitely generated.

(2) ⇒ (1). Let I0 ⊂ I1 ⊂ I2 ⊂ . . . be an ascending chain of ideals. The union
is also an ideal, and finitely generated by assumption so ∪n≥0In = 〈f1, . . . , fm〉 for
some fi. But then there must exist some Ii which contains all f1, . . . , fm. Hence,
the chain stabilises. �

Definition 13. Recall that a ring is noetherian if it satisfies the equivalent condi-
tions of Lemma 12.

Definition 14. Recall that the dimension of a ring is the length n of the longest
chain p0 ( p1 ( · · · ( pn of prime ideals. A local ring of dimension n is said to be
regular if its maximal ideal m can be generated by n elements.

In particular, a local domain has dimension 1 if and only if the set of prime
ideals is {〈0〉,m}, and a local domain of dimension 1 is regular if and only if m is
principal.

We will use the following.

Proposition 15 ([AK2017, Proposition 10.14]). Let R be a ring, R′ an R-algebra,
and x ∈ R′, the following are equivalent.

(1) x satisfies a monic in R[X].
(2) There exists an R[x]-module M which is finitely generated over R, and has

AnnR(M) = 0.

Theorem 16 ([Atiyah-Macdonald, Proposition 9.2], [AK2017, Theorem 23.6]).
The following are equivalent.

(1) A is a DVR.
(2) A is a normal noetherian local ring of dimension 1.
(3) A is a regular noetherian local ring of dimension 1.

Proof.

(1) ⇒ (2) We have seen above that every DVR is a valuation ring (Lemma 5) and
therefore normal (Lemma 8). Moreover, we know all the ideals of a PID
are of the form mn (Lemma 11), so the only two primes are m and 〈0〉 (i.e.,
it has dimension 1), and the ascending chain condition is easily checked to
hold.

(2) ⇒ (3) To get from normal to regular, we want to find some a
b ∈ K whose integral-

ity implies that m is principal. First we claim that there is b, a ∈ A such
that b ∈ m, and am ⊂ 〈b〉. Indeed, if we can find such a, b, then a

bm ⊂ A.
Our second claim is that normality implies this inclusion is in fact a bijec-
tion. That is, 1 ∈ a

bm. This second claim implies that there is t ∈ m such
that a

b t = 1, and therefore m = 〈t〉, since any c ∈ m can be written as cab t
and cab ∈ A.

Let us prove the first claim (this is usually an easy consequence of the
theory of depth, or the theory of primary decomposition, but we do it
by hand). Certainly, we can find a nonzero b ∈ m because dimA > 0.
But then A/〈b〉 has a single prime, say n, since the primes of A/〈b〉 are
in canonical bijection with the primes of A containing b. Let I be the
largest ideal such that I = Ann(a′) for some nonzero a′ ∈ A/〈b〉. But I is
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prime, since given c, d ∈ A/〈b〉 with cd ∈ Ann(a′), d /∈ Ann(a′), we have
c ∈ Ann(da′) ⊃ Ann(a′), and this inclusion must be equality by maximality
of Ann(a′). Since n is the only prime, we deduce that n = Ann(a′). Then
any lifting a ∈ A of a′ ∈ A/〈b〉 satisfies am ⊂ 〈b〉. Note a′ 6= 0 so a 6∈ 〈b〉;
this will come up soon.

Now we prove the second claim. If 1 is not in a
bm, then we have a

bm ⊂
m. But then the finitely generated A-module m admits a A[ab ]-module
structure. Since AnnA(m) = 0, Proposition 15 implies then that a

b is in
the integral closure of A. But A is normal, so this implies that a

b ∈ A,
contradicting a = bab 6∈ 〈b〉.

(3) ⇒ (1) First we claim that

(∗)
⋂
n∈N

mn = 0.

Indeed, since A is noetherian, this intersection is a finitely generated ideal.
So it is a finitely generated module M such that mM = M . Nakayama’s
Lemma then implies that it is zero.

Now let t be an element such that m = 〈t〉 (so mn = 〈tn〉). Since
∩n∈Nmn = 0, every nonzero element a of A can be written uniquely as
a = utn for some unit u. Explicitly, n is the largest integer such that
a ∈ mn \ mn+1, and u = a

tn is in A× because mutliplication by tn induces
an isomorphism of A-modules

A/m
∼→ mn/mn+1

(or rather, multiplication by t−n induces an isomorphism mn/mn+1 ∼→A/m).
Indeed, we can even say that every element of K× can be written uniquely
as utn for some n ∈ Z and u ∈ A×. Now one checks readily that for
any a ∈ K×, we have a ∈ A or a−1 ∈ A, and furthermore, A/〈t〉 ∼= Z.
(Alternatively, we could have checked that utn 7→ n satisfies the axioms of
a discrete valuation).
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