Addendum to the course on November 27, 2018

Dear students,

here an addendum to [Mil13, II, Thm.3.10]. Milne's proof contains a few typos and the main points are not really underlined, so we go through the proof of the statement.

Theorem 1. Let G be a finite group. Let M be a G-module such that $H^1_T(H, M) = H^2_T(H, M) = 0$ for all subgroups $H \subset G$. Then $H^r_T(G, M) = 0$ for all $r \in \mathbb{Z}$.

In the proof below, we constantly use that by definition $H_T^r(G, M) = H^r(G, M)$ for $r \ge 1$, we do not repeat this point each time.

Proof. When G is cyclic, one applies [Mil13, Prop.3.4].

Assume next G is solvable, i.e. there is a sequence of subgroups $\ldots \subset G_{i+1} \subset G_i \subset \ldots \subset G = G_0$ such that for all $i \in \mathbb{Z}$ we have that $G_{i+1} \neq G_i$ is normal and the quotient group G_i/G_{i+1} is abelian. In particular G_0/G_1 is abelian, and as such, has a cyclic quotient $G_0/G_1 \twoheadrightarrow C \neq 0$, which is a quotient $G_0 = G \twoheadrightarrow C$ of G by precomposing with the quotient homomorphism $G_0 \twoheadrightarrow G_0/G_1$. We set $H = \text{Ker}(G \twoheadrightarrow C)$. By [Mil13, Prop.1.34] one has an exact sequence

(1)
$$0 \to H^r_T(C, M^H) \to H^r_T(G, M) \to H^r_T(H, M) \ \forall r \ge 1$$

Thus

(2)
$$H_T^1(C, M^H) = H_T^2(C, M^H) = 0$$

and by [Mil13, Prop.3.4], since C is cyclic, one has

(3)
$$H_T^r(C, M^H) = 0 \ \forall r \in \mathbb{Z}$$

Since M viewed as a H-module verifies the assumption of the theorem and |H| < |G|, one has by induction on |G| that

(4)
$$H_T^r(H,M) = 0 \ \forall r \in \mathbb{Z}.$$

Thus by (1) one obtains

(5)
$$H_T^r(G,M) = 0 \ \forall r \ge 1.$$

The next point is to show that $H_T^0(G, M) = 0$, which is to say that any element in $x \in M^G$ is a norm $x = \operatorname{Nm}_G(z)$ for a certain $z \in M$. One has $x \in M^G \subset M^H$ thus x induces a class in $H_T^0(C, M^H) = M^H/\operatorname{Nm}_C M^H$, and this latter group is 0 by (3). Thus there is $y \in M^H$ such that x = $\operatorname{Nm}_C y$. By (4) applied to r = 0 one has $H_T^0(H, M) = M^H/\operatorname{Nm}_H M = 0$ thus there is $z \in M$ such that $y = \operatorname{Nm}_H(z)$. Thus one obtains

(6)
$$x = \operatorname{Nm}_C \operatorname{Nm}_H(z) = \operatorname{Nm}_G(z) \text{ thus } H^0_T(G, M) = 0.$$

Hence bringing (5) and (6) together reads

(7)
$$H_T^r(G,M) = 0 \ \forall r \ge 0.$$

We now wish to show that $H_T^r(G, M) = 0$ for r < 0. To this aim we use the standard method for shifting the cohomological degree. One defines the *G*-module M' by the exact sequence

(8)
$$0 \to M' \to \mathbb{Z}[G] \otimes_{\mathbb{Z}} M \xrightarrow{\text{valuation}} M \to 0$$

where the evaluation map assignes to $(g \otimes m) \in \mathbb{Z}[G] \otimes_{\mathbb{Z}} M$ the element $g \cdot m \in M$. On the other hand one has an extension of Shapiro's lemma in [Mil13, Prop.3.1]

Claim 2. For G a finite group and $N = \mathbb{Z}[G] \otimes_{\mathbb{Z}} M$ an induced G-module, one has $H_T^r(G, N) = 0$ for all $r \in \mathbb{Z}$.

Granted this general form of Shapiro's lemma, we conclude from the long exact sequence in Tate cohomology associated to (8) that

(9)
$$H^r_T(G,M) = H^{r+1}_T(G,M') \; \forall r \in \mathbb{Z}.$$

From (7) for r = 0, 1 and from (9) we obtain in particular

(10)
$$H_T^1(G, M') = H_T^2(G, M') = 0$$

thus we can apply (7) to M' and conclude

(11)
$$H_T^{-1}(G,M) = H_T^0(G,M') = 0$$

Replacing M by M' in the preceding argument we conclude

(12)
$$H^{-1}(G, M') = 0,$$

but this is precisely saying

(13)
$$H^{-2}(G, M) = 0.$$

We keep going. This proves

(14)
$$H^r_T(G,M) = 0 \ \forall r \in \mathbb{Z}$$

and proves the theorem when G is solvable.

We now address the general case. Recall that for $H \subset G$ an inclusion of finite groups and M a G-module, one has a restriction homomorphism

(15)
$$\operatorname{Res}: H^r_T(G, M) \to H^r_T(H, M).$$

For $r \geq 1$ this is the easy functor of restriction in cohomology. For $r \leq -2$ this comes from the more complicated functor in homology defined by

(16)
$$M_G \to M_H, x \mapsto \sum s^{-1} \cdot x$$

where s goes through a system of representatives of the set G/H. See [Har11, p.25, l.-8]. It is a good exercise to see that (16) is well defined! To go ahead, one needs the generalization of [Mil13, Cor.1.33] to Tate cohomology, which also follows from a generalization of [Mil13, Proposition 1.30]:

Claim 3 ([Har11], p.32, Ex. 4). Let $G_p \subset G$ be a *p*-Sylow subgroup, then the restriction of Res : $H^r_T(G, M) \to H^r_T(G_p, M)$ to the subgroup $H^r_T(G, M)$ of elements killed by multiplication by a *p*-power is injective.

As finite *p*-groups are solvable (see [MilGrp, Corollary 6.7] for a proof), applying (14) to G_p for all p we conclude that

(17) the torsion subgroup of $H^r_T(G, M)$ is $0 \ \forall r \in \mathbb{Z}$.

Finally we know by the corollary [Mil13, Cor.1.31] of Shapiro's lemma that for r > 0, $|G|H_T^r(G, M) = 0$ for any *G*-module *M*. We conclude by (9) that

(18)
$$|G|H^r_T(G,M) = 0 \ \forall r \in \mathbb{Z}.$$

Thus (17) together with (18) finish the proof.

References

- [Har11] Harari, D.: Cohomologie galoisienne et théorie des nombres, https:// www.math.u-psud.fr/~harari/enseignement/cogal/poly.pdf
- [Mil13] Milne, J.: Class Field Theory, http://www.jmilne.org/math/ CourseNotes/CFT.pdf
- [MilGrp] Milne, J.: Group Theory, http://www.jmilne.org/math/CourseNotes/ GT.pdf