Proposition 1. Let $K$ be a complete discretely-valued nonarchimedean field, and let $K^{\prime}$ be a finite totally ramified extension of $K$ which is separable. Let $A$ and $B$ be the discrete valuation rings in $K$ and $L$, and let $\pi_{A}$ and $\pi_{B}$ be uniformizers in $A$ and $B$. Then $A\left[\pi_{B}\right]=B$.

Proof. In our proof, we will make use of the following lemma:
Lemma 1. Let $A$ be a PID with field of fractions $K$, and let $B$ be the integral closure of $A$ in a finite separable extension $L$ of $K$ of degree $m$. Let $\beta_{1}, \beta_{2} \ldots \beta_{m}$ be a basis for $L$ over $K$ consisting entirely of elements of $B$, and let $d=\operatorname{disc}\left(\beta_{1}, \beta_{2} \ldots \beta_{m}\right)$. Then

$$
B \subset A \frac{\beta_{1}}{d}+A \frac{\beta_{2}}{d}+\ldots+A \frac{\beta_{m}}{d}
$$

Proof. See Milne Algebraic Number Theory Proposition 2.43.
It is clear that $A\left[\pi_{B}\right] \subset B$, we need to show that the reverse inclusion also holds. Assume that $\left[K^{\prime}: K\right]=n$. Recall from the proof given in class, that $\left\{1, \pi_{B}, \ldots \pi_{B}^{n-1}\right\}$ are $K$ linearly independent. Consider this integral basis of $K^{\prime}$ over $K$ and let $d_{0}=\operatorname{disc}\left(1, \pi_{B}, \ldots \pi_{B}^{n-1}\right)$. Then $d_{0} A=m_{A}^{l}$ for some $l \in \mathbb{N}$, thus $d_{0} B=m_{B}^{l n}$, i.e. $d_{0}=\pi_{B}^{l n} u$, with $u \in B^{\times}$. By our lemma, $d_{0} B \subset A\left[\pi_{B}\right] \Longleftrightarrow \pi_{B}^{l n} u B \subset$ $A\left[\pi_{B}\right] \Longleftrightarrow \pi_{B}^{l n} B \subset A\left[\pi_{B}\right]$. Therefore, we showed the existence of an $m_{0} \in \mathbb{N}$ with

$$
\begin{equation*}
\pi_{B}^{m_{0}} B \subset A\left[\pi_{B}\right] \tag{1}
\end{equation*}
$$

Now, because the extension is totally ramified, we have that $A /\left(\pi_{A}\right) \cong B /\left(\pi_{B}\right)$, which implies that the natural map $A \rightarrow B /\left(\pi_{B}\right)$ is surjective. Therefore $A+\pi_{B} B=B$, hence furthermore

$$
\begin{equation*}
A\left[\pi_{B}\right]+\pi_{B} B=B \tag{2}
\end{equation*}
$$

Iterating (2) once, we obtain

$$
\begin{align*}
B & =A\left[\pi_{B}\right]+\pi_{B} B  \tag{1}\\
& =A\left[\pi_{B}\right]+\pi_{B}\left(A\left[\pi_{B}\right]+\pi_{B} B\right)  \tag{2}\\
& =\left(A\left[\pi_{B}\right]+\pi_{B} A\left[\pi_{B}\right]\right)+\pi_{B}^{2} B  \tag{3}\\
& =A\left[\pi_{B}\right]+\pi_{B}^{2} B \tag{4}
\end{align*}
$$

Repeating this procedure, we obtain that in fact $B=A\left[\pi_{B}\right]+\pi_{B}^{k} B$ for every $k \in \mathbb{N}$, in particular it's true for $k=m_{0}$. Thus, using (1):

$$
B=A\left[\pi_{B}\right]+\pi_{B}^{m_{0}} B \subset A\left[\pi_{B}\right]
$$

and we are done.

Remark 1. Once equality (2) is established, one can give an alternative proof. By our lemma it follows that $B / A\left[\pi_{B}\right]$ is a finitely generated $A$ module, and thus one can apply Nakayama's Lemma in the form of Milne's Algebraic Number Theory lemma 1.9 b).

