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0.1. Topological groups. Let X be a topological space, and x € X be
a point. Then a neighbourhood N of x is a subset of X which contains
an open subset U of X which contains z, so X D U 3 x. A basis of
neighbourhoods of x is a non-empty set A of neighbourhoods such that
for any open subset U containing x, thereisa N € N withU D N > z.
One has

Lemma 1. Let (X,z,N) be as above. Then
(a) for all Ny, Ny in N, there is a N' € N such that N’ C Ny N Ny.

Recall from Milne, Infinite Galois extensions the

Proposition 2 (Prop.7.2, first part). We assume in addition X = G

s a topological group and x =1 is the unit element. Then

(a) Lemma 1;

(b) for all N € N, there is a N' € N with N'N" C N

(c) for all N € N, there is a N' € N with N' C N7%;

(d) for all N € N, for all g € G, there is a N' € N with N' C
gNgfl,'

(e) for all g € G, {gN,N € N} is a basis of neighbourhoods of g.

We have seen this and this is just stemming from the definition of a
topological group.

There is a characterization of the topology of a topological group
using (a), (b), (c), (d), and this is what we haven’t discussed to the
end.

Proposition 3 (Prop.7.2, second part). Let G be a group, N be a
nonemtpy set of subsets of G satisfying (a) (b) (c) (d). Then there is
a unique topology on G for which (e) holds.

Proof. We have to reconstruct the set U of open subsets of G. We
define U by saying that ) € U and else if U # (), then that U € U
if and only if for any g € U, there is a N € N such that gN C U.
Indeed: U is not empty as it contains G and (. If {U,} C U for
a family indexed by a € A, then by definition U,caU, € U and if
Uy,,U, €U, and g € Uy NU,, then there are Ny, Ny with gN; C U; thus
gN1NgNy C Uy NUy and by (1), there is a N’ € N/ with N’ C NN N,
thus gN' C gN1NgNy, C Uy NU;y. SoU is a topology on G. So far, this
is all in Milne’s book.

However, what is missing in the book is to show that if G is a topolog-
ical group, N is a basis of neighbourhoods of 1, then U is the topology

on G and not another one. We now prove this. We have to show that
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any N € N is a neighbourhood of 1 for the topology defined by U, which
is equivalent to saying that for any N € N, there is a Uy € U, with
N DU > 1. So we have to define this U. We set

Unx = {g € N such that there is a N’ € N with gN' C N.}.

Clearly Uy € N and 1 € Uy taking N’ = N. We have to show that
Ux € U, that is we have to show that if ¢ € Uy, then thereisa N” € N
with gN” € N. To do this, by definition of Uy, there is a N’ € N
with gN" € N. By (b) there is N” € N with N’N” C N’. Thus
gN"=gN"-1C gN'"N" C gN' C N.

0

Now we come to the Krull topology. One has the G D G(S) = {g €
G,g9s = s Vs € S} defined for finite subsets S C Q where Q D F
is a Galois extension and G = Aut(Q/F). We have seen that N :=
{G(S), S finite C Q} fulfill (a), (b), (¢), (d). One has:

Lemma 4. {gG(S), for all G(S) € N, all g € G.} is a basis of open
sets for the topology of G.

Proof. As G(S) is a group, for any g € G(S), one has gG(S) = G(95).
]

So in conclusion: our Krull topology is really defined with a basis of
open neighbourhoods, and G(S) C G is a subgroup and normal if S is
G-stable (see the proof in the course).

Remark 5.

If you want to play, show that for R with the additive group struc-
ture, the standard topology endows R with the structure of a topo-
logical group. Then show that A consisting of [a,b] with a < 0 < b,
together with () and R is a basis of neighbourhoods of 1 for the stan-
dard topology. And show that if we define N’ as we defined N but
with the condition a < 0 < b, then still N verifies (a) (b) (c) (d), and
the topology defined by U is the discrete topology.

0.2. Graphs. We have seen, for S C Q finite, G = Aut(§2/F)-stable,
where Q2 D F'is a Galois extension, G(S) C G is normal. We denote by
S the set of all such S. We denote by 7g : G — G/G(S) the projection,
it is a surjective continuous homomorphism to a finite group G/G(S)
(see the course). The product map

¢ =" TT 6 /a(s)
S



is injective and identifies the image with

Im(H 7T5) = ﬁFS,T
SesS

where the intersection is taken over all pairs (S,7) in § with 7' C S,
and I'g 7 is defined as follows: T' C S if and only if G(T') D G(S). This
defines the projection wgr : G/G(S) — G/G(T') which is a surjective
homomorphism of finite discrete topological groups. Then define

G/G(S) x G/G(T) D vsr = {(2,9),y = 7sr(2)},
and
Tgr = [T ¢G/6S) xvsr c [ G/G(S).
S'£8,8'£T,S'€S SeSs

We want to show

Proposition 6.

Im(H ms) C (H Ws)(H G/G(S))

Ses Ses S

1s closed.

Indeed if true, then as the product group is compact, so is G, as
[Ises s is a continuous isomorphism of G onto its image. Now Propo-
sition 6 follows from I'sp being closed. And as the product group is
endowed with the product topololgy, this is equivalent to the ygr C
G/G(S) x G/G(T) being closed.

Now forget our situation. Remember only that we showed that the
Krull topology on G is Hausdorff.

Proposition 7. Let f : X — Y be a continuous map of f topological
spaces, where Y is Hausdorff. Then vy = {(z,y),y = f(z)} C X xY
1s closed, where X XY is endowed with the product topology.

Proof. The map (1, f) : X XY — Y x Y is continuous and -y is the
inverse image of vig, C Y x Y where idy is the identity of Y. So it
is enough to prove the statement for ~iq, , which is usually called the
diagonal of Y. But (a,b) € Y XY \q, if and only if a # b, thus as Y is
Hausdorff, there are open subsets U, > a,U, 2 b of Y with U,NU, = 0.
Thus U, x U, C Y XY \ 714y, and is an open for the product topology.
Thus Y x Y \ 714, is open. O

We apply Proposition 7 to f = mg 7, then 7y = 5. This finishs the
proof of Proposition 6.
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Remark 8. For those who know what is the Zariski topology: it is
not a Hausdorff topology. Yet graphs vy C X x Y are often still closed
if we endow X X Y with the Zariski topology. The point is that the
Zariski topology on X x Y is not the product topology.
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