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0.1. Topological groups. Let X be a topological space, and x ∈ X be
a point. Then a neighbourhood N of x is a subset of X which contains
an open subset U of X which contains x, so X ⊃ U 3 x. A basis of
neighbourhoods of x is a non-empty set N of neighbourhoods such that
for any open subset U containing x, there is a N ∈ N with U ⊃ N 3 x.
One has

Lemma 1. Let (X, x,N ) be as above. Then

(a) for all N1, N2 in N , there is a N ′ ∈ N such that N ′ ⊂ N1∩N2.

Recall from Milne, Infinite Galois extensions the

Proposition 2 (Prop.7.2, first part). We assume in addition X = G
is a topological group and x = 1 is the unit element. Then

(a) Lemma 1;
(b) for all N ∈ N , there is a N ′ ∈ N with N ′N ′ ⊂ N ;
(c) for all N ∈ N , there is a N ′ ∈ N with N ′ ⊂ N−1;
(d) for all N ∈ N , for all g ∈ G, there is a N ′ ∈ N with N ′ ⊂

gNg−1;
(e) for all g ∈ G, {gN,N ∈ N} is a basis of neighbourhoods of g.

We have seen this and this is just stemming from the definition of a
topological group.

There is a characterization of the topology of a topological group
using (a), (b), (c), (d), and this is what we haven’t discussed to the
end.

Proposition 3 (Prop.7.2, second part). Let G be a group, N be a
nonemtpy set of subsets of G satisfying (a) (b) (c) (d). Then there is
a unique topology on G for which (e) holds.

Proof. We have to reconstruct the set U of open subsets of G. We
define U by saying that ∅ ∈ U and else if U 6= ∅, then that U ∈ U
if and only if for any g ∈ U , there is a N ∈ N such that gN ⊂ U .
Indeed: U is not empty as it contains G and ∅. If {Uα} ⊂ U for
a family indexed by α ∈ A, then by definition ∪α∈AUα ∈ U and if
U1, U2 ∈ U , and g ∈ U1 ∩U2, then there are N1, N2 with gNi ⊂ Ui thus
gN1 ∩ gN2 ⊂ U1 ∩U2 and by (1), there is a N ′ ∈ N with N ′ ⊂ N1 ∩N2

thus gN ′ ⊂ gN1 ∩ gN2 ⊂ U1 ∩U2. So U is a topology on G. So far, this
is all in Milne’s book.

However, what is missing in the book is to show that if G is a topolog-
ical group, N is a basis of neighbourhoods of 1, then U is the topology
on G and not another one. We now prove this. We have to show that
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any N ∈ N is a neighbourhood of 1 for the topology defined by U , which
is equivalent to saying that for any N ∈ N , there is a UN ∈ U , with
N ⊃ U 3 1. So we have to define this U . We set

UN = {g ∈ N such that there is a N ′ ∈ N with gN ′ ⊂ N.}.

Clearly UN ⊂ N and 1 ∈ UN taking N ′ = N . We have to show that
UN ∈ U , that is we have to show that if g ∈ UN , then there is a N ′′ ∈ N
with gN ′′ ⊂ N . To do this, by definition of UN , there is a N ′ ∈ N
with gN ′ ⊂ N . By (b) there is N ′′ ∈ N with N ′′N ′′ ⊂ N ′. Thus
gN ′′ = gN ′′ · 1 ⊂ gN ′′N ′′ ⊂ gN ′ ⊂ N .

�

Now we come to the Krull topology. One has the G ⊃ G(S) = {g ∈
G, gs = s ∀s ∈ S} defined for finite subsets S ⊂ Ω where Ω ⊃ F
is a Galois extension and G = Aut(Ω/F ). We have seen that N :=
{G(S), S finite ⊂ Ω} fulfill (a), (b), (c), (d). One has:

Lemma 4. {gG(S), for all G(S) ∈ N , all g ∈ G.} is a basis of open
sets for the topology of G.

Proof. As G(S) is a group, for any g ∈ G(S), one has gG(S) = G(S).
�

So in conclusion: our Krull topology is really defined with a basis of
open neighbourhoods, and G(S) ⊂ G is a subgroup and normal if S is
G-stable (see the proof in the course).

Remark 5.

If you want to play, show that for R with the additive group struc-
ture, the standard topology endows R with the structure of a topo-
logical group. Then show that N consisting of [a, b] with a < 0 < b,
together with ∅ and R is a basis of neighbourhoods of 1 for the stan-
dard topology. And show that if we define N ′ as we defined N but
with the condition a ≤ 0 ≤ b, then still N ′ verifies (a) (b) (c) (d), and
the topology defined by U is the discrete topology.

0.2. Graphs. We have seen, for S ⊂ Ω finite, G = Aut(Ω/F )-stable,
where Ω ⊃ F is a Galois extension, G(S) ⊂ G is normal. We denote by
S the set of all such S. We denote by πS : G→ G/G(S) the projection,
it is a surjective continuous homomorphism to a finite group G/G(S)
(see the course). The product map

G
∏

S∈S πS−−−−−→
∏
S

G/G(S)



3

is injective and identifies the image with

Im(
∏
S∈S

πS) = ∩ΓS,T

where the intersection is taken over all pairs (S, T ) in S with T ⊂ S,
and ΓS,T is defined as follows: T ⊂ S if and only if G(T ) ⊃ G(S). This
defines the projection πS,T : G/G(S) � G/G(T ) which is a surjective
homomorphism of finite discrete topological groups. Then define

G/G(S)×G/G(T ) ⊃ γS,T := {(x, y), y = πS,T (x)},

and

ΓS,T :=
∏

S′ 6=S,S′ 6=T,S′∈S

G/G(S ′)× γS,T ⊂
∏
S∈S

G/G(S).

We want to show

Proposition 6.

Im(
∏
S∈S

πS) ⊂ (
∏
S∈S

πS)(
∏
S

G/G(S))

is closed.

Indeed if true, then as the product group is compact, so is G, as∏
S∈S πS is a continuous isomorphism of G onto its image. Now Propo-

sition 6 follows from ΓS,T being closed. And as the product group is
endowed with the product topololgy, this is equivalent to the γS,T ⊂
G/G(S)×G/G(T ) being closed.

Now forget our situation. Remember only that we showed that the
Krull topology on G is Hausdorff.

Proposition 7. Let f : X → Y be a continuous map of f topological
spaces, where Y is Hausdorff. Then γf = {(x, y), y = f(x)} ⊂ X × Y
is closed, where X × Y is endowed with the product topology.

Proof. The map (1, f) : X × Y → Y × Y is continuous and γf is the
inverse image of γidY ⊂ Y × Y where idY is the identity of Y . So it
is enough to prove the statement for γIdY , which is usually called the
diagonal of Y . But (a, b) ∈ Y ×Y \γIdY if and only if a 6= b, thus as Y is
Hausdorff, there are open subsets Ua 3 a, Ub 3 b of Y with Ua∩Ub = ∅.
Thus Ua×Ub ⊂ Y × Y \ γIdY , and is an open for the product topology.
Thus Y × Y \ γIdY is open. �

We apply Proposition 7 to f = πS,T , then γf = γS,T . This finishs the
proof of Proposition 6.
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Remark 8. For those who know what is the Zariski topology: it is
not a Hausdorff topology. Yet graphs γf ⊂ X × Y are often still closed
if we endow X × Y with the Zariski topology. The point is that the
Zariski topology on X × Y is not the product topology.
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