0.1. Topological groups. Let X be a topological space, and $x \in X$ be a point. Then a neighbourhood N of x is a subset of X which contains an open subset U of X which contains x, so $X \supset U \ni x$. A basis of neighbourhoods of x is a non-empty set \mathcal{N} of neighbourhoods such that for any open subset U containing x, there is a $N \in \mathcal{N}$ with $U \supset N \ni x$. One has

Lemma 1. Let (X, x, \mathcal{N}) be as above. Then

(a) for all N_1, N_2 in \mathcal{N} , there is a $N' \in \mathcal{N}$ such that $N' \subset N_1 \cap N_2$.

Recall from Milne, *Infinite Galois extensions* the

Proposition 2 (Prop.7.2, first part). We assume in addition X = G is a topological group and x = 1 is the unit element. Then

- (a) *Lemma 1;*
- (b) for all $N \in \mathcal{N}$, there is a $N' \in \mathcal{N}$ with $N'N' \subset N$;
- (c) for all $N \in \mathcal{N}$, there is a $N' \in \mathcal{N}$ with $N' \subset N^{-1}$;
- (d) for all $N \in \mathcal{N}$, for all $g \in G$, there is a $N' \in \mathcal{N}$ with $N' \subset gNg^{-1}$;
- (e) for all $g \in G$, $\{gN, N \in \mathcal{N}\}$ is a basis of neighbourhoods of g.

We have seen this and this is just stemming from the definition of a topological group.

There is a *characterization* of the topology of a topological group using (a), (b), (c), (d), and this is what we haven't discussed to the end.

Proposition 3 (Prop.7.2, second part). Let G be a group, \mathcal{N} be a nonempty set of subsets of G satisfying (a) (b) (c) (d). Then there is a unique topology on G for which (e) holds.

Proof. We have to reconstruct the set \mathcal{U} of open subsets of G. We define \mathcal{U} by saying that $\emptyset \in \mathcal{U}$ and else if $U \neq \emptyset$, then that $U \in \mathcal{U}$ if and only if for any $g \in U$, there is a $N \in \mathcal{N}$ such that $gN \subset U$. Indeed: \mathcal{U} is not empty as it contains G and \emptyset . If $\{U_{\alpha}\} \subset \mathcal{U}$ for a family indexed by $\alpha \in A$, then by definition $\bigcup_{\alpha \in A} U_{\alpha} \in \mathcal{U}$ and if $U_1, U_2 \in \mathcal{U}$, and $g \in U_1 \cap U_2$, then there are N_1, N_2 with $gN_i \subset U_i$ thus $gN_1 \cap gN_2 \subset U_1 \cap U_2$ and by (1), there is a $N' \in \mathcal{N}$ with $N' \subset N_1 \cap N_2$ thus $gN' \subset gN_1 \cap gN_2 \subset U_1 \cap U_2$. So \mathcal{U} is a topology on G. So far, this is all in Milne's book.

However, what is missing in the book is to show that if G is a topological group, \mathcal{N} is a basis of neighbourhoods of 1, then \mathcal{U} is the topology on G and not another one. We now prove this. We have to show that any $N \in \mathcal{N}$ is a neighbourhood of 1 for the topology defined by \mathcal{U} , which is equivalent to saying that for any $N \in \mathcal{N}$, there is a $U_N \in \mathcal{U}$, with $N \supset U \ni 1$. So we have to define this U. We set

$$U_N = \{g \in N \text{ such that there is a } N' \in \mathcal{N} \text{ with } gN' \subset N.\}.$$

Clearly $U_N \subset N$ and $1 \in U_N$ taking N' = N. We have to show that $U_N \in \mathcal{U}$, that is we have to show that if $g \in U_N$, then there is a $N'' \in \mathcal{N}$ with $gN'' \subset N$. To do this, by definition of U_N , there is a $N' \in \mathcal{N}$ with $gN' \subset N$. By (b) there is $N'' \in \mathcal{N}$ with $N''N'' \subset N'$. Thus $gN'' = gN'' \cdot 1 \subset gN''N'' \subset gN' \subset N$.

Now we come to the Krull topology. One has the $G \supset G(S) = \{g \in G, gs = s \ \forall s \in S\}$ defined for finite subsets $S \subset \Omega$ where $\Omega \supset F$ is a Galois extension and $G = \operatorname{Aut}(\Omega/F)$. We have seen that $\mathcal{N} := \{G(S), S \text{ finite } \subset \Omega\}$ fulfill (a), (b), (c), (d). One has:

Lemma 4. $\{gG(S), \text{ for all } G(S) \in \mathcal{N}, \text{ all } g \in G.\}$ is a basis of open sets for the topology of G.

Proof. As
$$G(S)$$
 is a group, for any $g \in G(S)$, one has $gG(S) = G(S)$.

So in conclusion: our Krull topology is really defined with a basis of *open* neighbourhoods, and $G(S) \subset G$ is a subgroup and normal if S is G-stable (see the proof in the course).

Remark 5.

If you want to play, show that for \mathbb{R} with the additive group structure, the standard topology endows \mathbb{R} with the structure of a topological group. Then show that \mathcal{N} consisting of [a, b] with a < 0 < b, together with \emptyset and \mathbb{R} is a basis of neighbourhoods of 1 for the standard topology. And show that if we define \mathcal{N}' as we defined \mathcal{N} but with the condition $a \leq 0 \leq b$, then still \mathcal{N}' verifies (a) (b) (c) (d), and the topology defined by \mathcal{U} is the discrete topology.

0.2. **Graphs.** We have seen, for $S \subset \Omega$ finite, $G = \operatorname{Aut}(\Omega/F)$ -stable, where $\Omega \supset F$ is a Galois extension, $G(S) \subset G$ is normal. We denote by S the set of all such S. We denote by $\pi_S : G \to G/G(S)$ the projection, it is a surjective continuous homomorphism to a finite group G/G(S)(see the course). The product map

$$G \xrightarrow{\prod_{S \in \mathcal{S}} \pi_S} \prod_S G/G(S)$$

is injective and identifies the image with

$$\operatorname{Im}(\prod_{S\in\mathcal{S}}\pi_S)=\cap\Gamma_{S,T}$$

where the intersection is taken over all pairs (S, T) in S with $T \subset S$, and $\Gamma_{S,T}$ is defined as follows: $T \subset S$ if and only if $G(T) \supset G(S)$. This defines the projection $\pi_{S,T} : G/G(S) \twoheadrightarrow G/G(T)$ which is a surjective homomorphism of finite discrete topological groups. Then define

$$G/G(S) \times G/G(T) \supset \gamma_{S,T} := \{(x,y), y = \pi_{S,T}(x)\},\$$

and

$$\Gamma_{S,T} := \prod_{S' \neq S, S' \neq T, S' \in \mathcal{S}} G/G(S') \times \gamma_{S,T} \subset \prod_{S \in \mathcal{S}} G/G(S).$$

We want to show

Proposition 6.

$$\operatorname{Im}(\prod_{S\in\mathcal{S}}\pi_S)\subset (\prod_{S\in\mathcal{S}}\pi_S)(\prod_S G/G(S))$$

is closed.

Indeed if true, then as the product group is compact, so is G, as $\prod_{S \in S} \pi_S$ is a continuous isomorphism of G onto its image. Now Proposition 6 follows from $\Gamma_{S,T}$ being closed. And as the product group is endowed with the product topology, this is equivalent to the $\gamma_{S,T} \subset G/G(S) \times G/G(T)$ being closed.

Now forget our situation. Remember only that we showed that the Krull topology on G is *Hausdorff*.

Proposition 7. Let $f : X \to Y$ be a continuous map of f topological spaces, where Y is Hausdorff. Then $\gamma_f = \{(x, y), y = f(x)\} \subset X \times Y$ is closed, where $X \times Y$ is endowed with the product topology.

Proof. The map $(1, f) : X \times Y \to Y \times Y$ is continuous and γ_f is the inverse image of $\gamma_{id_Y} \subset Y \times Y$ where id_Y is the identity of Y. So it is enough to prove the statement for γ_{Id_Y} , which is usually called *the diagonal of* Y. But $(a, b) \in Y \times Y \setminus \gamma_{Id_Y}$ if and only if $a \neq b$, thus as Y is Hausdorff, there are open subsets $U_a \ni a, U_b \ni b$ of Y with $U_a \cap U_b = \emptyset$. Thus $U_a \times U_b \subset Y \times Y \setminus \gamma_{Id_Y}$, and is an open for the product topology. Thus $Y \times Y \setminus \gamma_{Id_Y}$ is open. \Box

We apply Proposition 7 to $f = \pi_{S,T}$, then $\gamma_f = \gamma_{S,T}$. This finishs the proof of Proposition 6.

Remark 8. For those who know what is the Zariski topology: it is *not* a Hausdorff topology. Yet graphs $\gamma_f \subset X \times Y$ are often *still closed* if we endow $X \times Y$ with the Zariski topology. The point is that the Zariski topology on $X \times Y$ is *not* the product topology.

Hélène Esnault and Lars Kindler

4