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HÉLÈNE ESNAULT, LARS KINDLER

Exercise 1. Let k be a field of characteristic 6= 2 and let A be a central simple algebra over k
such that dimk(A) = 4. This exercise shows that there are a, b ∈ k×, such that A is isomorphic to
the generalized quarternion algebra H(a, b; k). By Wedderburn’s theorem there exists a division
algebra over k, such that A ∼= Mn(D) for some n ≥ 1. Thus either A ∼= M2(k) = H(1, 1; k) or
A ∼= D is a division algebra. From now on we assume that A = D is a division algebra.

(a) Pick x ∈ D \ k and let k[x] ⊆ D be the sub-k-algebra generated by x. Show that k[x] is
a field and that [k[x] : k] = 2.

(b) Show that CD(k[x]) = k[x] where CD(k[x]) is the centralizer of k[x] in D.
(c) Let σ be the unique nontrivial k-automorphism of k[x] and show that there exists J ∈ D×

such that σ(y) = JyJ−1 for all y ∈ k[x]. Show that J2 ∈ k×, and define b := J2.
(d) Pick I ∈ k[x] and a ∈ k× such that I2 = a. Prove that D ∼= H(a, b; k).

Solution. (a) The k-algebra k[x] ⊆ D is commutative and for any y ∈ k[x] \ {0} multi-
plication by y induces an endomorphism of k-vector spaces my : k[x] → k[x]. Since
left-multiplication by y is an isomorphism on D, my is injective. As dimk k[x] <∞, my

is also surjective, that is, there exist y′ ∈ k[x] such that yy′ = 1. Thus k[x] is a field.
If x ∈ D \ k, then k $ k[x], so [k[x] : k] ≥ 2. But D is a 4-dimensional divison algebra

with center k, so any subfield has dimension ≤
√

4 = 2. Thus [k[x] : k] = 2.
(b) Since k[x] is a maximal subfield of D, you know from the lecture that CD(k[x]) = k[x].
(c) For σ ∈ Gal(k[x]/k)\{id} we know that σ2 = id. By the Noether-Skolem theorem, there

exists J ∈ D× such that σ(y) = JyJ−1 for every y ∈ k[x]. It follows that

y = σ2(y) = J2y(J−1)2

for every y ∈ k[x], so J2 ∈ CD(k[x]) = k[x]. Since σ 6= id, J 6∈ k[x]. Thus [k[J ] : k] = 2.
It follows that k[J ] is a quadratic extension of k with k[J ]∩k[x] = k. But J2 ∈ k[J ]∩k[x],
so J2 ∈ k. Write b := J2.

(d) As k[x] is a quadratic extension of k there exists I ∈ k[x] such that I2 ∈ k. Indeed, if
T 2 + λT + µ ∈ k[T ] is the minimal polynomial of x over k, then(

x+
λ

2

)2

= x2 + λx+
λ2

4
= (−λx− µ) + λx+

λ2

4
∈ k

Write a := I2. Then σ(I) = −I and hence −I = JIJ−1, so IJ = −JI.
It remains to see that 1, I, J, IJ is a basis of D. Let V be the k-subvector space of D

spanned by 1, I, J, IJ . We show that dimk V = 4.
It is easy to see that V is actually a subalgebra of D, as I2, J2 ∈ k, JI = −IJ ∈ V .

Moreover, V is a division algebra: For any y ∈ V \ {0}, multiplication by y induces
an injective, k-linear morphism V → V , as multiplication by y is injective on D. Thus
multiplication by y induces a bijective endomorphism V → V , so V is a division algebra.

If you want your solutions to be corrected, please hand them in just before the lecture on January 3, 2017. If
you have any questions concerning these exercises you can contact Lars Kindler via kindler@math.fu-berlin.de

or come to Arnimallee 3, Office 109.
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We know that k ⊆ Z(V ) and that [V : Z(V )] ≤ [V : k] ≤ [D : k] = 4. Moreover
[V : Z(V )] is a square, thus either = 1 or = 4. But we know that V is not commutative:
IJ − JI = 2IJ 6= 0 as char(k) 6= 2. Thus V 6= Z(V ), so Z(V ) = k and [V : k] = 4. It
follows that D = V and that {1, I, J, IJ} is a basis of D over k, and hence, as we proved
in previous exercises, D ∼= H(a, b; k).

Exercise 2. Let D be a finite division algebra and let k denote its center (a finite field).

(a) Remark that dimk(D) = n2 for some n ∈ N.
(b) Use the Noether-Skolem theorem to show that if L ⊆ D is a maximal subfield then

D× =
⋃
α∈D× αL

×α−1 as abelian groups.
(c) Conclude that L = D.
(d) Conclude that the Brauer group of a finite field is trivial.

Solution. (a) From the lecture we know that dimkD is a square, say dimkD = n2.
(b) If L ⊆ D is a maximal subfield, then [L : k] = n. As k is a finite field, every extension of

k of degree exactly n is k-isomorphic to L. Thus, by the theorem of Noether-Skolem, the
set of maximal subfields of D is {αLα−1 ⊆ D|α ∈ D×}. As we saw before, every element
of D is contained in a maximal subfield, so D =

⋃
α∈D αLα

−1 andD× =
⋃
α∈D× αL

×α−1

(c) If L× $ D×, then D× 6=
⋃
α∈D× αL

×α−1, as the following lemma shows:

Lemma. Let G be a finite group and H $ G a proper subgroup. Then
⋃
g∈G gHg

−1 $ G.

Proof. Write n = |G|, m = |H| and r = [G : H] = n/m. Then∣∣∣∣∣∣
⋃
g∈G

gHg−1

∣∣∣∣∣∣ ≤ r ·(m− 1)︸ ︷︷ ︸
|H\{1}|

+ 1︸︷︷︸
<r

< r ·m = n = |G|

�

Thus D× = L× and hence D = L.
(d) We have just proved: Every division algebra with finite center is commutative. Now

let k be a finite field and A a central simple algebra over k. Wedderburn’s theorem
states that A ∼= Mn(D) for some division algebra D. From the lecture you know that
k = Z(A) ∼= Z(Mn(D)) ∼= Z(Mn(k) ⊗k D) ∼= Z(Mn(k)) ⊗k Z(D) ∼= Z(D). Thus D is
central and commutative, so D = k. Thus element of Br(k) is trivial.

Exercise 3. Let K be a nonarchimedean local field, i.e. a complete discretely valued field with
finite residue field k. We assume that char(K) = 0 and as usual write OK for the valuation ring
of K, and mK for its maximal ideal.

(a) Let D be a central division algebra over K, with [D : K] = n2. Prove the following
statements.
(i) The absolute value | · | on K extends uniquely to an absolute value on D, i.e., to a

map D → R≥0 such that |x| = 0 iff x = 0, and such that for all x, y ∈ D we have
|xy| = |x||y| and |x+ y| ≤ max{|x|, |y|}.

(ii) If q = #k, define the “valuation vD” such that |x| = (1/q)vD(x) for all x ∈ D. Define

OD := {x ∈ D|vD(x) ≥ 0}, mD := {x ∈ D|vD(x) > 0}.

Show that OD consists of the elements of D which are integral over OK .
(iii) mD is a two-sided ideal in OD and mKOD = me

D for some 0 < e ≤ n.
(iv) d := OD/mD is a field and f := [d : k] ≤ n.
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(v) OD is a free OK-module of rank

n2 = dimk(OD/mKOD) = ef.

(vi) Conclude that e = f = n.
(vii) Write d = OD/mDOD = k[a] and let α ∈ D be a lift of a. Then K[α] is a maximal

subfield of D and splits D. Show that K[α]/K is unramified.
(b) If D/K is a central division algebra, and L ⊆ D a maximal subfield unramified over K,

then L/K is Galois with Galois group Gal(d/k). Let σ ∈ Gal(L/K) be the lift of the
Frobenius automorphism of d/k. Show that there exists α ∈ D such that σ(x) = αxα−1

for all x ∈ L. Show that vD(α) mod Z is independent of the choice of α.
(c) Show that the above construction gives a well-defined map invK : Br(K)→ Q/Z, [D] 7→

α mod Z. We will prove next year that invK is in fact an isomorphism.

Solution.
(a) (i) I gave a complete proof in the exercises. For x ∈ D define |x|D := |x|K[x], where K[x]

is the subfield of D spanned by x. We know that the absolute value of K extends
uniquely to K[x], so this defines a map | · |D : D → R≥0 which is unique as an
extension of the absolute value on K. To see that this is in fact a norm, we showed

that if n2 = dimK D, then |x|D = | det(mx)|1/n2
, where mx ∈ EndK(D) is left-

multiplication by x. This formula immediately implies that | · |D is multiplicative,
so that it suffices to check that |1 +x|D ≤ 1 if whenever |x| ≤ 1 for x ∈ D. But this
is clear, as 1 + x ∈ K[x].

(ii) As usual we can write OD = {x ∈ D||x|D ≤ 1} and mD = {x ∈ D||x|D < 1}. Then
x ∈ OD if and only if x ∈ OK[x] if and only if x is integral over OK .

(iii) Since | · |D is is multiplicative, mD is a two-sided ideal. Observe that | · |D is
discrete. Indeed, if for any field L ⊆ D contained in D we define vL via the relation
|x|K = 1/qvL(x), x ∈ L×, then for any x ∈ D× we have vD(x) ∈ 1

nZ. Indeed,
vD(x) = vK[x](x) and as K[x] is contained in a maximal subfield of D, [K[x] : K]|n.

If eK[x] is the ramification index of K[x], then eK[x]|n and im(vK[x]) = 1
eK[x]

Z ⊆ 1
nZ.

Now let πD ∈ mD be an element such that |πD| is maximal, i.e., πD is an element
of OD with maximal absolute value < 1. We show that for any e ≥ 1, me

D can
be written as πeLOD. Clearly πeLOD ⊆ me

D. Conversely, if x1, . . . , xe ∈ mD, then
|π−eD x1 · . . . · xe|D = |πD|−eD

∏
i |xi|D ≤ 1, so π−eD x1 · . . . · xe ∈ OD which implies that

x1 · . . . · xe ∈ πeDOD. Since any element of me
D is a sum of products of e elements of

mD, it follows that me
D = πeDOD.1

As πD has maximal absolute value < 1, the same is true for πD ∈ K[πD]. Thus
πD is a uniformizer in OK[πD]. Thus, if we fix a uniformizer πK of OK , then there

exists 1 ≤ e ≤ n and a unit u ∈ O×K[πD], such that πKu = πeD. This shows that

me
D = πeDOD = πKOD with 1 ≤ e ≤ n.

(iv) Note that O×D = OD \ mD, so d = OD/mD is a division algebra over k. But k
is a finite field, so d is a field. Write f := [d : k] and d = k(a). If α ∈ OD
is a lift of a, then K[α] ⊆ D is a subfield with residue field containing d. Thus
f = [d : k] ≤ [K[α] : K] ≤ n.

(v) Note that OK ⊆ Z(D), so we do not have to worry about distinguishing left- or
right-OK-structures on OD. As D is a division algebra, OD is a domain containing
OK as a subring, so OD is a torsion free OK-module.
Let ē1, . . . , ēr be a k-basis of d and let e1, . . . , er ∈ OD be lifts. The elements
e1, . . . , er are linearly independent over OK . Otherwise there would exist a relation

1This might look a little bit strange, as we are dealing with two-sided ideals. But note that |xπD| = |πDx|, so
there always is a way to write xπD as an element of πDOD: u := (πDx)−1xπD ∈ O×D, so πDx · u = xπD.
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0 =
∑r

i=1 aier with some aj ∈ O×K (take any relation with nonzero coefficients from
OK and devide by a suitable power of the uniformizer). But this would imply that
the ē1, . . . , ēr are not linearly independent over k.
Consider the free OK-submodule E :=

⊕r
i=1 eiOK ⊆ OD. For b ∈ OD we can

write b = c0 + πKb1, with c0 ∈ E, b1 ∈ OD. The same is true for b1, etc. Thus
b = c0+c1πK +c2π

2
K + . . .+cnπ

n
K +bn+1π

n+1
K , for any n with ci ∈ E and bn+1 ∈ OD.

In other words, b mod mn+1
K ∈ E/mn+1

K E for every n. But as OK is complete, so
is the free, finite rank OK-submodule E of OD. Thus b ∈ E ∼= lim←−nE/m

n
KE and

OD = E ∼= OrK , where r = dimkOD/mKOD.
Finally, as in the commutative case, one sees that K ⊗OK

OD → D, a⊗ b 7→ ab, is
an isomorphism of K-vector spaces.
Thus

rankOK
OD = dimK(K ⊗OK

OD) = dimK D = n2.

On the other hand rankOK
OD = dimkOD/mKOD = ef . Indeed, we saw that

mKOD = me
D, and mn

D/m
n+1
D is a 1-dimensional k-vector space spanned by πnD, and

for every n there is a short exact sequence

0→ mn
D/m

n+1
D → OD/mn+1

D → OD/mn
D → 0.

By induction it follows that dimkOD/me
D = e · dimkOD/mD = e · f .

(vi) We know that e ≤ n, f ≤ n and ef = n2, so e = f = n.
(vii) Write d = k(a) and let α ∈ OD be a lift of a. Then K[α] is a subfield of D

with [K[α] : K] ≥ [k(a) : k] = f = n. But subfields of D have degree ≤ n, so
[K[α] : K] = n and K[α] is a maximal subfield of D. Thus it splits D. Moreover,
as α ∈ OD, α is integral over OK and thus the residue field of K[α] contains d and
for degree reasons it is precisely d. This means that K[α]/K has the same degree
as its residue extension, so K[α] is unramified over K.

(b) Let D/K be a central division algebra of rank n2 and L a maximal subfield which is
unramified over K. The residue field of L is the unique extension of degree n of the
finite field k, hence it is d. Moreover Gal(L/K) = Gal(d/k); let σ ∈ Gal(L/K) be the
lift of the Frobenius automorphism of d/k. By the Noether-Skolem theorem, there exists
α ∈ D such that σ(y) = αyα−1 for every y ∈ L. If α′ ∈ D is a second such element, then

αyα−1 = α′yα′−1

for all y ∈ L, so α−1α′ ∈ CD(L) = L. As L/K is unramified vD(L) = vL(L) ⊆ Z, so
vD(α) = vD(α′) mod Z. Write invL(D) := vD(α) mod Z.

If L′ ⊆ D is a second maximal subfield unramified over K, then L ∼= L′ as extensions
of K, as the isomorphism class of an unramified extension of K is determined by its
degree. Thus, again by the Noether-Skolem theorem, there exists an element β ∈ D
such that L = βL′β−1. If σ′ : L′ → L′ is a lift of the Frobenius automorphism, then

y 7→ β−1σ′(βyβ−1)β

is a lift of Frobenius to L. If σ′ is conjugation by α′, then

invL(D) = vD(β−1α′β) mod Z = vD(α′) mod Z = invL′(D).

Thus invL(D) does not depend on L, and we write inv(D) := invL(D).
From the construction it is clear that if D ∼= D′ are two isomorphic central division

algebras over K, then inv(D) = inv(D′), because any such isomorphism preserves the
(unique) absolute value on D extending the absolute value on K.

(c) Every class of Br(K) is represented by a central division algebra D over K, which is
unique up to isomorphism. Thus inv defines a map Br(K)→ Q/Z.
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