NUMBER THEORY III – WINTERSEMESTER 2016/17

PROBLEM SET 7

HÉLÈNE ESNAULT, LARS KINDLER

Exercise 1. Let k be an algebraically closed field.

- (a) If D is a division algebra over k, show that D = k.
- (b) If A is a k-algebra and M a simple left-A-module, then $\operatorname{End}_A(M) = k$.

Exercise 2. Let k be a field and let A be a k-algebra (finite dimensional over k by our conventions). Prove the following statements.

(a) If L_1, \ldots, L_r and N_1, \ldots, N_s are finitely generated left-A-modules, define $L := L_1 \oplus \ldots \oplus L_r$, $N := N_1 \oplus \ldots \oplus N_s$. Given an A-linear homomorphism $\varphi : L \to N$, we obtain for all pairs $(i,j) \in \{1,\ldots,s\} \times \{1,\ldots,r\}$ an A-linear homomorphism $\varphi_{ij} : L_j \to N_i$, by restricting φ to L_j and then composing with the projection $N \twoheadrightarrow N_i$.

Show that this construction induces an isomorphism of k-vector spaces

$$\operatorname{Hom}_{A}(L,N) \cong \bigoplus_{i,j} \operatorname{Hom}_{A}(L_{j},N_{i}).$$

(b) If $L = L_1 \oplus \ldots \oplus L_r$, check that we can make

$$\bigoplus_{i,j=1}^{\prime} \operatorname{Hom}_{A}(L_{j}, L_{i})$$

into a k-algebra by considering it as the k-vector space of $r \times r$ -matrices where the entry with index (i, j) is an element of $\operatorname{Hom}_A(L_j, L_i)$ and where multiplication is matrix multiplication. More precisely: Given (φ_{ij}) , (ψ_{ij}) in the direct sum, we have $\psi_{ij}, \varphi_{ij} : L_j \to L_i$, so it makes sense to define the product $(\gamma_{ij}) = (\varphi_{ij})(\psi_{ij})$ via $\gamma_{ij} = \sum_{k=1}^r \varphi_{ik} \psi_{kj} \in \operatorname{Hom}_A(L_j, L_i)$.

(c) With respect to this k-algebra structure, the isomorphism from part (a) of the exercise is in fact an isomorphism k-algebras

$$\operatorname{End}_A(L) \cong \bigoplus_{i,j=1}^{\prime} \operatorname{Hom}_A(L_j, L_i).$$

In particular, if $L_1 = L_2 = \ldots = L_r$, then it is an isomorphism

$$\operatorname{End}_A(L) \cong M_r(\operatorname{End}_A(L_1))$$

of k-algebras.

(d) Let V be a finite dimensional k-vector space and A a sub-k-algebra of $\operatorname{End}_k(V)$. This makes V into an A-module; show that the centralizer C of A in $\operatorname{End}_k(V)$ is $\operatorname{End}_A(V)$. Show that if V is semi-simple as an A-module, then C is a product of simple k-algebras.

If you want your solutions to be corrected, please hand them in on December 7, 2016. If you have any questions concerning these exercises you can contact Lars Kindler via kindler@math.fu-berlin.de or come to Arnimallee 3, Office 109.

Exercise 3. Let k be a field of characteristic $\neq 2$ and $a, b \in k^{\times}$.

(a) Define $A := k[X]/(X^2 - a)$, and $\alpha := X + (X^2 - a) \in A$. On A there is an involution $\overline{(-)}$ induced by $\bar{\alpha} := -\alpha$. Define $H(a, b; k) := A \times A$, and define multiplication on H(a, b; k) as follows:

 $((x,y),(x',y')) \mapsto (xx'+by\overline{y'},xy'+y\overline{x'}).$

Show that this makes H(a, b; k) into a k-algebra. It is called *generalized quarternion* algebra.

- (b) Show that one can identify A with the subring $(x, 0) \in H(a, b; k), x \in A$.
- (c) Write 1 := (1,0), $\alpha := (\alpha,0)$ and $\beta := (0,1)$. Show that $\alpha^2 = (a,0)$, $\beta^2 = (b,0)$ and $\alpha\beta = -\beta\alpha$ and that $1, \alpha, \beta, \alpha\beta$ is a basis of H(a,b;k) as a k-vector space.
- (d) If R is a 4-dimensional k-algebra with a k-basis $1, i, j, h \in R$ with $i^2 = a, j^2 = b, ij = -ji = h$, then show that $R \cong H(a, b; k)$.
- (e) Show that H(a, b; k) is a central simple algebra over k.
- (f) Show that H(a, b; k) is either a division algebra or isomorphic to $M_2(k)$.