NUMBER THEORY III - WINTERSEMESTER 2016/17

PROBLEM SET 7

HÉLÈNE ESNAULT, LARS KINDLER

Exercise 1. Let k be an algebraically closed field.
(a) If D is a division algebra over k, show that $D=k$.
(b) If A is a k-algebra and M a simple left- A-module, then $\operatorname{End}_{A}(M)=k$.

Exercise 2. Let k be a field and let A be a k-algebra (finite dimensional over k by our conventions). Prove the following statements.
(a) If L_{1}, \ldots, L_{r} and N_{1}, \ldots, N_{s} are finitely generated left- A-modules, define $L:=L_{1} \oplus \ldots \oplus$ $L_{r}, N:=N_{1} \oplus \ldots \oplus N_{s}$. Given an A-linear homomorphism $\varphi: L \rightarrow N$, we obtain for all pairs $(i, j) \in\{1, \ldots, s\} \times\{1, \ldots, r\}$ an A-linear homomorphism $\varphi_{i j}: L_{j} \rightarrow N_{i}$, by restricting φ to L_{j} and then composing with the projection $N \rightarrow N_{i}$.

Show that this construction induces an isomorphism of k-vector spaces

$$
\operatorname{Hom}_{A}(L, N) \cong \bigoplus_{i, j} \operatorname{Hom}_{A}\left(L_{j}, N_{i}\right)
$$

(b) If $L=L_{1} \oplus \ldots \oplus L_{r}$, check that we can make

$$
\bigoplus_{i, j=1}^{r} \operatorname{Hom}_{A}\left(L_{j}, L_{i}\right)
$$

into a k-algebra by considering it as the k-vector space of $r \times r$-matrices where the entry with index (i, j) is an element of $\operatorname{Hom}_{A}\left(L_{j}, L_{i}\right)$ and where multiplication is matrix multiplication. More precisely: Given $\left(\varphi_{i j}\right),\left(\psi_{i j}\right)$ in the direct sum, we have $\psi_{i j}, \varphi_{i j}: L_{j} \rightarrow L_{i}$, so it makes sense to define the product $\left(\gamma_{i j}\right)=\left(\varphi_{i j}\right)\left(\psi_{i j}\right)$ via $\gamma_{i j}=\sum_{k=1}^{r} \varphi_{i k} \psi_{k j} \in \operatorname{Hom}_{A}\left(L_{j}, L_{i}\right)$.
(c) With respect to this k-algebra structure, the isomorphism from part (a) of the exercise is in fact an isomorphism k-algebras

$$
\operatorname{End}_{A}(L) \cong \bigoplus_{i, j=1}^{r} \operatorname{Hom}_{A}\left(L_{j}, L_{i}\right)
$$

In particular, if $L_{1}=L_{2}=\ldots=L_{r}$, then it is an isomorphism

$$
\operatorname{End}_{A}(L) \cong M_{r}\left(\operatorname{End}_{A}\left(L_{1}\right)\right)
$$

of k-algebras.
(d) Let V be a finite dimensional k-vector space and A a sub- k-algebra of $\operatorname{End}_{k}(V)$. This makes V into an A-module; show that the centralizer C of A in $\operatorname{End}_{k}(V)$ is $\operatorname{End}_{A}(V)$. Show that if V is semi-simple as an A-module, then C is a product of simple k-algebras.

[^0]Exercise 3. Let k be a field of characteristic $\neq 2$ and $a, b \in k^{\times}$.
(a) Define $A:=k[X] /\left(X^{2}-a\right)$, and $\alpha:=X+\left(X^{2}-a\right) \in A$. On A there is an involution $\overline{(-)}$ induced by $\bar{\alpha}:=-\alpha$. Define $H(a, b ; k):=A \times A$, and define multiplication on $H(a, b ; k)$ as follows:

$$
\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \mapsto\left(x x^{\prime}+b y \overline{y^{\prime}}, x y^{\prime}+y \overline{x^{\prime}}\right)
$$

Show that this makes $H(a, b ; k)$ into a k-algebra. It is called generalized quarternion algebra.
(b) Show that one can identify A with the subring $(x, 0) \in H(a, b ; k), x \in A$.
(c) Write $1:=(1,0), \alpha:=(\alpha, 0)$ and $\beta:=(0,1)$. Show that $\alpha^{2}=(a, 0), \beta^{2}=(b, 0)$ and $\alpha \beta=-\beta \alpha$ and that $1, \alpha, \beta, \alpha \beta$ is a basis of $H(a, b ; k)$ as a k-vector space.
(d) If R is a 4-dimensional k-algebra with a k-basis $1, i, j, h \in R$ with $i^{2}=a, j^{2}=b$, $i j=-j i=h$, then show that $R \cong H(a, b ; k)$.
(e) Show that $H(a, b ; k)$ is a central simple algebra over k.
(f) Show that $H(a, b ; k)$ is either a division algebra or isomorphic to $M_{2}(k)$.

[^0]: If you want your solutions to be corrected, please hand them in on December 7, 2016. If you have any questions concerning these exercises you can contact Lars Kindler via kindler@math.fu-berlin. de or come to Arnimallee 3 , Office 109.

