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HÉLÈNE ESNAULT, LARS KINDLER

Exercise 1. Prove the following statements.

(a) On R, every archimedean absolute value | · | such that (R, | · |) is complete, is equivalent
to the “usual” absolute value, defined for x ∈ R by

|x|R =

{
x if x ≥ 0

−x else

(b) If | · | is an archimedean absoulte value on C extending | · |R then | · | is equivalent to the
“usual” absolute value, defined for x ∈ C by

|x|C = |xx̄|1/2R .

Exercise 2. (a) Let K be a field complete with respect to a nonarchimedean absolute value
| · |. For an ∈ K, n ∈ N, show that the series

∑
n∈N an converges in K if and only if

limn→∞ an = 0.
(b) Let p be a prime number and let Qp the completion of Q with respect to the p-adic

absolute value | · |p = 1
pvp(·)

. Show that the series

exp(x) :=
∑
n≥0

xn

n!
,

converges if and only if vp(x) > 1/(p − 1). (Hint: If n = a0 + a1p + . . . + arp
r with

ai ∈ {0, . . . , p−1}, compute that vp(n!) =
n−

∑r
i=0 ai

p−1 , then compare
∑r

i=0 ai
p−1 with log(n).).

Definition. Let K be a field and let | · | : K → R≥0 be a function such that

(1) |x| = 0 if and only if x = 0.
(2) |xy| = |x||y| for all x, y ∈ K.

The function | · | is called weak absolute value1 if there exists a constant C ∈ R>0 such that the
following axiom is satisfied:

(TC) If |x| ≤ 1, then |1 + x| ≤ C.

Let CK := inf{C ∈ R>0|(TC) is satisfied for | · |}.

Exercise 3. Let K be a field and let |·| be a weak absolute value. Prove the following statements.

(a) CK ≥ 1.

If you want your solutions to be corrected, please hand them in just before the lecture on November 8, 2016. If
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or come to Arnimallee 3, Office 109.
1This is nonstandard terminology.

1



(b) Show that | · | satisfies (TCK
).

(c) For C > 0, the axiom (TC) is satisfied if and only if for all x, y ∈ K

|x + y| ≤ C max{|x|, |y|}.
(d) | · | is an absolute value (i.e. it satisfies (1), (2) and the triangle inequality) if and only

if | · | is a weak absolute value with CK ≤ 2. (Hint : If | · | is a weak absolute value with
CK ≤ 2, show that for n ≤ 2r < 2n and x1, . . . , xn ∈ K we have

|x1 + . . . + xn| ≤ 2r max{|x1|, . . . , |xn|} ≤ 2nmax{|x1|, . . . , |xn|} ≤ 2n

n∑
i=1

|xi|.

Use this to find a good upper bound for |x + y|n and let n go to infinity).
(e) A weak absolute value | · | is a non-archimedean absolute value if and only if CK = 1.

Exercise 4. Let K be a field and | · | a weak absolute value. Prove the following statements,
which show that sometimes weak absolute values are more convenient to work with than absolute
values.

(a) If | · | satisfies the triangle inequality, show that for t ∈ R>0, | · |t does not necessarily
satisfy the triangle inequality.

(b) On the other hand, if | · | is a weak absolute value, and t ∈ R>0, then x 7→ |x|t is a weak
absolute value.

(c) For t ∈ R>0 define

CK(t) = inf{C ∈ R>0| | · |t satisfies (TC)}.
Then CK(t) = (CK)t.

(d) Conclude that for every weak absolute value | · | there exists some t ∈ R>0 such that | · |t
is an absolute value.
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