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Regularization by noise is a term which refers to dif-
ferent phenomena, appearing in areas ranging from
fluid dynamics to artificial intelligence. The common
thread is that the analysis of certain deterministic
systems is mathematically extremely challenging or
computationally very expensive. Sometimes a pertur-
bation of the system through the action of a noise
simplifies the mathematical analysis or diminishes the
computational cost of the problem. In many examples
this simplification is related to a regularizing effect of
the noise. In a nutshell, if we do not take into account
the effect of noise, our deterministic prediction of a
future state can vary dramatically based on our cur-
rent knowledge. Instead, in the presence of noise, our
probabilistic prediction of future states is stable with
respect to changes in the surrounding environment.
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1 A toy example

Newton’s laws of motion. Imagine a perfectly spherical ball, positioned at the
exact top of a symmetric hill (see Figure 1).
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Figure 1: A ball on a hill.

Under the action of gravity, no matter how slightly we move the ball, it will
fall down one of the two sides of the hill, and — depending on the strength of
friction — settle in one of the neighboring valleys. How well can we predict
where the ball will end up?

Following Newton’s laws, we can approximate the finial position of the ball
within the limits of computational power, provided we are given the exact initial
state (including the mass of the ball, the strength of friction and so on). But
this approximation does not account for effects such as a small whiff of wind.

We intuitively understand that the ball at the top of the hill finds itself in a
precarious state and any microscopic impurity or force (here microscopic could
simply mean so small that our measurement devices cannot perceive it) could
be enough to set it rolling down either of the two slopes.

The prediction that our precariously positioned ball will never leave its
location, which follows from a naive application of Newton’s laws, is now
contrary to our intuition. A more reasonable expectation on the final state is
that with a 50% chance the ball will end up at the bottom of the valley on its
left and with the remaining 50% chance it will end up at the bottom of the
valley on its right, always assuming that friction is sufficiently strong, so that
the ball does not fall into an even further valley.

We have passed from a deterministic prediction on the location or our ball,
to a probabilistic one, which better fits our expectations.

Does noise help? One way to motivate our probabilistic estimate is to assume
that there is a random force, or noise, acting on our system, capturing small
unexpected changes in the surrounding environment. The correct language to
formulate this assumption is that of stochastic differential equations:

dl‘t = — (9xV($t) dt +e€ dBt . (1)
~—~ —_—— ~—
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This is an infinitesimal notation, which indicates that the instantaneous variation
of the position x; of the ball (its velocity) follows downwards the slope 9,V (x;)
of the landscape — here V(x) is the height of the hill at position z — and is
perturbed in that instant by a random force dB; (the B stands for Brownian
motion, typically the most natural choice of noise: see the discussion in later
sections). The effect of the noise is multiplied with a parameter 0 < ¢ < 1,
which indicates that the effect is small, in our running example smaller than
what can possibly be perceived by our measuring device.

Then, after a time of order log(¢~!) one can hope to find the ball in either
one of the two bottom valleys with roughly 50% chance, as should be expected
from the intuition we described. The time is of logarithmic order because the
ball will leave its unstable position at an exponential speed: note that while
e~! might be too long a time for us to wait, log(¢~!) is enormously smaller!
This is one of the first and simplest instances of regularization by noise: a result
of this kind has been obtained by Bafico and Baldi [1] in the study of Peano
phenomena, which we describe in the upcoming sections.

2 Differential equations

Let us take a step back and start from the analysis of differential equations.
Typically ordinary differential equations (ODEs) describe the velocity — that is
the time derivative — of the position x; € R? of a particle at time ¢:

da

dt = L;O(JUt) )

where ¢: RY — R? is a function representing the velocity field or drift in which
a particle moves. A convenient way to rewrite the above equation is by using
differentials:

dz; = (xy)dt . (2)

This notation should be understood in its integral form

t
Tt ::EoJr/ o(zs)ds .
0

The study of ODEs dates back several centuries, and such systems find an
enormity of applications, from the description of trajectories of planets to the
evolution of a population in a Petri dish. A fundamental mathematical question
is whether an ODE admits solutions and, if so, whether the solution is unique.

The answer to this question depends heavily on the regularity of the drift .
The study of regularity aims at quantifying how rapidly a function changes its
value (perhaps oscillating) over time, or more generally over its domain. A first



simple distinction between different levels of regularity is to separate continuous
functions (whose graph is a line without interruption) from functions that have
jumps, such as the one given by ¢(x) =1 for x > 0 and ¢(z) =0 for x < 0. In
order to measure regularity, we need to choose some notion of distance on the
domain of the function.

A function ¢ : R — R is said to be Lipschitz continuous (or just Lipschitz
for short) if for some constant L > 0

lp(z) — p(y)|

<L
|z -y

<L, Ve,y e R.

In the above, |x — y| measures the distance between x and y. Hence, for
any Lipschitz function ¢ there is a limitation on how fast it can change, the
Lipschitz constant L describing the most dramatic change that the function ¢
may undergo. If ¢ is differentiable, then L = max,cr |¢’(z)|. An example of a
Lipschitz function is sinz, while ¢(z) = y/|z| is not Lipschitz.

Now we can go back to the question of the existence and uniqueness of the
solution of (2). One exceptionally important result is the following theorem.

Theorem 2.1 (Cauchy-Lipschitz/Picard-Lindel6f) If ¢ is Lipschitz con-
tinuous, then, for any intial condition x € R?, the Cauchy problem

dz; = o(xy) dt, Top=2a

admits a unique solution, defined over all t > 0. The solution depends continu-
ously on the initial datum x.

If for every initial datum there exists a unique solution to the differential equation
and this solution depends continuously on such initial datum (stability), then
we say that the equation is well-posed. We may relax the assumptions of the
above, at the cost of losing uniqueness and stability, and thus well-posedness,
of solutions.

Theorem 2.2 (Peano) If ¢ is continuous and bounded , then the Cauchy
problem
dzy = p(xy) dt, To=2x

admits a solution.

There is a wide gap between the requirement of the two results above: let us see
why this is the case. When the drift ¢ becomes irregular things can go wrong

the boundedness assumption may actually be relaxed, at the expanse of having solutions
which may blow up in finite time



in two different ways. First, if ¢ is not even continuous, it is not clear how to
define the integral fot ©(xs) ds in the first place, and existence may actually not
hold.

A second issue arises if ¢ is continuous but not Lipschitz, so that a solution
exists by Peano’s theorem, but uniqueness may fail to hold. Consider for
example

day = sign(ae) |z¢|* dt, 2o =0
where « is a parameter in (0,1) and sign(z) denotes the sign of = (taken
to be equal to 0 if x = 0). Clearly, z; = 0 is a solution to the equation.
1
But one can check that z; := ((1 — a)t)™= is a solution as well, and so is
1
xt = — ((1 — @)t)™==. In addition, for all ty > 0, ¢ > 0 defined by

0 if t<ty

= ((1—a)(t —to)y) " = {((1_a)(t—to))11“ it t>t

is also a solution. We see therefore that there is an uncountable family of
different solutions to the same Cauchy problem, see Figure 2.

— xe=(t2)?
Xe= = ((12)(t-1),)?
— X=0

Figure 2: Several solutions to the same Cauchy problem dz; = sign(x¢)y/|x¢|dt
with zo = 0.

3 Restoring well-posedness via additive noise

Let us now study what happens if we perturb our original ODE by adding a
forcing term, or noise (w¢)y>o0. In the spirit of (1), let us consider the equation

dz; = o(xy) dt + dwy, zo =, (3)

where we have added a noise term that is very fluctuating. Adding a noise at
first does not seem to make our problem any simpler. However, in cases in which



 is not a Lipschitz function, so well-posedness of the original problem typically
breaks down, adding such a noise induces an averaging effect that may restore
well-posedness of the equation. This is an instance of reqularization by noise.
As we will attempt to explain, the more irregular the noise is, the stronger is
its regularizing effect on the equation. To avoid confusion let us therefore stress
once more that the regularising effect of the noise leads to well-posedness of an
ODE for which we may previously have had multiple solutions (no uniqueness)
or no solution at all. It does by no means indicate that sample paths of solutions
are smoother as functions of time: in fact, the exact opposite is true.

3.1 Where do we find regularising paths?

Constructing a path with the mentioned regularising properties with bare hands
is quite challenging. However, using probability theory, one can obtain such
paths by choosing them at random.

One standard choice is Brownian motion. We omit the formal definition of
this process (see [4]), but it can be thought of as the zoomed-out trajectory of
a particle moving right-up or right-down with probability 1/2 at each step: as
we zoom out more and more, this sawtooth-like trajectory takes the form of a
wiggly function, which albeit continuous is not Lipschitz continuous. Brownian
motion was first discovered in 1827 by the botanist Robert Brown who was
observing particles within a grain of pollen suspended in water. Such a process
is quite irregular, in particular, almost-surely, it is nowhere Lipschitz continuous,
see Figure 3 and the upcoming discussion. The reason why Brownian motion is
so commonly observed lies in its universality. In a nutshell, universality means
that it does not matter how exactly our microscopic particle moves: as long
as on average it jumps as much up as it does down, and as long as the jump
between time n and time n + 1 is roughly chosen independent of the jump
between time 0 and time 1, for n > 1, we will always see a Brownian motion
when we zoom out.

Of course, we have to zoom out at an appropriate speed. If X; is the position
of the particle at time ¢ > 0 (say started at Xo = 0), then after a time n > 1
the particle will have reached a distance of order y/n: it is the same scaling
as for the central limit theorem [2, Chapter 3], which is closely linked to this
derivation of Brownian motion. We obtain that

— X — By, asn — 0o,

\/ﬁ nt t

where By is a Brownian motion. An interesting consequence of this derivation is
that we should expect that By — Bs ~ v/t — sfor all 0 < t—s < 1. We have thus
constructed a function that is nowhere Lipschitz, in contrast to the square-root
function, which is not Lipschitz only near the origin. It is exactly this kind of



extreme irregularity (observe that it’s not easy to build an example with the
same property by hand, without choosing it randomly), which guarantees the
regularization property of the noise.

What are the mathematical tools at our disposal to quantify the irreqularity
of a path? And are there other examples of regularizing paths? These are
questions that we will attempt to answer over the next sections.

Random Walk Brownian motion
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Figure 3: Brownian motion is the limit of a random walk as we “zoom out”.

3.2 How does noise regularise?

When an irregular noise explores the area surrounding a point, it will induce a
form of averaging that will smoothen (or regularise) the drift . To explain this
phenomenon, let us for instance assume that ¢ is the discontinuous function
defined by p(z) =1 if z > 0 and p(z) = 0 if z < 0. We can rewrite equation
(3) in integral form as

t
xt:xo—i—/ o(xs)ds + wy
0

Setting y; := z; — w¢, we may in turn rewrite this as

t
Yt = 370+/ @(ys + ws) ds
0

Let us now study the function

x»—>/ T+ ws)ds . (4)

A priori, because of the discontinuity of ¢, we would guess that this function
would be discontinuous. However, for a noise w that is sufficiently “fluctuating”,
such as Brownian motion, it turns out that x — fot p(r + ws) ds will be quite
regular, actually even Lipschitz continuous, see Figure 4. This is because, almost



instantaneously, w will explore the entire area surrounding its starting point,
thereby “averaging out” the discontinuity of . It is like a staircase whose
steps are being levelled off under a snow storm: when the storm is over, the
discontinuities are covered with snow, and you will be able to slide down the
slope without any problem.

Getting back to our equation (3), we can use this enhanced continuity induced
by the noise to prove well-posedness of the problem at hand. The rule of thumb
is: provided that the noise w is “fluctuating” enough, so that the regularity of
T f(f w(x +w,) ds is sufficiently enhanced, well-posedness of equation (3) can
be restored.
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Figure 4: From left to right, a deterministic function ¢(z), its randomly regularized
version fol o(z + Bs) ds and averaged version E fol o(z + Bs) ds.

3.3 How do we measure the regularising effect of a noise?

What do we mean when we say that a noise (w;);>0 has to be “sufficiently
fluctuating”? One way to quantify fluctuations, or irregularity, is to consider
the time spent by the process (w¢);>0 at a given location. We can prove that
for a wide class of random noises w such as Brownian motion, it is possible to
define, for all a € R, a number L} (a) quantifying the amount of time spent by
w at a, before time t. Such a local time satisfies, for all function ¢, the relation

T
/ olw, + ) ds = / ola+ 2)L(a) da (5)
0 R

Let C" denote the space of r times differentiable functions. The noise w is said
to be r-regularising if, for all ¢ > 0, a — L}’ (a) is of class C". If w satisfies this
property with » = 0o, we say that it is infinitely regularising. Let us explain
how the regularising noise can be of any help to our problem. We first recall
the notion of convolution, which has the property of smoothing out irregular
functions.



Let ¢ : R — R be a function and w be an r-regularising noise, for some
r > 0. Then the convolution of L% and ¢ is the function L7 * ¢ defined by

(L8 * ) (x) = / L%(a) (z +a)da., (6)

whenever the integral is defined Bl In the right-hand side above we recognize the
quantity of (5). From the properties of convolution, as soon as a — L} (a) is of
class C'", we deduce that the function z — fOT p(ws +x)ds is of class C” as well,
even if ¢ is a very wild function. In particular, if w is infinitely regularising, the
function z — fOT p(ws+x) ds is smooth. We stress that this will be independent
of the continuity of ¢ and indeed this approach allows to choose highly irregular,
so called generalized functions, e.g. the Dirac function which may be loosely
defined as a function vanishing away from 0 and integrating to 1. The fact
that z — fOT o(ws + ) ds is more regular than the original function ¢ is a key
observation to prove that adding regularising noise to our original ODE restores
well-posedness.

Let us consider for instance w to be a Brownian motion. Then one can prove
that w possesses the nice property of being regularising with » = 1/2 — ¢ for any
€ > 0, where the meaning of fractional regularity is that a function is “half-way”
between merely continuous and differentiable, such as for example ¢(z) = /|z].

Can one construct a noise that further regularises? For example, if we take
any r > 0, potentially very large, can we construct a noise that is r-regularising?
The answer is positive, and one can even construct a noise that is infinitely
regularising. We do not describe how such a noise is constructed, but just
mention that it can be obtained as some “rough version” of a Brownian motion
(see [3] for more details).

Figure 5: An infinitely regularizing noise.

for simplicity, the definition of convolution used here differs slight from the usual one which,
if adopted, would require to replace the left-hand side of (6) by LY. * ¢, where ¢(z) = ¢(—x).
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