Status: 1. Juli 2021

Complex Analysis – Homework 11

Submission: July, 6th, 2021, 10:15 am, via email

1. Exercise

(4 points)

(4 points)

Show the following theorem stated in the lecture: The meromorphic functions defined on \mathbb{C} are exactly the rational functions.

2. Exercise

For $k \in \{1, 2, 3\}$, let $\Omega_k \subset \mathbb{C}$ be maximal domains such that the following functions $f_k : \Omega_k \to \hat{\mathbb{C}}$ are holomorphic in Ω_k except for a discrete set of isolated singularities. Determine

- 1.) res_{z0} f_1 where $f_1(z) := z^k$, $k \in \mathbb{Z}$, and $z_0 = 0$,
- 2.) res_{z0} f_2 , where $f_2(z) := \frac{5z-1}{z(z^2-1)}$ for all singularities z_0 of f_2 ,
- 3.) $\int_{\gamma(0,1/2)} f_3(z) dz$, where $f_3(z) := \frac{3z^2 1}{z^3 z}$ using the residue theorem.

3. Exercise

(4 points) Let $B_r^{\circ}(a) := B_r(a) \setminus \{a\}$ denote the punctured neighborhood of radius $r \in \mathbb{R}_{>0}$ of some singularity $a \in \mathbb{C}$. Show the following statements:

1.) The residue res_a f is the uniquely defined number $c \in \mathbb{C}$, such that the function

$$g(z) := f(z) - \frac{c}{z-a}$$

has an antiderivative in some punctured neighborhood of a.

2.) Let f be a holomorphic function on $B_r^{\circ}(0)$. Then res₀ f' = 0.

Please, turn over.

4. Exercise

(4 points)Let $\Omega \subseteq \mathbb{C}$ be a domain and $\gamma : [0, 1] \to \Omega$ a smooth closed curve. Show that for $a \notin tr(\gamma)$, the winding number $n(\gamma,a)$ is an integer, i.e.

$$n(\gamma, a) := \frac{1}{2\pi i} \int_{\gamma} \frac{1}{\xi - a} \, d\xi \in \mathbb{Z}.$$

Hint: For $t \in [0, 1]$, consider the functions

$$G(t) := \int_0^t \frac{\gamma'(s)}{\gamma(s) - a} \, ds \text{ and } F(t) := (\gamma(t) - a) \exp(-G(t)).$$

Total: 16