Status: October 31, 2017

Differential Geometry I – Homework 02

Submission: November 6, 2017, 12:15 am

1. Exercise

The following map

$$\eta : [0, 2\pi] \to \mathbb{R}^3,$$
$$t \mapsto \begin{pmatrix} r\cos(t) \\ r\sin(t) \\ ht \end{pmatrix},$$

parametrizes a so called *helix* with radius r > 0 and slope $h \in \mathbb{R}$.

- 1.) Determine $L(\eta|_{[0,2\pi]})$.
- 2.) Find a parametrization by arc length of η .
- 3.) Determine all r and h (depending on r) such that η is parametrized by arc length already. Sketch your results.
- 4.) Determine the curvature and torsion of η .
- 5.) (4 additional points) Use some software (Mathematica, Matlab, JavaView, etc.) to depict and to compare the tubes generated by the Frenet frame and by a parallel frame of η .

2. Exercise

(4 points) Let $\gamma : \mathbb{R} \to \mathbb{R}^2$ be a regular curve. Show: if all tangents of γ intersect in one point $P \in \mathbb{R}^2$ then γ is a straight line.

3. Exercise

(4 points)

Let $\gamma: [a,b] \to \mathbb{R}^n$ be a regular curve. Show: for all $\epsilon > 0$, there exists $\delta > 0$ such that for any subdivision $a \leq t_0 < t_1 < \ldots < t_n \leq b$ with resolution $\max_i |t_{i+1} - t_i| < \delta$ the maximum distance between curve and polygon $P = (\gamma(t_0), \ldots, \gamma(t_n))$ is smaller than ϵ :

$$\max_{t \in [a,b]} |\gamma(t) - P(t)| < \epsilon.$$

Gesamtpunktzahl: 16

(8 points)