Matrix Factorisation / Spotify

•••

Simon Kalt & Jannis Fey Seminar: Music Information Retrieval

Outline

- Recommender Systems
- A Basic Matrix Factorization Model
- Spotify
- Improvements for the Matrix Factorization Model
- Netflix Prize Competition

Recommender Systems

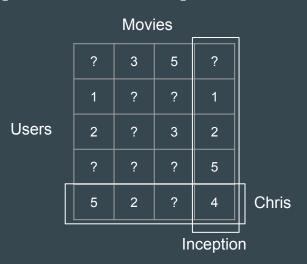
Content Filtering

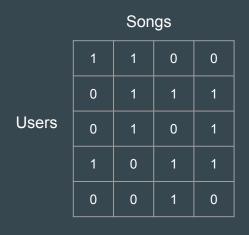
- Create a profile for each user and a representation for each product
- Match profiles of users with products
- Requires external information → needs to be collected
- Used for Pandora "Music Genome Project"

Collaborative Filtering

- Generate recommendations based on ratings or usage
- No external information necessary
- Relationships between users
- Dependencies between products
 - → Associate users with new products
- Problem: Cold Start

Explicit vs. Implicit Feedback





- explicit feedback
 - explicit user input

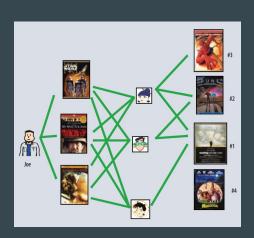
Netflix: 1 - 5 Stars

- implicit feedback
 - observing user behavior

Spotify: 1 if streamed, 0 if not

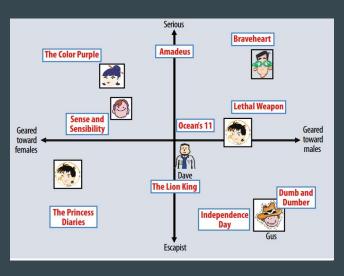
Neighborhood Models

- Relationships between users with similar tastes
- Example:
 - User likes a movie
 - Find users who liked the same movie
 - Find movies a lot of them liked
 - Recommend the movie that has the most "likes"

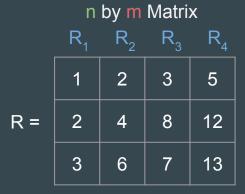


Latent Factor Models

- Score users and movies in certain "factors"
- Factors measure dimensions like "comedy" or "action"
- Users: how much they like a movie that scores high in this factor



Matrix Factorization



$$R_1 = 1*R_1 + 0*R_3$$

 $R_2 = 2*R_1 + 0*R_3$
 $R_3 = 0*R_1 + 1*R_3$
 $R_4 = 2*R_1 + 1*R_3$

n by r
$$R_1 R_3$$

1 3

P = 2 8
3 7

$$Q = \begin{array}{|c|c|c|c|c|} \hline 1 & 2 & 0 & 2 \\ \hline 0 & 0 & 1 & 1 \\ \hline \end{array}$$

$$P*Q = R$$

A Basic Matrix Factorization Model

What does Matrix Factorization do?

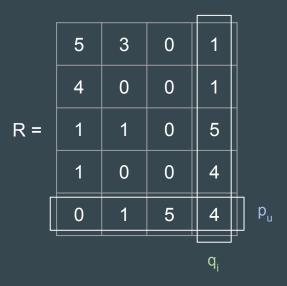
- Characterizes items and users by vectors of factors
- Matrix with two dimension
 - First representing users
 - Second representing items of interest
- Factorize matrix into two matrices, one for users, one for items
- High correspondence between item and user factors
 - \rightarrow recommendation

R =	5	3	?	1
	4	?	?	1
	1	1	?	5
	1	?	?	4
	?	1	5	4

- N = 4 User
- M = 5 Items (e.g. movies)
- K = latent features (e.g. genre)
- ? = unknown value (set to 0)

Task:

- find Matrix P and Q such that $R = P * Q^T$
- R: N x M matrix
- P: N x K matrix
- Q: K x M matrix



$$r_{ui} = q_i^T p_u$$

- each item i is associated with a vector q_i
- each user u is associated with a vector p_n
- r_{ui} represents user's overall interest in the item's characteristics

	5	3	0	1
	4	0	0	1
R =	1	1	0	5
	1	0	0	4
	0	1	5	4

Goal:

- approximate the matrix R
- minimize the regularized squared error on known ratings

$$\min_{q^*, p^*} \sum_{(u,i) \in \mathcal{K}} (r_{ui} - q_i^T p_u)^2 + \lambda (||q_i||^2 + ||p_u||^2)$$

	5	3	0	1
	4	0	0	1
R =	1	1	0	5
	1	0	0	4
	0	1	5	4

4,97	2,98	2,18	0,98
3,97	2,40	1,97	0,99
1,02	0,93	5,32	4,93
1,00	0,85	4,49	3,93
1,36	1,07	4,89	4,12

- minimize squared error iteratively
- approximate R step-by-step

Learning Algorithm

- Alternating least squares (ALS)
- q_i and p_{ii} are unknown
 - can not be solved optimally
- rotate between fixing the q_i 's and fixing the p_{ij} 's
 - o problem becomes quadratic
 - o solving a least-squares problem

• favorable if the system can use parallelization

Spotify

Hadoop at Spotify 2009

2014: 700 Nodes in London data center

Improvements for the Matrix Factorization Model

Adding Biases

- Some users generally rate higher
- Some movies generally receive higher ratings
- Baseline prediction b_{ui} for an unknown rating:

$$b_{ui} = \mu + b_u + b_i$$

Adding Biases

• Learn b_{ij} and b_{ij} by solving the least squares problem

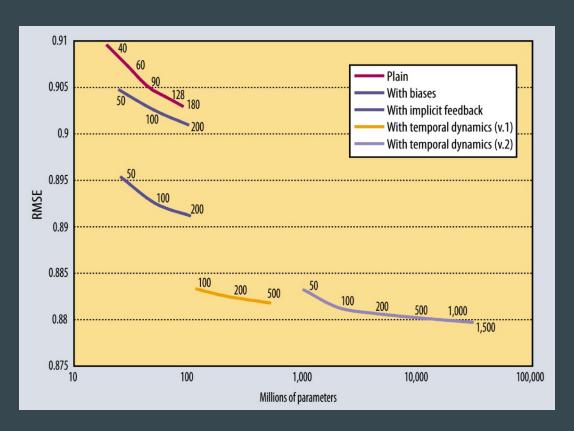
$$\min_{b^*, q^*, p^*} \sum_{(u, i) \in \mathcal{K}} \left(r_{ui} - \mu - b_u - b_i - q_i^T p_u \right)^2 + \lambda \left(b_i^2 + b_u^2 + ||q_i||^2 + ||p_u||^2 \right)$$

Temporal Dynamics

- Model temporal variation of
 - \circ User preferences: $p_{n}(t)$
 - Item and user biases: $b_i(t)$, $b_{ij}(t)$
- User's preferences may change
- Movies are more popular at certain times
- User's baseline rating may change
- ullet Time sensitive baseline predictor b_{ui} on a given day t_{ui}

$$b_{ui} = \mu + b_{u}(t_{ui}) + b_{i}(t_{ui})$$

Improvements for the Matrix Factorization Model



Netflix Prize Competition

Netflix Prize Competition

- 2006 Netflix announced a contest to improve its recommender system
- Training set: 100 million ratings, 500.000 customers, 17.000 movies
- Teams submit predicted ratings for given test set of 3 million ratings
- Netflix calculates the root-mean-square error (RMSE) on truth ratings
- \$1 million for improvement of 10% on Netflix's algorithm
- \$50.000 for the first team, if no team reaches 10%

The Winners

- 2007: KorBell
 - o RMSE: 0,8723
 - Improvement: 8,42%
- 2008: BellKor in BigChaos
 - o RMSE: 0,8624
 - Improvement: 9,27%
- 2009: BellKor's Pragmatic Chaos
 - o RMSE: 0,8567
 - o Improvement: 10.06%

Sources

- 1. Advances in Collaborative Filtering
 - Yehuda Koren, Robert Bell
- 2. Matrix Factorization: A Simple Tutorial and Implementation in Python
 - Albert Au Yeung
 - http://www.quuxlabs.com/blog/2010/09/matrix-factorization-a-simple-tutorial-and-implementation-in-python/
- 3. Collaborative Filtering with Spark
 - Christopher Johnson (Spotify)
 - https://www.youtube.com/watch?v=3LBgiFch4_g