Springe direkt zu Inhalt

Bachelor Thesis Defense: "An alternative confusion matrix implementation for PreCall" by Emil Milanov

News from Aug 26, 2020

September 2nd, 3pm s.t., the Thesis Defense: "An alternative confusion matrix implementation for PreCall" by Emil Milanov will take place.

Abstract

In this work, we examine literature on creating visualizations for the performance of machine learning classifiers, with our target group being users with limited machine learning experience. The underlying data is taken from Wikipedia, and more specifically ORES - Wikimedia's service, which employs a machine learning model to score edits and articles. The interface also expands on PreCall's implementation, and features multiple interactive components allowing the user to dynamically adjust parameters and see the immediate change in the classifier's performance. After providing a summary of the relevant literature, we go over the ORES API and its relevant endpoints and parameters. Then, we outline the most popular ways to visualize a machine learning classifier's performance. Following that is a thorough description of our target group, goals, and requirements, as well as the reasoning behind each design decision. Finally, there is an overview of the design and development process and we conduct a feedback session with a machine learning expert with background in ORES, and the feedback we receive is mostly positive, with some suggestions for improvement.

The defence will be held in german.

First assesor: Prof. Dr. Claudia Müller-Birn
Second assesor: Prof. Dr. Lutz Prechelt

The defense will be held per video call. If you are interested please send an e-mail to: Phil Wernberger

4 / 100