
Incremental Information Extraction Using
Tree-based Context Representations

Christian Siefkes

Berlin-Brandenburg Graduate School in Distributed Information Systems?

Database and Information Systems Group, Freie Universität Berlin
Takustr. 9, 14195 Berlin, Germany

christian@siefkes.net

Abstract. The purpose of information extraction (IE) is to find de-
sired pieces of information in natural language texts and store them in
a form that is suitable for automatic processing. Providing annotated
training data to adapt a trainable IE system to a new domain requires
a considerable amount of work. To address this, we explore incremental
learning. Here training documents are annotated sequentially by a user
and immediately incorporated into the extraction model. Thus the sys-
tem can support the user by proposing extractions based on the current
extraction model, reducing the workload of the user over time.
We introduce an approach to modeling IE as a token classification task
that allows incremental training. To provide sufficient information to the
token classifiers, we use rich, tree-based context representations of each
token as feature vectors. These representations make use of the heuristi-
cally deduced document structure in addition to linguistic and semantic
information. We consider the resulting feature vectors as ordered and
combine proximate features into more expressive joint features, called
“Orthogonal Sparse Bigrams” (OSB). Our results indicate that this setup
makes it possible to employ IE in an incremental fashion without a seri-
ous performance penalty.

1 Introduction

The purpose of information extraction (IE) is to find desired pieces of infor-
mation in natural language texts and store them in a form that is suitable for
automatic querying and processing. IE requires a predefined output represen-
tation (target structure) and only searches for facts that fit this representation.
Simple target structures define just a number of slots. Each slot is filled with a
string extracted from a text, e.g. a name or a date (slot filler).

To adapt an IE system to a new domain, it is necessary to either manually
rewrite the rules used in the system (in case of static rule-based systems) or to
provide annotated training data (in case of trainable systems). Manual rewriting
of rules is a time-consuming and intricate task that must be done by experts
? This research is supported by the German Research Society (DFG grant no.

GRK 316).

mailto:christian@siefkes.net


which are usually hard to get. Providing annotated training data is less costly
but still requires a considerable amount of work.

To address this, some approaches use active learning [5,14] where the sys-
tem actively selects texts to be annotated by a user from a pool of unannotated
training data. Thus adaptation to a new domain still requires a large amount
of raw (unannotated) training data (which are usually cheap), but only a re-
duced amount of annotated (and thus expensive) training data which are chosen
to be especially valuable for building the extraction model, e.g. those texts or
fragments whose annotation is least certain.

An alternative setup is incremental learning. Here training documents are
annotated sequentially by a user and immediately incorporated into the extrac-
tion model. Except for the very first document(s), the system can support the
user by proposing slot fillers. Thus the work to be done by the user is reduced
over time, from largely manual annotation of slot fillers to mere supervision and
correction of the system’s suggestions.

While incremental learning generally requires more annotated documents
than active learning to reach the same level of accuracy (since the system can-
not select the most informative samples), the work required by the user for
annotating each document is reduced. Also the user keeps control about which
documents are processed. Moreover an incremental setup fits better in situations
where information is to be extracted from a stream of incoming documents (“text
stream management”), for example email messages or newspaper articles.

In an incremental setup, the workflow for processing a document comprises
the following steps:

1. Extract text fragments to fill the slots defined by the given target structure.
2. Show the predicted information to a user; ask the user to review the infor-

mation and to correct any errors and omissions.
3. Adapt the extraction model based on the user’s feedback.

In this paper we introduce an approach to IE that allows incremental training.
In the following section we explain our approach to modeling IE as a classification
task and the classification algorithm we use. We then describe the preprocessing
steps of our system and the rich tree-based context representations we generate
as input for the classifier. After reporting experimental results, we conclude by
discussing related approaches and future work.

2 Classification-based Extraction

2.1 Fragment Extraction

The extraction of slot fillers can be handled as a token classification task, where
each token (typically a word) in a text is classified as the begin of a slot filler



of a certain type (B-type), as a continuation of the previously started slot filler,
if any (I-type), or as not belonging to any slot filler (O).1

Thus there are 2n+1 classes for n slot types. Not all of them are allowed for
all tokens—the B-type classes and the O class are always allowed, but there is at
most one I-type class allowed, and only if the preceding token has been classified
to be part of a slot filler of the same type (B-type or I-type).

2.2 The Winnow Classification Algorithm

Most refined classification algorithms are unsuitable for incremental training.
One exception is the Winnow algorithm [11].

We use a variant of Winnow introduced in [16] which is suitable for both
binary (two-class) and multi-class (three or more classes) classification. It keeps
an n-dimensional weight vector wc = (wc

1, w
c
2, . . . , w

c
n) for each class c, where

wc
i is the weight of the ith feature. The algorithm returns 1 for a class iff the

summed weights of all active features (called the score Ωc) surpass a predefined
threshold θ:

Ωc =
na∑
j=1

wc
j > θ.

Otherwise (Ωc ≤ θ) the algorithm returns 0. na ≤ n is the number of active
(present) features in the instance to classify.

The goal of the algorithm is to learn a linear separator over the feature space
that returns 1 for the true class of each instance and 0 for all other classes on
this instance. The initial weight of each feature is 1.0. The weights of a class
are updated whenever the value returned for this class is wrong. If 0 is returned
instead of 1, the weights of all active features are increased by multiplying them
with a promotion factor α, α > 1: wc

j ← α×wc
j . If 1 is returned instead of 0, the

active weights are multiplied with a demotion factor β, 0 < β < 1: wc
j ← β×wc

j .
The used threshold is not fixed, but set to the number na of features that

are active in a given instance: θ = na. Thus initial scores are equal to θ since
the initial weight of each feature is 1.0.

We use a thick threshold for training Winnow (cf. [3,16]). Instances are trained
even if the classification was correct if the determined score was near the thresh-
old. Two additional thresholds θ+ and θ− with θ− < θ < θ+ are defined and
each instance whose score falls in the range [θ−, θ+] is considered a mistake.
In this way, a large margin classifier will be trained that is more robust when
classifying borderline instances.

We use the parameter values recommended in [16], setting the promotion
factor α = 1.23, the demotion factor β = 0.83, and the threshold thickness to
5%.2

1 This is the so-called IOB2 combination strategy. There are other combination strate-
gies for combining single-token classification decisions into slot fillers that can com-
prise several tokens (cf. Sec. 5); but in preliminary experiments we found this one
to perform best.

2 In either direction, i.e. θ− = 0.95 θ, θ+ = 1.05 θ.



The scores Ωc generated by Winnow are converted into confidence estimates
using the sigmoid function σc(θ, Ωc) = 1/(1 + θ

Ωc ). The resulting σc values are
normalized by dividing them by

∑
σc so they sum up to 1.

While our Winnow variant supports multi-class classification, initial exper-
iments indicated that is advantageous to use multiple binary classifiers in a
“one-against-the-rest” setup. We train a separate classifier for each B-type and
I-type class, considering the context representations of all tokens of a class as
positive instances for the corresponding classifier and all other token contexts
as negative instances. If several classifiers predict their positive class, the most
confident classifiers wins.

2.3 Orthogonal Sparse Bigrams (OSB)

Winnow is a linear separator in the Perceptron sense, but by providing a feature
space that itself allows conjunction and disjunction, complex non-linear features
may be recognized by the composite feature-extractor + Winnow system.

For this purpose, the OSB (orthogonal sparse bigrams) technique introduced
in [16] has proved valuable. OSB slides a window of length N over the original
feature list. For each window position, joint output features are generated by
combining the right-most (newest) input feature with each of the other input
features in the window, memorizing the order of the two input features and the
distance between them.

Each of these joint features can be mapped to one of the numbers from 1 to
2N − 1 with two bits “1” in their binary representations (2n + 1, for n = 1 to
N − 1) where original features at “1” positions are visible while original features
at “0” positions are hidden and marked as skipped. Thus N − 1 combinations
with exactly two input features are produced for each window position. We use
OSB with a window length of N = 5 as recommended in [16].

With a sequence of five input features, i1, . . . , i5, OSB produces four output
features:

i4 i5
i3 <skip> i5

i2 <skip> <skip> i5
i1 <skip> <skip> <skip> i5

3 Preprocessing and Context Representation

3.1 Preprocessing

Regarded naively, an input text feed to an IE system might appear to be flat
data without visible structure; just a sequence of characters. This is a wrong
impression—there is structure in any text. At a low level, text can be considered
as a sequence of tokens (words, numbers, punctuation). In natural language texts,
tokens are arranged in sentences. Several sentences are grouped in paragraphs,
which are grouped in sections (which in turn might be grouped in higher-order
sections).



In structured text formats the higher-level structure (usually down to the
paragraph level) is explicitly coded, but the lower-level structure (sentences;
sentence constituents such as verb groups or noun phrases; tokens) must usually
be induced.

The native format of our IE system is XML-based; any well-formed XML
document is accepted as input. Documents in other formats must be converted
to an XML dialect before they can be processed. Currently, converters from
SGML-based (legacy) HTML to XHTML (JTidy [9]) and from plain text to
XHTML (txt2html [20]) are integrated into the system—the latter uses heuristics
to deduce the text structure from ASCII markup, recognizing section headers,
lists and tables, emphasized text etc. Other document formats can be processed
by integrating a suitable converter into the system or by converting them to
XML or HTML prior to processing.

In a second step, the text is augmented with explicit linguistic information.
We use the well-known TreeTagger [19] to:

– Divide a text into sentences;3
– Split sentences into “chunks” such as verb groups, noun phrases and prepo-

sitional phrases;4
– Tokenize the input into a sequence of parts-of-speech (words, numbers and

punctuation) and determine their syntactic categories and normalized base
forms.5

The output of the tagger is converted to the XML markup mentioned in the
footnotes and merged with the explicit markup of the source document. The
merging algorithm is described in [15]. After preprocessing, a text is represented
as a DOM (Document Object Model) tree. The structure of the DOM tree for a
simple HTML document (containing a section heading and several paragraphs)
is shown in Fig. 1.

3.2 Tree-based Context Representation

Typically, the context window considered by IE algorithms comprises either the
nearest tokens/words (e.g. [2]) or some predefined syntactic elements of the cur-
rent sentence (e.g. [17]). The hierarchical tree structure obtained by prepro-
cessing yields a more flexible context model: the context of a node contains the
nearest nodes around it. The context we consider for each token includes features
about:

– The token itself and the POS (part-of-speech) element it is in.
– Up to four preceding and four following siblings6 of the POS element (neigh-

boring parts-of-speech, but only those within the same sentence chunk).
3 sent element
4 const element with a type attribute that identifies the chunk/constituent type
5 pos element with type and normal attributes
6 We use the terms preceding sibling, following sibling, parent, and ancestor as defined

by XPath [21].



Fig. 1. Partial DOM Tree of a Simple HTML Document with Linguistic Anno-
tations

– Up to four ancestors of the element (typically the embedding chunk, sentence,
paragraph or related unit, etc.)

– Preceding and following siblings of each ancestor—the number of included
siblings is decremented for each higher level of ancestors (three for the direct
parent, i.e. three preceding and three following chunks; two for the “grand-
parent”, i.e. sentence; etc.)

In addition to this DOM tree–based context, we add information on the last
four slot fillers found in the current document, similar to the lastTarget variable
used in [12].

In the DOM tree creating during preprocessing, all leaf nodes are POS ele-
ments. Each POS element contains a text fragment for which we include several
features:

– The text fragment, both in original capitalization and converted to lower-
case;

– Prefixes and suffixes from length 1 to 4, converted to lower-case;7

– The length of the fragment;8

– The type of the fragment (one of lowercase, capitalized, all-caps, digits, punc-
tuation, mixed etc.)

Additionally, the semantic class(es) the fragment belongs to are listed, if any.
For this purpose a configurable list of dictionaries and gazetteers are checked.
Currently we use the following semantic sources:

7 Pre-/suffixes that would contain the whole fragment are omitted.
8 Both the exact value and the rounded square root as a less sparse representation.



– An English dictionary;9

– Name lists from US census;10

– Address suffix identifiers from US Postal Service;11

– A list of titles from Wikipedia.12

All other elements are inner nodes which contain child elements, they do not
directly contain text. For chunk elements, we include the normalized form of the
last POS that is not part of a sub-chunk as head word. For elements containing
chunks (such as sentence), the head words of the left-most and the right-most
chunk are included. For other elements, no features are generated, except the
name of the element and any attributes stored in the DOM tree13 which are
included for all elements. For the represented POS element and its ancestors,
we also store the position of the element within its parent.

Th result is a fairly high number of features representing the context of each
token. The features are arranged in an ordered list to allow recombination via
OSB (Sec. 2.3); the resulting feature vector is provided as input to the classifier
(cf. Sec. 2.2).

4 Experimental Results

We have tested our approach on the CMU Seminar Announcements14 corpus,
a standard corpus that is used very often to evaluate IE systems. The corpus
contains 485 seminar announcements (plain text files) collected from university
newsgroups; the task is to extract up to four fragment slots from each document
(if present): speaker, location, start time (stime) and end time (etime) of the
talk.

We randomly shuffled the order of documents in the corpus and used the first
50% of documents for training and the other 50% for evaluation, averaging results
over five random shuffles.15 As usual for this corpus, we used the “one answer
per slot” approach for evaluation (cf. [10]): at most one instance of each slot is
to be extracted from each document; if there are several annotated fragments in
a document, it is sufficient to find one. If our system finds multiple extraction
candidates, it selects the most probably one. Only exact matches are accepted—
partial matches are counted as errors.

Extraction results are evaluated in the usual way by counting true positives
tp (correct slot fillers), false positives fp (spurious slot fillers), false negatives fn

9 http://packages.debian.org/testing/text/wamerican
10 http://www.census.gov/genealogy/names/
11 http://www.usps.com/ncsc/lookups/abbreviations.html
12 http://en.wikipedia.org/wiki/Title
13 Type of parts-of-speech and chunks, normalized form of parts-of-speech, etc.
14 http://www-2.cs.cmu.edu/~dayne/SeminarAnnouncements/__Source__.html
15 The most typical evaluation setup for this corpus; some other systems average over

ten shuffles.

http://packages.debian.org/testing/text/wamerican
http://www.census.gov/genealogy/names/
http://www.usps.com/ncsc/lookups/abbreviations.html
http://en.wikipedia.org/wiki/Title
http://www-2.cs.cmu.edu/~dayne/SeminarAnnouncements/__Source__.html


Table 1. F1 Results Compared to Other Approaches

Approach TIE BWI ELIE HMM (LP)2 MaxEnt MBL SNoW-IE
Inc. Iter. L1 L2

Reference [7] [6] [8] [2] [1] [22] [13]

etime 96.7 97.5 93.9 87.0 96.4 59.5 95.5 94.2 96 96.3
location 79.3 80.6 76.7 84.8 86.5 83.9 75.0 82.6 87 75.2
speaker 80.9 85.2 67.7 84.9 88.5 71.1 77.6 72.6 71 73.8
stime 99.2 99.3 99.6 96.6 98.5 99.1 99.0 99.6 95 99.6

Average 88.3 89.9 83.9 88.8 92.1 81.7 86.0 86.9 86.6 85.3

Table 2. Results With Incremental Feedback

F1 Evaluation Set All Files

etime 97.8 94.2
location 80.2 73.2
speaker 83.9 77.0
stime 99.2 98.0

Average 89.5 84.8

(missing slot fillers) and calculating precision P = tp
tp+fp and recall R = tp

tp+fn .
F1 measure is the harmonic mean of precision and recall:

F1 =
2× P ×R

P + R
.

To combine the results from all slot types into a single measure, we report the
weighted average as used in [1] where each slot type is weighted by the total
number of expected slot fillers in the corpus (485 start times, 464 locations, 409
speakers, 228 end times). All reported performance figures are F1 percentages.

Table 1 compares our system (called TIE, “Trainable Information Extrac-
tor”) with other approaches evaluated in the same way.16 When trained incre-
mentally (first column), our system is better than all other approaches, except
one (the ELIE system described in [6]).17 ELIE uses Support Vector Machines
in a two-level approach, while our system so far is limited to a single level. When
resigning incrementality and iteratively training our system until accuracy of the
token classifiers on the training set stops increasing (second column), our system

16 One other approach, BIEN [12], is not directly comparable, since it uses an 80/20
split instead of 50/50. When run with an 80/20 split, the overall result of our system
(in incremental mode) is 89.5%; BIEN reaches 88.9%.

The reported results are all from trainable systems (mainly statistical ones, while
some—BWI, (LP)2—use rule-learning). In the past, domain-specific rule-based sys-
tems haven often been able to outperform trainable approaches. However, for this
corpus we are not aware of comparable or superior results reached by static, hand-
crafted systems.

17 Testing the statistical significance of performance differences is not possible since it
would require detailed test results of the other systems which are not available.



Fig. 2. Incremental Feedback: Learning Curve (precision, recall, and F1 on all
documents processed so far)

outperforms their first level by more than 1%. Further improvement should be
possible by adding a second level similar to theirs.

In the usual setup, 50% of all documents are used for training and the rest
for evaluation (50/50 split). In an incremental approach, it is possible to adapt
the extraction model even during the evaluation phase, by allowing the classifier
to train the correct slot fillers from each document after evaluating its own
proposals for this document.18 With this feedback added, the F1 measure on the
evaluation set increases to 89.5% (Table 2, left column).

With this feedback mechanism it is not strictly necessary to start with a
training-only phase; the system can be used to propose slot fillers to be evaluated
from the very start, using the whole corpus as evaluation set (0/100 split). Tested
in this way, our system still reaches almost 85% F1 over all documents (right
column). This means the system can be beneficial to use very soon, without
requiring a tedious manual annotation phase to provide initial training data.
18 This corresponds to the workflow from the Introduction where the system proposes

slot fillers which are reviewed and corrected by a human supervisor. After the su-
pervisor has corrected a document, the system updates its extraction model prior to
processing the next document. In this way the quality of the extraction proposals
will continually improve.



Table 3. Ablation Study

F1 Default No Semantic No HTML No Linguistic No OSB

etime 96.7 97.2 97.0 89.2 95.5
location 79.3 78.0 76.8 68.0 69.3
speaker 80.9 77.0 72.8 53.6 64.9
stime 99.2 99.4 99.4 99.1 98.7

Average 88.3 87.0 85.6 76.8 80.9

Fig. 2 shows the learning curve in this setup. As can be seen, precision is
high from the very start—more than 75% after the first 10 documents, more
than 80% after 20. Initial recall is far lower, but it exceeds 50% after processing
50 documents and 70% after 160 documents.

Table 3 shows the relative importance of different sources of information.
Semantic information is less important than for other systems—without it,
F1 drops by only 1.3%, while (LP)2 reports a performance drop by 23% (from
86% to 63.1%); for BIEN it is 11% (from 88.9% to 77.8%). This indicates that our
approach makes efficient use of syntactic and linguistic features to compensate
for missing explicit semantic data.

More relevant is the heuristic preprocessing step to recognize document struc-
ture in the plain text input (txt2html, cf. Sec. 3.1). Linguistic annotation (Tree-
Tagger) contributes most to the results, not surprisingly. We also find that the
OSB feature combination technique (cf. Sec. 2.3) is indeed useful—without it,
F1 degrades by 7.4%.

5 Related Work

There are several other approaches modeling IE as a classification task: [1] uses
Maximum Entropy modeling with four classes for each slot type (X -begin, X -
continue, X -end, X -unique). [6] uses two SVM classifiers for each slot type, one
for detecting the begin and the other for detecting the end of slot fillers. [22]
uses Memory-based Learning (MBL) with the IOB1 strategy19.

While there are multiple approaches to statistical IE, most of them use meth-
ods that are unsuitable for incremental training. One other approach, SNoW-IE
[13], employs the Winnow algorithm, but since it uses several parameters that are
determined from the training data it cannot be trained incrementally.20 We are
not aware of any approach that supports incremental training.
19 Which differs from IOB2 (Sec. 2.1) in using B-type only when necessary to avoid

ambiguity; otherwise I-type is used even at the beginning of slot fillers.
20 SNoW-IE realizes a two-step approach. Among a small number of possible candidate

fragments identified in a filtering stage, the (presumably) correct text fragment is
determined and extracted in a classifying stage. The complete training data is in-
spected to determine minimum scores necessary to pass the filtering stage as well as
specific conditions fulfilled by all or most positive instances (such as the maximum
length of slot fillers).



The employment of a (DOM) tree-based representation of the input docu-
ments and the use of heuristics to recognize document structure (txt2html con-
version) appear to be other novel traits of our approach.

6 Conclusion and Future Work

We have introduced an approach to modeling information extraction as a to-
ken classification task that allows incremental updating of the extraction model.
To provide sufficient information to the token classifiers, we use rich, tree-based
context representations of each token as feature vectors. These representations
make use of the heuristically deduced document structure in addition to lin-
guistic and semantic information. We consider the resulting feature vectors as
ordered and combine proximate features into more expressive joint features, us-
ing the OSB combination technique. Our results indicate that this setup makes
it possible to employ IE in an incremental fashion without a serious performance
penalty.

There are several directions for future work. We plan to try our system for
other tasks and to explore variations of the used context representations in more
detail. To augment our current single-level setup, we will add a correction mode
that reconsiders misclassified tokens near extraction candidates. We are also
experimenting with a sentence filtering step to reduce the number of tokens to
be presented to the token classifiers, similar to the approach proposed in [4].

Currently our system is limited to very simple target structures—it handles
only slot filling (extraction of text fragments). We plan to add support for more
complex target structures by extending the system to handle relationship recog-
nition (e.g. a works-for relation between a person and a company) and template
unification (deciding which slot fillers give details about the same complex ob-
ject, e.g. a seminar). In the used CMU task this isn’t necessary because each
document contains only one seminar announcement, but in real-life applications
there will often be multiple relevant objects per document.

The IE system presented in this paper is available as free software [18].

References

1. H. L. Chieu and H. T. Ng. A maximum entropy approach to information extraction
from semi-structured and free text. In Proceedings of the Eighteenth National
Conference on Artificial Intelligence (AAAI 2002), pages 786–791, 2002.

2. F. Ciravegna. (LP)2, an adaptive algorithm for information extraction from Web-
related texts. In Proceedings of the IJCAI-2001 Workshop on Adaptive Text Ex-
traction and Mining, Seattle, USA, 2001.

3. I. Dagan, Y. Karov, and D. Roth. Mistake-driven learning in text categorization. In
C. Cardie and R. Weischedel, editors, Proceedings of EMNLP-97, 2nd Conference
on Empirical Methods in Natural Language Processing, pages 55–63, Providence,
US, 1997. Association for Computational Linguistics.



4. A. De Sitter and W. Daelemans. Information extraction via double classification.
In Proceedings of the International Workshop on Adaptive Text Extraction and
Mining (ATEM-2003), 2003.

5. A. Finn and N. Kushmerick. Active learning selection strategies for information
extraction. In Proceedings of the International Workshop on Adaptive Text Extrac-
tion and Mining, 2003.

6. A. Finn and N. Kushmerick. Information extraction by convergent boundary clas-
sification. In AAAI-2004 Workshop on Adaptive Text Extraction and Mining, San
Jose, USA, 2004.

7. D. Freitag and N. Kushmerick. Boosted wrapper induction. In AAAI/IAAI, pages
577–583, 2000.

8. D. Freitag and A. K. McCallum. Information extraction with HMMs and shrinkage.
In Proceedings of the AAAI-99 Workshop on Machine Learning for Information
Extraction, 1999.

9. JTidy. http://jtidy.sourceforge.net/.
10. A. Lavelli, M. Califf, F. Ciravegna, D. Freitag, C. Giuliano, N. Kushmerick, and

L. Romano. A critical survey of the methodology for IE evaluation. In Proceedings
of the 4th International Conference on Language Resources and Evaluation (LREC
2004), 2004.

11. N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear-
threshold algorithm. Machine Learning, 2:285–318, 1988.

12. L. Peshkin and A. Pfeffer. Bayesian information extraction network. In IJCAI,
2003.

13. D. Roth and W.-t. Yih. Relational learning via propositional algorithms: An in-
formation extraction case study. In IJCAI, 2001.

14. T. Scheffer, S. Wrobel, B. Popov, D. Ognianov, C. Decomain, and S. Hoche. Learn-
ing hidden Markov models for information extraction actively from partially labeled
text. Künstliche Intelligenz, (2), 2002.

15. C. Siefkes. A shallow algorithm for correcting nesting errors and other well-
formedness violations in XML-like input. In Extreme Markup Languages (EML)
2004, 2004.

16. C. Siefkes, F. Assis, S. Chhabra, and W. S. Yerazunis. Combining Winnow and
orthogonal sparse bigrams for incremental spam filtering. In J.-F. Boulicaut,
F. Esposito, F. Giannotti, and D. Pedreschi, editors, Proceedings of the 8th Euro-
pean Conference on Principles and Practice of Knowledge Discovery in Databases
(PKDD 2004), volume 3202 of Lecture Notes in Artificial Intelligence, pages 410–
421. Springer, 2004.

17. S. Soderland, D. Fisher, J. Aseltine, and W. Lehnert. CRYSTAL: Inducing a
conceptual dictionary. In IJCAI, 1995.

18. Trainable Information Extractor. http://www.inf.fu-berlin.de/inst/ag-db/

software/tie/.
19. TreeTagger. http://www.ims.uni-stuttgart.de/projekte/corplex/

TreeTagger/.
20. txt2html. http://txt2html.sourceforge.net/.
21. XML Path Language (XPath) 2.0, 2004. W3C Working Draft, 29 October 2004.
22. J. Zavrel and W. Daelemans. Feature-rich memory-based classification for shallow

NLP and information extraction. In J. Franke, G. Nakhaeizadeh, and I. Renz,
editors, Text Mining, Theoretical Aspects and Applications, pages 33–54. Springer
Physica, 2003.

http://jtidy.sourceforge.net/
http://www.inf.fu-berlin.de/inst/ag-db/software/tie/
http://www.inf.fu-berlin.de/inst/ag-db/software/tie/
http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/
http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/
http://txt2html.sourceforge.net/

