Springe direkt zu Inhalt

Machine Learning for Data Science

The course provides an overview of machine learning methods and algorithms for different learning tasks, namely supervised, unsupervised and reinforcement learning.

In the first part of the course, for each task the main algorithms and techniques will be covered including experimentation and evaluation aspects.

In the second part of the course, we will focus on specific learning challenges including high-dimensionality, non-stationarity, label-scarcity and class-imbalance.

By the end of the course, you will have learned how to build machine learning models for different problems, how to properly evaluate their performance and how to tackle specific learning challenges.

(19330101 (V) /19330102 (Ü))

InstructorProf. Dr. Eirini Ntoutsi, Manuel Heurich
Credit Points10
StartSep 27, 2021
endFeb 17, 2022
  • Lecture:  Wednesday (4-6 a.m., lecture room Takustr. 9)  and Thursday (12-2 a.m., lecture room Arnimallee 3)
  • Tutorial:  Tuesday (12-2 a.m. and 2-4 a.m.), Takustr. 9, SR005.

Course Details