The Object Data Manager (ODM)
Unit Objectives

After completing this unit, you should be able to:

● Describe the structure of the ODM

● Use the ODM command line interface

● Explain the role of the ODM in device configuration

● Describe the function of the most important ODM files
What Is the ODM?

- The Object Data Manager (ODM) is a database intended for storing system information.

- Physical and logical device information is stored and maintained through use of objects with associated characteristics.
Data Managed by the ODM

- Devices
- Software
- System Resource Controller
- SMIT Menus
- TCP/IP Configuration
- Error Log, Dump
- NIM
ODM Components

<table>
<thead>
<tr>
<th>uniquetype</th>
<th>attribute</th>
<th>deflt</th>
<th>values</th>
</tr>
</thead>
<tbody>
<tr>
<td>tape/scsi/scsd</td>
<td>block_size</td>
<td>none</td>
<td>0-2147483648,1</td>
</tr>
<tr>
<td>disk/scsi/osdisk</td>
<td>pvid</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>tty/rs232/tty</td>
<td>login</td>
<td>disable</td>
<td>enable, disable, ...</td>
</tr>
</tbody>
</table>
ODM Database Files

<table>
<thead>
<tr>
<th>Category</th>
<th>Files</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predefined device information</td>
<td>(PdDv, PdAt, PdCn)</td>
</tr>
<tr>
<td>Customized device information</td>
<td>(CuDv, CuAt, CuDep, CuDvDr, CuVPD, Config_Rules)</td>
</tr>
<tr>
<td>Software vital product data</td>
<td>history, inventory, lpp, product</td>
</tr>
<tr>
<td>SMIT menus</td>
<td>(\text{sm_menu_opt, sm_name_hdr, sm_cmd_hdr, sm_cmd_opt})</td>
</tr>
<tr>
<td>Error log, alog, and dump information</td>
<td>(\text{SWservAt})</td>
</tr>
<tr>
<td>System Resource Controller</td>
<td>(\text{SRCsubsys, SRCsubsvr, ...})</td>
</tr>
<tr>
<td>Network Installation Manager (NIM)</td>
<td>(\text{nim_attr, nim_object, nim_pdattr})</td>
</tr>
</tbody>
</table>
Device Configuration Summary

Predefined Databases
- PdCn
- PdDv
- PdAt

Customized Databases
- CuDep
- CuDvDr
- CuDv
- CuAt
- CuVPD

Config_Rules

Configuration Manager (cfgmgr)
Configuration Manager

Predefined
- PdDv
- PdAt
- PdCn

"Plug and Play"

Customized
- CuDv
- CuAt
- CuDep
- CuDvDr
- CuVPD

Methods
- Define
- Configure
- Change
- Unconfigure
- Undefine

Device Driver

Config_Rules

Load
Unload
Location and Contents of ODM Repositories

CuDv
CuAt
CuDep
CuDvDr
CuVPD
Config_Rules

history
inventory
lpp
product

nim_*
SWservAt
SRC*

PdDv
PdAt
PdCn

history
inventory
lpp
product

sm_*

history
inventory
lpp
product

Network

/etc/objrepos
/usr/lib/objrepos
/usr/share/lib/objrepos

© Copyright IBM Corporation 2007
How ODM Classes Act Together

PdDv:
 type = "14106902"
 class = "adapter"
 subclass = "pci"
 prefix = "ent"

 DvDr = "pci/goentdd"
 Define = /usr/lib/methods/define_rspc"
 Configure = "/usr/lib/methods/cfggoent"

 uniquetype = "adapter/pci/14106902"

CuDv:
 name = "ent1"
 status = 1
 chgstatus = 2
 ddins = "pci/goentdd"
 location = "02-08"
 parent = "pci2"
 connwhere = "8"

 PdDvLn = "adapter/pci/14106902"

PdAt:
 uniquetype = "adapter/pci/14106902"
 attribute = "jumbo_frames"
 deflt = "no"
 values = "yes,no"

 chdev -l ent1 \
 -a jumbo_frames=yes

CuAt:
 name = "ent1"
 attribute = "jumbo_frames"
 value = "yes"
 type = "R"
Data Not Managed by the ODM

Filesystem information

User/Security information

Queues and Queue devices
Let’s Review:
Device Configuration and the ODM

1.

Undefined

Defined

Available

2.

3.

D____ D____

4.

/_____/_____

AIX Kernel

Applications

D____ D____

/_____/_____

© Copyright IBM Corporation 2007
ODM Commands

Object class: odmcreate, odmdrop

Descriptors: odmshow

<table>
<thead>
<tr>
<th>uniquetype</th>
<th>attribute</th>
<th>deflt</th>
<th>values</th>
</tr>
</thead>
<tbody>
<tr>
<td>tape/scsi/scsd</td>
<td>block_size</td>
<td>none</td>
<td>0-2147483648,1</td>
</tr>
<tr>
<td>disk/scsi/osdisk</td>
<td>pvid</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>tty/rs232/tty</td>
<td>login</td>
<td>disable</td>
<td>enable, disable, ...</td>
</tr>
</tbody>
</table>

Objects: odmadd, odmchange, odmdelete, odmget
changing attribute values

odmget -q"uniquetype=tape/scsi/scsd and attribute=block_size" PdAt > file
vi file

PdAt:
uniquetype = "tape/scsi/scsd"
attribute = "block_size"
deflt = "512"
values = "0-2147483648,1"
width = ""
type = "R"
generic = "DU"
rep = "nr"
nls_index = 6

Modify deflt to 512

odmdelete -o PdAt -q"uniquetype=tape/scsi/scsd and attribute=block_size"
odmadd file
Using `odmchange` to Change Attribute Values

```bash
# odmget -q"uniquetype=tape/scsi/scsd and attribute=block_size" PdAt > file

# vi file

PdAt:
  uniquetype = "tape/scsi/scsd"
  attribute = "block_size"
  deflt = "512"
  values = "0-2147483648,1"
  width = ""
  type = "R"
  generic = "DU"
  rep = "nr"
  nls_index = 6

Modify deflt to 512

# odmchange -o PdAt -q"uniquetype=tape/scsi/scsd and attribute=block_size" file
```
Software Vital Product Data

lpp:
 name = "bos.rte.printers"
 size = 0
 state = 5
 ver = 6
 rel = 1
 mod = 0
 fix = 0
 description = "Front End Printer Support"
 lpp_id = 38

product:
 lpp_name = "bos.rte.printers"
 comp_id = "5765-C3403"
 state = 5
 ver = 6
 rel = 1
 mod = 0
 fix = 0
 ptf = ""
 prereq = "*coreq bos.rte 5.1.0.0"
 description = ""
 supersedes = ""

inventory:
 lpp_id = 38
 private = 0
 file_type = 0
 format = 1
 loc0 = "/etc/qconfig"
 loc1 = ""
 loc2 = ""
 size = 0
 checksum = 0

history:
 lpp_id = 38
 ver = 6
 rel = 1
 mod = 0
 fix = 0
 ptf = ""
 state = 1
 time = 1187714064
 comment = ""
Software States You Should Know About

<table>
<thead>
<tr>
<th>State</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applied</td>
<td>• Only possible for PTFs or Updates
• Previous version stored in <code>/usr/lpp/Package_Name</code>
• Rejecting update recovers to saved version
• Committing update deletes previous version</td>
</tr>
<tr>
<td>Committed</td>
<td>• Removing committed software is possible
• No return to previous version</td>
</tr>
<tr>
<td>Applying,</td>
<td>If installation was not successful:
• <code>installp -C</code>
• <code>smit maintain_software</code>
Committing,</td>
</tr>
<tr>
<td>Broken</td>
<td>• Cleanup failed
• Remove software and reinstall</td>
</tr>
</tbody>
</table>
Predefined Devices (PdDv)

PdDv:
 type = "scsd"
 class = "tape"
 subclass = "scsi"
 prefix = "rmt"
 ...
 base = 0
 ...
 detectable = 1
 ...
 led = 2418

 setno = 54
 msgno = 0
 catalog = "devices.cat"

DvDr = "tape"

Define = "/etc/methods/define"
Configure = "/etc/methods/cfgsctape"
Change = "/etc/methods/chggen"
Unconfigure = "/etc/methods/ucfgdevice"
Undefine = "/etc/methods/undefine"
Start = ""
Stop = ""
...
uniquetype = "tape/scsi/scsd"
Predefined Attributes (PdAt)

PdAt:
 uniquetype = "tape/scsi/scsd"
 attribute = "block_size"
 deflt = ""
 values = "0-2147483648,1"
...

PdAt:
 uniquetype = "disk/scsi/osdisk"
 attribute = "pvid"
 deflt = "none"
 values = ""
...

PdAt:
 uniquetype = "tty/rs232/tty"
 attribute = "term"
 deflt = "dumb"
 values = ""
...

Customized Devices (CuDv)

CuDv:
name = "ent1"
status = 1
chgstatus = 2
ddins = "pci/goentdd"
location = "02-08"
parent = "pci2"
connwhere = "8"
PdDvLn = "adapter/pci/14106902"

CuDv:
name = "hdisk2"
status = 1
chgstatus = 2
ddins = "scdisk"
location = "01-08-01-8,0"
parent = "scsi1"
connwhere = "8,0"
PdDvLn = "disk/scsi/scsd"
Customized Attributes (CuAt)

CuAt:

 name = "ent1"
 attribute = "jumbo_frames"
 value = "yes"

...

CuAt:

 name = "hdisk2"
 attribute = "pvid"
 value = "00c35ba0816eafe50000000000000000000000000"

...
Additional Device Object Classes

<table>
<thead>
<tr>
<th>PdCn:</th>
<th>CuDvDr:</th>
</tr>
</thead>
<tbody>
<tr>
<td>uniquetype =</td>
<td>resource = "devno"</td>
</tr>
<tr>
<td>"adapter/pci/sym875"</td>
<td>value1 = "36"</td>
</tr>
<tr>
<td>connkey = "scsi"</td>
<td>value2 = "0"</td>
</tr>
<tr>
<td>connwhere = "1,0"</td>
<td>value3 = "hdisk3"</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CuDvDr:</th>
</tr>
</thead>
<tbody>
<tr>
<td>resource = "devno"</td>
</tr>
<tr>
<td>value1 = "36"</td>
</tr>
<tr>
<td>value2 = "0"</td>
</tr>
<tr>
<td>value3 = "hdisk3"</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CuDep:</th>
<th>CuVPD:</th>
</tr>
</thead>
<tbody>
<tr>
<td>name = "rootvg"</td>
<td>name = "hdisk2"</td>
</tr>
<tr>
<td>dependency = "hd6"</td>
<td>vpd_type = 0</td>
</tr>
<tr>
<td></td>
<td>vpd = "*MFIBM \n</td>
</tr>
<tr>
<td></td>
<td>HUS151473VL3800 \n</td>
</tr>
<tr>
<td></td>
<td>*F03N5280 \n</td>
</tr>
<tr>
<td></td>
<td>RL53343341SN009DAFDF*ECH17</td>
</tr>
<tr>
<td></td>
<td>923D *P26K5531 *Z0\n</td>
</tr>
<tr>
<td></td>
<td>000004029F00013A*ZVMPPSS43A</td>
</tr>
<tr>
<td></td>
<td>*Z20068Z307220"</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CuDep:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>name = "datavg"</td>
<td></td>
</tr>
<tr>
<td>dependency = "lv01"</td>
<td></td>
</tr>
</tbody>
</table>

© Copyright IBM Corporation 2007
Checkpoint

1. In which ODM class do you find the physical volume IDs of your disks?
 __

2. What is the difference between state defined and available?
 __
 __
 __
 __
 __
1. In which ODM class do you find the physical volume IDs of your disks?

 CuAt

2. What is the difference between state defined and available?

 When a device is defined, there is an entry in ODM class **CuDv**. When a device is available, the device driver has been loaded. The device driver can be accessed by the entries in the `/dev` directory.
Exercise 2: The Object Data Manager (ODM)

- Review of device configuration ODM classes
- Role of ODM during device configuration
- Creating self-defined ODM classes (Optional)
Unit Summary

- The ODM is made from object **classes**, which are broken into individual **objects** and **descriptors**
- AIX offers a **command line interface** to work with the ODM files
- The **device information** is held in the **customized** and the **predefined** databases (Cu*, Pd*)