Title As It Is In the Proceedings
Include Only If Paper Has a Subtitle

F. Author S. Another
Freie Universität Berlin

Conference on Fabulous Presentations, 2003
Outline

Motivation
- The Basic Problem That We Studied
- Previous Work

Our Results/Contribution
- Main Results
- Basic Ideas for Proofs/Implementation
Outline

Motivation
The Basic Problem That We Studied
Previous Work

Our Results/Contribution
Main Results
Basic Ideas for Proofs/Implementation
Make Titles Informative. Use Uppercase Letters. Long Titles are Split Automatically.

▶ Use itemize a lot.
▶ Use very short sentences or short phrases.
Make Titles Informative.

You can create overlays...
 ▶ using the pause command:
 ▶ First item.
Make Titles Informative.

You can create overlays…
- using the pause command:
 - First item.
 - Second item.
- using overlay specifications:
- using the general uncover command:
Make Titles Informative.

You can create overlays . . .

- using the pause command:
 - First item.
 - Second item.

- using overlay specifications:
 - First item.

- using the general uncover command:
You can create overlays...

- using the pause command:
 - First item.
 - Second item.

- using overlay specifications:
 - First item.
 - Second item.

- using the general uncover command:
Make Titles Informative.

You can create overlays...

- using the pause command:
 - First item.
 - Second item.

- using overlay specifications:
 - First item.
 - Second item.

- using the general uncover command:
 - First item.
Make Titles Informative.

You can create overlays...

- using the pause command:
 - First item.
 - Second item.

- using overlay specifications:
 - First item.
 - Second item.

- using the general uncover command:
 - First item.
 - Second item.
Outline

Motivation

The Basic Problem That We Studied
Previous Work

Our Results/Contribution

Main Results
Basic Ideas for Proofs/Implementation
An old algorithm

```cpp
int main (void)
{
    std::vector<bool> is_prime (100, true);
    for (int i = 2; i < 100; i++)
        if (is_prime[i])
            {
                std::cout << i << " ";
                for (int j = i; j < 100;
                is_prime [j] = false, j+=i);
            }
    return 0;
}
```
int main (void)
{
 std::vector<bool> is_prime (100, true);
 for (int i = 2; i < 100; i++)
 {
 if (is_prime[i])
 {
 std::cout << i << " ";
 for (int j = i; j < 100; j += i)
 is_prime[j] = false;
 }
 }
 return 0;
}
int main (void)
{
 std::vector<bool> is_prime (100, true);
 for (int i = 2; i < 100; i++)
 if (is_prime[i])
 {

 }
 return 0;
}
int main (void)
{
 std::vector<bool> is_prime (100, true);
 for (int i = 2; i < 100; i++)
 if (is_prime[i])
 {
 std::cout << i << " ";
 for (int j = i; j < 100;
 is_prime [j] = false, j+=i);
 }
 return 0;
}
int main (void)
{
 std::vector<bool> is_prime (100, true);
 for (int i = 2; i < 100; i++)
 if (is_prime[i])
 {
 std::cout << i << " ";
 for (int j = i; j < 100;
 is_prime[j] = false, j+=i);
 }
 return 0;
}

Note the use of std::.
Motivation
The Basic Problem That We Studied
Previous Work

Our Results/Contribution
Main Results
Basic Ideas for Proofs/Implementation
Make Titles Informative.

Example

- 2 is prime (two divisors: 1 and 2).
- 3 is prime (two divisors: 1 and 3).
- 4 is not prime (three divisors: 1, 2, and 4).
Theorem

There is no largest prime number and, in addition,

\[\int_{\Omega} \nabla u \cdot \nabla v = - \int_{\Omega} u \Delta v + \int_{\partial \Omega} uv n \]

Proof.

1. Suppose \(p \) were the largest prime number.

4. Thus \(q + 1 \) is also prime and greater than \(p \).
Theorem

There is no largest prime number and, in addition,

\[\int_{\Omega} \nabla u \cdot \nabla v = -\int_{\Omega} u \Delta v + \int_{\partial \Omega} uvn \]

Proof.

1. Suppose \(p \) were the largest prime number.
2. Let \(q \) be the product of the first \(p \) numbers.

4. Thus \(q + 1 \) is also prime and greater than \(p \).
Theorem

There is no largest prime number and, in addition,

$$\int_{\Omega} \nabla u \cdot \nabla v = - \int_{\Omega} u \Delta v + \int_{\partial \Omega} uvn$$

Proof.

1. Suppose p were the largest prime number.
2. Let q be the product of the first p numbers.
3. Then $q + 1$ is not divisible by any of them.
4. Thus $q + 1$ is also prime and greater than p. □
Theorem

There is no largest prime number and, in addition,

\[\int_{\Omega} \nabla u \cdot \nabla v = - \int_{\Omega} u \Delta v + \int_{\partial \Omega} u v n \]

Proof.

1. Suppose \(p \) were the largest prime number.
2. Let \(q \) be the product of the first \(p \) numbers.
3. Then \(q + 1 \) is not divisible by any of them.
4. Thus \(q + 1 \) is also prime and greater than \(p \).

The proof used \textit{reductio ad absurdum}.
Make Titles Informative.
Outline

Motivation
 The Basic Problem That We Studied
 Previous Work

Our Results/Contribution
 Main Results
 Basic Ideas for Proofs/Implementation
Make Titles Informative.
Make Titles Informative.
Make Titles Informative.
Summary

- The first main message of your talk in one or two lines.
- The second main message of your talk in one or two lines.
- Perhaps a third message, but not more than that.

- Outlook
 - Something you haven’t solved.
 - Something else you haven’t solved.
For Further Reading
