What is a Group Representation?

Giovanni De Gaetano

June 29, 2012

According to the Oxford Dictionary we have the following definition.

Representation: the description or portrayal of someone or something in a particular way.

In mathematical terms a representation of a group G is the description of the elements of G by matrices, or, more generally, the description of G as a subgroup of the automorphism group of a given object.

1 First Definitions

Definition 1 (Group Representation). Let G be a group. A (complex) G-representation is an homomorphism $\rho : G \to GL(V)$ where V is a vector space over \mathbb{C}.

With abuse of notation we will denote the representation by V if the map ρ is understood from the context.

Observation 1. As we suggested above we can consider more general representation using different groups in place of $GL(V)$. A commonly used object is $SL(n,\mathbb{Z})$, but any group of automorphisms could arise in this context.

We can reformulate this definition in terms of group actions.

Observation 2. The definition of group representation is equivalent to say that G acts on the \mathbb{C}-vector space V.
Then we have associated a matrix to any element \(g \in G \) in such a way that the product of elements in \(G \) translates into the usual matrix multiplication. Pay attention to the fact that we did not require the homomorphism \(\rho \) to be injective.

Example 1 (Trivial representation). Given any \(\mathbb{C} \)-vector space \(V \) and any group \(G \) we can define a representation \(\rho : G \rightarrow GL(V) \) by \(\rho(g) = id_V \) for any \(g \in G \). It is called the trivial representation.

Opposite to the trivial representation there is the notion of faithful representation.

Definition 2 (Faithful representation). The representation \(\rho : G \rightarrow GL(V) \) is faithful if \(\text{Ker}(\rho) = id_G \).

Definition 3 (Finite representation). The representation \(\rho \) is finite if we require the vector space \(V \) to be finite. In this case we have \(GL(V) = GL(\text{dim}(V), \mathbb{C}) \).

Observe that if \(G \) admits a finite faithful representation then it is a linear group. Indeed it is isomorphic to a subgroup of \(GL(n, \mathbb{C}) \) for some \(n \in \mathbb{N} \).

Example 2 (Regular representation). To \(G \) we can associate the \(\mathbb{C} \)-vector space \(G_\mathbb{C} \) which has basis \(\{ g : g \in G \} \). Then \(G \) acts on \(G_\mathbb{C} \) by multiplication on the left. The induced representation is called regular representation of \(G \).

Using some additional or different algebraic structures on the set of matrices we can represent a variety of algebraic objects.

- Introducing the sum of matrices we turn \(GL(n, \mathbb{C}) \) into an associative algebra. Then we have the notion of associative algebra representation.

- Using the commutator \([M, N] = MN - NM\) instead of the usual matrix multiplication \(GL(n, \mathbb{C}) \) is a Lie algebra. Then we have the notion of Lie algebra representation.

Now that we have a new class of algebraic objects, i.e. group representations, we want to establish the notion of morphism between them.

Definition 4. Given two representations \(V, W \) of \(G \) a morphism of \(G \)-representations is a \(\mathbb{C} \)-linear map \(\varphi : V \rightarrow W \) which is invariant by the action of \(G \). We denote by \(\text{Hom}_G(V, W) \) the set of morphisms of \(G \)-representations.
2 Reducibility of Representations

Definition 5 (Subrepresentations). A G-subrepresentation of V is a vector subspace $W \subseteq V$ which is invariant by the action of G.

Definition 6 (Irreducible representations). A representation V of G is irreducible if it has no proper subrepresentations.

Example 3 (Non irreducible representation). Let S_3 act on \mathbb{C}^3 by permutation of the base elements. Then \mathbb{C}^3 is not an irreducible representation because of the proper subrepresentation $H = \{z(1,1,1) : z \in \mathbb{C}\}$.

The usual operations on vector spaces translate into operations for representations. Given G-representations V, W the direct sum $V \oplus W$ and the tensor product $V \otimes W$ are G-representations. Where the G-actions are given by $g(v \oplus w) = g(v) \oplus g(w)$ and $g(v \otimes w) = g(v) \otimes g(w)$. We can also construct the dual V^* by posing $g(\varphi) = \varphi \cdot g^{-1}$, and the exterior product, the symmetric product and so on.

Definition 7 (Reducible representations). We say that the G-representation V is reducible if $V = W \oplus W'$ for some G-representations W and W'.

A representation V is said to be reduced if it is not reducible.

Now it is natural to ask the following question.

Problem 1. Is it always possible to reduce a given representation into the direct sum of irreducible representations?

We answer it with a Theorem and a counterexample.

Theorem 1 (Complete Reducibility). If G is a finite group then any G-representation V reduces to a direct sum of irreducible representations.

We want to make here a small digression on the base field. It is clear that everything we did on \mathbb{C} could have been done on any base field F, but here appears a first difference. Indeed if we work on a field F of positive characteristic p then the complete reducibility theorem holds under the further assumption that p does not divide the order of G.

Now we show a counterexample to the complete reducibility theorem in the case that G is not finite.
Example 4. Let \((\mathbb{R}, +)\) act on \(\mathbb{R}^2\) by \(a((x, y)) = (x + ay, y)\). The induced representation is reduced but not irreducible.

Proof. We have a proper subrepresentation \(R_1 = \mathbb{R}(1, 0)\), where \(\mathbb{R}\) acts trivially. This proves that our original representation is not irreducible.

Now we suppose that the subrepresentation \(R_1\) has a complement \(R_2 = \mathbb{R}(\gamma, \delta)\) for \(\delta \neq 0\). \(R_2\) must have dimension 1 as real vector space. Then acting with the element \(a = \frac{-\gamma}{\delta}\) we deduce the form \(R_2 = \mathbb{R}(0, \delta) = \mathbb{R}(0, 1)\). But this is not an \((\mathbb{R}, +)\)-representation.

Lemma 1 (Schur). Let \(\varphi : V \rightarrow W\) be a morphism of irreducible \(G\)-representations. Then:

1. \(\varphi = 0\) or \(\varphi\) is an isomorphism.
2. If \(V \cong W\) then \(\varphi = \lambda \cdot \text{id}_V\) for \(\lambda \in \mathbb{C}\).

Exercise 1. Prove Schur’s Lemma. [Hint: Kernel and images of \(\mathbb{C}\)-linear maps are vector subspaces.]

3 Characters

Throughout this section we assume \(G\) to be a finite group.

Definition 8 (Characters for finite groups). Given a \(G\)-representation \(\rho : G \rightarrow GL(V)\), we define the associated character \(\chi_V : G \rightarrow \mathbb{C}\) by \(\chi_V(g) = Tr(\rho(g))\).

Exercise 2 (Behavior of Characters). For \(V, W\) two general representations of the group \(G\) holds:

\[
\chi_{V \oplus W} = \chi_V + \chi_W,
\]
\[
\chi_{V \otimes W} = \chi_V \cdot \chi_W,
\]
\[
\chi_V^* = \overline{\chi_V}.
\]

Now we fix a general \(G\)-representation \(V\).

Observation 3. In general, for \(g \in G\), the map \(g : V \rightarrow V\) is not a morphism of \(G\)-representations.

Proof. Indeed \(G\) in general is not commutative.
But we can construct a morphism of G-representations in the following way, first we consider the set:

$$V^G = \{ v \in V \mid gv = v \ \forall \ g \in G \}. $$

Which is clearly a G-subrepresentation of V. Then we define the map:

$$\varphi = \frac{1}{|G|} \sum_{g \in G} g : V \to V^G. $$

Exercise 3. The map φ defined above is a morphism of G-representations and a projection.

Since φ is a projection $\dim \mathbb{C} V^G = Tr(\varphi)$. And thanks to this last observation:

$$\dim \mathbb{C} V^G = Tr(\varphi) = \frac{1}{|G|} \sum_{g \in G} Tr(g) = \frac{1}{|G|} \sum_{g \in G} \chi_V(g). $$

In specific the last sum must be zero if V is an irreducible representation.

Now, applying Schur Lemma to two irreducible representations V,W we get that $\dim \mathbb{C}(\text{Hom}_G(V,W))$ is 1 if $V = W$ and 0 otherwise. But, denoting by $\text{Hom}(V,W)$ the set of \mathbb{C}-linear maps from V to W, we have that $\text{Hom}_G(V,W) = \text{Hom}(V,W)^G$ and $\text{Hom}(V,W) = V^* \otimes W$. By the exercise above:

$$\chi_{\text{Hom}(V,W)} = \overline{\chi_V} \cdot \chi_W. $$

And finally we get that the sum $\frac{1}{|G|} \sum_{g \in G} \overline{\chi_V(g)} \chi_W(g)$ is 1 if $V = W$ and 0 otherwise.

Inspired by the sum above we define a Hermitian product on the set of complex valued functions on G.

$$\langle \alpha, \beta \rangle := \frac{1}{|G|} \sum_{g \in G} \overline{\alpha(g)} \beta(g). $$

We have proved the next very important result.
Theorem 2. The characters of irreducible representations are orthonormals with respect to the Hermitian product \langle, \rangle defined above. In specific a representation V is irreducible if and only if $\langle \chi_V, \chi_V \rangle = 1$.

The last statement is true because if it was $V = V_1 \oplus V_2$ then we would have $\langle \chi_V, \chi_V \rangle = \langle \chi_{V_1}, \chi_{V_1} \rangle + \langle \chi_{V_2}, \chi_{V_2} \rangle$. For the very same reason:

Corollary 1. If $V = V_1^{a_1} \oplus ... \oplus V_n^{a_n}$ then $a_i = \langle \chi_V, \chi_{V_i} \rangle$.

We can deduce a last nice result in a few steps.

Exercise 4 (Decomposition of the regular representation). Prove:

1. $\chi_{G_C}(g) = |G|$ if and only if $g = id_G$. Otherwise it is zero.
2. Compute $\chi_V(id_G)$ for any representation V.
3. Deduce that every irreducible representation V_i appears in G_C exactly $\dim V_i$ times.

4 Relation with Fourier Analysis.

In this section we want to justify heuristically the following statement. Which somehow justifies a deeper study of Representation Theory.

"Fourier Analysis is a special case of Representation Theory."

A formal statement can be made and proved, but it requires to work with topological locally compact commutative groups instead of finite groups (TLCCG for brevity, we assume our group G to be of this form for the whole section). In any case we will be able to translate some of the results and formulas of the last section.

Definition 9 (Characters for TLCCG). A character χ of G is a continuous morphism $\chi : G \to T$. Where T is the multiplicative group of complex numbers of modulus 1.

It can be proved that the characters form a (topological) group \tilde{G}.

If we fix the additive group $G = S^1$, we have the relation $\tilde{S}^1 \simeq \mathbb{Z}$. Where the characters are functions of the form e^{inx} for $n \in \mathbb{Z}$. It can be also shown
that those characters correspond to irreducible representations of S^1 as in the case of finite groups.

Now we can translate the Hermitian product given at the end of the last section into "continuous" terms. The size of the group $|G|$ became the length of S^1. The discrete sum over elements of G corresponds to the integration over S^1. The product then became:

$$\langle \alpha, \beta \rangle = \frac{1}{2\pi} \int_{S^1} \overline{\alpha(x)} \beta(x) dx \sim \frac{1}{|G|} \sum_{g \in G} \overline{\alpha(g)} \beta(g).$$

And our characters $\{e^{inx} | n \in \mathbb{N} \}$ are orthonormal with respect to this Hermitian product.

Fourier analysis does the very same thing, indeed it decomposes the Hilbert space of L^2-functions on S^1 with respect to a suitable inner product. The inner product and the orthonormal basis he found in the late 19th century are the same we found applying modern Representation Theory.

In a more abstract sense if we have a group G acting on the space X (we can think to G as a group of symmetries of G), then G acts also on the space $\mathcal{F}(X)$ of functions on X. If we know the irreducible representations of G then we can attempt to decompose $\mathcal{F}(X)$ into a direct sum of them, recovering in this way some information.

References
