What are... Catalan numbers?

Jean-Philippe Labbé

BMS
TU Berlin

22nd October 2010
Triangulations of a n-gon

In a letter to Christian Goldbach, Euler discussed about the following problem.

What are Catalan numbers?
Triangulations of a n-gon

In a letter to Christian Goldbach, Euler discussed about the following problem.

Problem (Euler, 1751)

How many triangulations of a n-gon are there?
In a letter to Christian Goldbach, Euler discussed about the following problem.

Problem (Euler, 1751)

How many triangulations of a n-gon are there?

<table>
<thead>
<tr>
<th>n</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δ</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>14</td>
<td>42</td>
<td>...</td>
</tr>
</tbody>
</table>
In a letter to Christian Goldbach, Euler discussed about the following problem.

Problem (Euler, 1751)

How many triangulations of a n-gon are there?

What are... Catalan numbers?
Triangulations of a n-gon

In a letter to Christian Goldbach, Euler discussed about the following problem.

Problem (Euler, 1751)

How many triangulations of a n-gon are there?

Finally, Euler gave the following formula:

$$\frac{2 \cdot 6 \cdot 10 \cdot 14 \cdot 18 \cdot 22 \cdots (4n - 10)}{2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot (n - 1)}$$

which is now called the $(n - 2)$nd **Catalan** number.
Triangulations of a n-gon

In a letter to Christian Goldbach, Euler discussed about the following problem.

Problem (Euler, 1751)

How many triangulations of a n-gon are there?

Finally, Euler gave the following formula:

\[
\frac{2 \cdot 6 \cdot 10 \cdot 14 \cdot 18 \cdot 22 \cdots (4n - 10)}{2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot (n - 1)}
\]

which is now called the $(n - 2)$nd Catalan number.

This number can be rewritten as

\[
C_n = \frac{1}{n + 1} \binom{2n}{n}.
\]
In 1758, Johann Segner gave a recurrence formula answering Euler’s problem:

\[C_n = \sum_{i=0}^{n-1} C_i C_{n-i-1}. \]
Segner’s recurrence formula

In 1758, Johann Segner gave a recurrence formula answering Euler’s problem:

\[C_n = \sum_{i=0}^{n-1} C_i C_{n-i-1}. \]
In 1758, Johann Segner gave a recurrence formula answering Euler’s problem:

\[C_n = \sum_{i=0}^{n-1} C_i C_{n-i-1}. \]

Then, Euler essentially solved the recurrence though without giving a complete proof.
Dissection of a \(n \)-gon

Problem (Johann Pfaff & Nicolaus Fuss (1791))

Let \(n, k \in \mathbb{N} \). How many dissections of a \((kn + 2) \)-gon using \((k + 2) \)-gons are there?

In 1791, Niklaus Fuss gave an answer using Segner's recurrence formula:

\[
C_{n,k} = \frac{1}{n} \binom{n}{k+1}
\]

These numbers are now known as Fuss-Catalan numbers.

What are... Catalan numbers?
Dissection of a n-gon

Problem (Johann Pfaff & Nicolaus Fuss (1791))

Let $n, k \in \mathbb{N}$. How many dissections of a $(kn + 2)$-gon using $(k + 2)$-gons are there?

In 1791, Niklaus Fuss gave an answer using Segner’s recurrence formula:

$$C_{n,k} = \frac{1}{n} \binom{2n}{n}$$
Dissection of a n-gon

Problem (Johann Pfaff & Nicolaus Fuss (1791))

Let $n, k \in \mathbb{N}$. How many dissections of a $(kn + 2)$-gon using $(k + 2)$-gons are there?

In 1791, Niklaus Fuss gave an answer using Segner’s recurrence formula:

$$C_{n,k} = \frac{1}{n} \binom{(k + 1)n}{n - 1}.$$
Dissection of a \(n \)-gon

Problem (Johann Pfaff & Nicolaus Fuss (1791))

Let \(n, k \in \mathbb{N} \). How many dissections of a \((kn + 2)\)-gon using \((k + 2)\)-gons are there?

In 1791, Niklaus Fuss gave an answer using Segner’s recurrence formula:

\[
C_{n,k} = \frac{1}{n} \binom{(k + 1)n}{n - 1}.
\]

These numbers are now known as **Fuss-Catalan** numbers.
In 1838, the *Journal de mathématiques pures et appliquées*, 3 involved many articles related to triangulations.
Further developments

In 1838, the *Journal de mathématiques pures et appliquées*, 3 involved many articles related to triangulations.

- Gabriel Lamé finally gave a complete proof of Euler-Segner formula;
- Eugène Charles Catalan further discussed on this subject;
- Olinde Rodrigues gave a direct and elementary correspondance with product of \((n+1)\) terms.

Liouville mentioned that Lamé was the first one to give such an elegant solution.

Finally, Eugen Netto seems to have coined the name Catalan numbers in his book *Lehrbuch der Combinatorik* (1900).
In 1838, the *Journal de mathématiques pures et appliquées*, involved many articles related to triangulations.

- Gabriel Lamé finally gave a complete proof of Euler-Segner formula;
- Eugène Charles Catalan further discussed on this subject;
- Olinde Rodrigues gave a direct and elementary correspondance with product of \((n+1)\) terms.

Liouville mentioned that Lamé was the first one to give such an elegant solution.

Finally, Eugen Netto seems to have coined the name Catalan numbers in his book *Lehrbuch der Combinatorik* (1900).
In 1838, the *Journal de mathématiques pures et appliquées*, 3 involved many articles related to triangulations.

- Gabriel Lamé finally gave a complete proof of Euler-Segner formula;
- Eugène Charles Catalan further discussed on this subject;
- Olinde Rodrigues gave a direct and elementary correspondence with product of \((n + 1)\) terms.

Liouville mentioned that Lamé was the first one to give such an elegant solution. Finally, Eugen Netto seems to have coined the name Catalan numbers in his book *Lehrbuch der Combinatorik* (1900).
In 1838, the *Journal de mathématiques pures et appliquées*, 3 involved many articles related to triangulations.

- Gabriel Lamé finally gave a complete proof of Euler-Segner formula;
- Eugène Charles Catalan further discussed on this subject;
- Olinde Rodrigues gave a direct and elementary correspondance with product of \((n + 1)\) terms.

Liouville mentioned that Lamé was the first one to give such an elegant solution.
In 1838, the *Journal de mathématiques pures et appliquées*, 3 involved many articles related to triangulations.

- Gabriel Lamé finally gave a complete proof of Euler-Segner formula;
- Eugène Charles Catalan further discussed on this subject;
- Olinde Rodrigues gave a direct and elementary correspondance with product of \((n + 1)\) terms.

Liouville mentioned that Lamé was the first one to give such an elegant solution.
Finally, Eugen Netto seems to have coined the name Catalan numbers in his book *Lehrbuch der Combinatorik* (1900).
Numerous Catalan structures

During the 20th century, many different objects were revealed to be enumerated by Catalan numbers:

- M. Kuchinski found 31 structures and 158 bijections between them (PhD thesis, 1977);
- R. Stanley counts 190 structures counted by Catalan numbers (as of 21/08/2010).

For example:
- Dyck paths (path from (0,0) to (n,n) always above diagonal, using East and North steps);
- Plane trees with n + 1 vertices;
- Dimension of the space of invariants of $\text{SL}(2, \mathbb{C})$ acting on the 2^n-th tensor power $T_{2^n}(V)$, of its two-dimensional representation V;
- Standard Young tableaux of shape $(n, n-1)$;
- Linear expansions of the poset $2 \times n$;

What are... Catalan numbers?
Numerous Catalan structures

During the 20th century, many different objects were revealed to be enumerated by Catalan numbers:

- M. Kuchinski found 31 structures and 158 bijections between them (PhD thesis, 1977);

What are... Catalan numbers?
Numerous Catalan structures

During the 20th century, many different objects were revealed to be enumerated by Catalan numbers:

- M. Kuchinski found 31 structures and 158 bijections between them (PhD thesis, 1977);
- R. Stanley counts 190 structures counted by Catalan numbers (as of 21/08/2010).

What are... Catalan numbers?
Numerous Catalan structures

During the 20th century, many different objects were revealed to be enumerated by Catalan numbers:

- M. Kuchinski found 31 structures and 158 bijections between them (PhD thesis, 1977);
- R. Stanley counts 190 structures counted by Catalan numbers (as of 21/08/2010).

For example
Numerous Catalan structures

During the 20th century, many different objects were revealed to be enumerated by Catalan numbers:

- M. Kuchinski found 31 structures and 158 bijections between them (PhD thesis, 1977);
- R. Stanley counts 190 structures counted by Catalan numbers (as of 21/08/2010).

For example

- Dyck paths (path from (0,0) to (n,n) always above diagonal, using East and North steps);
Numerous Catalan structures

During the 20th century, many different objects were revealed to be enumerated by Catalan numbers:

- M. Kuchinski found 31 structures and 158 bijections between them (PhD thesis, 1977);
- R. Stanley counts 190 structures counted by Catalan numbers (as of 21/08/2010).

For example

- Dyck paths (path from (0,0) to (n,n) always above diagonal, using \textit{East} and \textit{North} steps);
- Plane trees with $n + 1$ vertices;
Numerous Catalan structures

During the 20th century, many different objects were revealed to be enumerated by Catalan numbers:

- M. Kuchinski found 31 structures and 158 bijections between them (PhD thesis, 1977);
- R. Stanley counts 190 structures counted by Catalan numbers (as of 21/08/2010).

For example

- Dyck paths (path from (0,0) to (n,n) always above diagonal, using East and North steps);
- Plane trees with $n + 1$ vertices;
- Dimension of the space of invariants of $SL(2, \mathbb{C})$ acting on the $2n$-th tensor power $T^{2n}(V)$, of its two-dimensional representation V.
Numerous Catalan structures

During the 20th century, many different objects were revealed to be enumerated by Catalan numbers:

- M. Kuchinski found 31 structures and 158 bijections between them (PhD thesis, 1977);
- R. Stanley counts 190 structures counted by Catalan numbers (as of 21/08/2010).

For example

- Dyck paths (path from (0,0) to (n,n) always above diagonal, using East and North steps);
- Plane trees with \(n + 1 \) vertices;
- Dimension of the space of invariants of \(SL(2, \mathbb{C}) \) acting on the \(2n \)-th tensor power \(T^{2n}(V) \), of its two-dimensional representation \(V \);
- Standard Young tableaux of shape \((n, n-1) \);
Numerous Catalan structures

During the 20th century, many different objects were revealed to be enumerated by Catalan numbers:

- M. Kuchinski found 31 structures and 158 bijections between them (PhD thesis, 1977);
- R. Stanley counts 190 structures counted by Catalan numbers (as of 21/08/2010).

For example

- Dyck paths (path from (0,0) to (n,n) always above diagonal, using East and North steps);
- Plane trees with $n + 1$ vertices;
- Dimension of the space of invariants of $SL(2, \mathbb{C})$ acting on the $2n$-th tensor power $T^{2n}(V)$, of its two-dimensional representation V;
- Standard Young tableaux of shape $(n, n - 1)$;
- Linear expansions of the poset $2 \times n$;
A simple geometric proof

Bijective proof using triangulations

What are... Catalan numbers?
A simple geometric proof

Bijective proof using triangulations

\[(n + 2)\text{-gon} \quad \text{and} \quad (n + 3)\text{-gon}\]
A simple geometric proof

Bijective proof using triangulations

\[(n + 2)\text{-gon}\]

\(C_n\) objects

\[(n + 3)\text{-gon}\]

\(C_{n+1}\) objects
A simple geometric proof

Bijective proof using triangulations

\[(n + 2)\text{-gon} \]
\[C_n \text{ objects} \]

\[(n + 3)\text{-gon} \]
\[C_{n+1} \text{ objects} \]
A simple geometric proof

Bijective proof using triangulations

\[(n + 2)\text{-gon}\]
\[\text{(4n + 2)}C_n \text{ objects}\]

\[(n + 3)\text{-gon}\]
\[C_{n+1} \text{ objects}\]
A simple geometric proof

Bijective proof using triangulations

\[(n + 2)\text{-gon} \quad (n + 3)\text{-gon} \]

\[(4n + 2)C_n \text{ objects} \quad (n + 2)C_{n+1} \text{ objects} \]
A simple geometric proof

Bijective proof using triangulations

\[(n + 2)\text{-gon}\]
\[(4n + 2)C_n \text{ objects}\]

\[(n + 3)\text{-gon}\]
\[(n + 2)C_{n+1} \text{ objects}\]
So, we have the following relation

\[C_{n+1} = C_n (4n + 2)(n + 2) \]

with \(C_1 = 1 \), we get the binomial formula

\[C_n = \frac{1}{n+1} \binom{2n}{n} \]
So, we have the following relation

\[C_{n+1} = \frac{C_n(4n + 2)}{(n + 2)} \]
So, we have the following relation

\[C_{n+1} = \frac{C_n(4n + 2)}{(n + 2)} \]

with \(C_1 = 1 \), we get the binomial formula

\[C_n = \frac{1}{n + 1} \binom{2n}{n}. \]

CQFD
A more complicated example

What are... Catalan numbers?
A more complicated example