Network flows

Network

- Directed graph $G = (V, E)$
- Source node $s \in V$, sink node $t \in V$
- Edge capacities: $\text{cap} : E \to \mathbb{R}_{\geq 0}$

Flow: $f : E \to \mathbb{R}_{\geq 0}$ satisfying

1. Flow conservation constraints

$$\sum_{e : \text{target}(e) = v} f(e) = \sum_{e : \text{source}(e) = v} f(e), \text{ for all } v \in V \setminus \{s, t\}$$

2. Capacity constraints

$$0 \leq f(e) \leq \text{cap}(e), \text{ for all } e \in E$$
Maximum flow problem

- Excess:
 \[
 \text{excess}(v) = \sum_{e:\text{target}(e)=v} f(e) - \sum_{e:\text{source}(e)=v} f(e)
 \]

- If \(f \) is a flow, then \(\text{excess}(v) = 0 \), for all \(v \in V \setminus \{s, t\} \)

- Value of a flow: \(\text{val}(f) = \text{excess}(t) \)

- Maximum flow problem:
 \[
 \max\{\text{val}(f) \mid f \text{ is a flow in } G\}
 \]

- Can be seen as a linear programming problem.

Lemma.
If \(f \) is a flow in \(G \), then \(\text{excess}(t) = -\text{excess}(s) \).
Proof. We have

$$\text{excess}(s) + \text{excess}(t) = \sum_{v \in V} \text{excess}(v) = 0.$$

- First “=”: $\text{excess}(v) = 0$, for $v \in V \setminus \{s, t\}$
- Second “=”: For any edge $e = (v, w)$, the flow through e appears twice in the sum, positively in $\text{excess}(w)$ and negatively in $\text{excess}(v)$.
- A cut is a partition \((S, T)\) of \(V\), i.e., \(T = V \setminus S\).

- \((S, T)\) is an \((s, t)\)-cut if \(s \in S\) and \(t \in T\).

- Capacity of \((S, T)\)

\[
\text{cap}(S, T) = \sum_{E \cap (S \times T)} \text{cap}(e)
\]

- A cut is saturated by \(f\) if \(f(e) = \text{cap}(e)\), for all \(e \in E \cap (S \times T)\), and \(f(e) = 0\), for all \(e \in E \cap (T \times S)\).

Lemma.

If \(f\) is a flow and \((S, T)\) an \((s, t)\)-cut, then

\[
\text{val}(f) = \sum_{e \in E \cap (S \times T)} f(e) - \sum_{e \in E \cap (T \times S)} f(e) \leq \text{cap}(S, T).
\]

If \(S\) is saturated by \(f\), then \(\text{val}(f) = \text{cap}(S, T)\).
Proof. We have

\[\text{val}(f) = -\text{excess}(s) = - \sum_{u \in S} \text{excess}(u) \]

\[= \sum_{e \in E \cap (S \times T)} f(e) - \sum_{e \in E \cap (T \times S)} f(e) \]

\[\leq \sum_{e \in E \cap (S \times T)} \text{cap}(e) \]

\[= \text{cap}(S) \]

For a saturated cut, the inequality is an equality.
Remarks.

- A saturated cut proves the optimality of a flow.
- To show: for every maximal flow there is a saturated cut proving its optimality.
The residual network G_f for a flow f in $G = (V, E)$ indicates the capacity unused by f. It is defined as follows:

- G_f has the same node set as G.

- For every edge $e = (v, w)$ in G, there are up to two edges e' and e'' in G_f:
 1. if $f(e) < \text{cap}(e)$, there is an edge $e' = (v, w)$ in G_f with residual capacity $r(e') = \text{cap}(e) - f(e)$.
 2. if $f(e) > 0$, there is an edge $e'' = (w, v)$ in G_f with residual capacity $r(e'') = f(e)$.
Example

\[
\begin{array}{c}
\text{s} \\
\downarrow \quad 2/1 \\
\downarrow \\
\text{1/1} \\
\downarrow \\
\text{2/2} \\
\downarrow \\
\text{t} \\
\end{array}
\quad \quad
\begin{array}{c}
\text{s} \\
\downarrow \quad 2 \\
\downarrow \\
\text{1} \\
\downarrow \\
\text{2} \\
\downarrow \\
\text{t} \\
\end{array}
\]

\[
\begin{array}{c}
\text{s} \\
\downarrow \quad 2/2 \\
\downarrow \\
\text{2/2} \\
\downarrow \\
\text{t} \\
\end{array}
\quad \quad
\begin{array}{c}
\text{s} \\
\downarrow \quad 2 \\
\downarrow \\
\text{1} \\
\downarrow \\
\text{1} \\
\downarrow \\
\text{t} \\
\end{array}
\]

\[
\begin{array}{c}
\text{s} \\
\downarrow \quad 2/1 \\
\downarrow \\
\text{1} \\
\downarrow \\
\text{2} \\
\downarrow \\
\text{t} \\
\end{array}
\quad \quad
\begin{array}{c}
\text{s} \\
\downarrow \quad 2 \\
\downarrow \\
\text{2} \\
\downarrow \\
\text{t} \\
\end{array}
\]
Theorem.
Let f be an (s, t)-flow, let G_f be the residual graph w.r.t. f, and let S be the set of all nodes reachable from s in G_f.

- If $t \in S$, then f is not maximum.
- If $t \not\in S$, then S is a saturated cut and f is maximum.
Proof (part 1).

If \(t \) is reachable from \(s \) in \(G_f \), then \(f \) is not maximal.

- Let \(p \) be a simple path from \(s \) to \(t \) in \(G_f \).

- Let \(\delta \) be the minimum residual capacity of an edge in \(p \).

 By definition, \(r(e) > 0 \), for all edges \(e \) in \(G_f \). Therefore, \(\delta > 0 \).

- Construct a flow \(f' \) of value \(\text{val}(f) + \delta \):

 \[
 f'(e) = \begin{cases}
 f(e) + \delta, & \text{if } e' \in p \\
 f(e) - \delta, & \text{if } e'' \in p \\
 f(e), & \text{if neither } e' \text{ nor } e'' \text{ belongs to } p.
 \end{cases}
 \]

- \(f' \) is a flow and \(\text{val}(f') = \text{val}(f) + \delta \).
Maximum flows and the residual graph

Example.

```
  s  t  s  t
2/1 2/2 2/2
2/2 2/2 2/2
1/0
```
Proof (part 2).

If t is not reachable from s in G_f, then f is maximal.

- Let S be the set of nodes reachable from s in G_f, and let $T = V \setminus S$.

- There is no edge (v, w) in G_f with $v \in S$ and $w \in T$.

- Hence

 - $f(e) = \text{cap}(e)$, for any $e \in E \cap (S \times T)$, and
 - $f(e) = 0$, for any $e \in E \cap (T \times S)$.

- Thus S is saturated and, by the Lemma, f is maximal.
Max-Flow-Min-Cut Theorem

Theorem.
The maximum value of a flow is equal to the minimum capacity of an \((s, t)\)-cut:

\[
\max \{ \text{val}(f) \mid f \text{ is a flow} \} = \min \{ \text{cap}(S, T) \mid (S, T) \text{ is an } (s, t)\text{-cut} \}.
\]
Ford-Fulkerson Algorithm

1. Start with the zero flow, i.e., \(f(e) = 0 \), for all \(e \in E \).

2. Construct the residual network \(G_f \).

3. Check whether \(t \) is reachable from \(s \).
 - if not, stop.
 - if yes, increase flow along an augmenting path, and iterate.
Analysis

• Let $|V| = n$ and $|E| = m$.

• Each iteration takes time $O(n + m)$.

• If capacities are arbitrary reals, the algorithm may run forever.
Suppose capacities are integers, bounded by C.

$v^* :=$ value of maximum flow can be up to $(n - 1)C$.

All flows constructed are integral (proof by induction).

Every augmentation increases flow value by at least 1.

Running time is $O((n + m)v^*) \rightarrow \text{pseudo-polynomial}$.
Edmonds-Karp Algorithm

- Compute *shortest* augmenting path, i.e., a shortest path from s to t in the residual network G_f, where each edge has distance 1.

- Apply, e.g., breadth-first search

- Resulting maximum flow algorithm can be implemented in $O(nm^2)$.
Bipartite matching

- **G** = (V, E) undirected graph

- **Matching**: Subset of edges \(M \subseteq E \), no two of which share an endpoint.

- **Maximum matching**: Matching of maximum cardinality.

- **Perfect matching**: Every vertex in V is matched.

- **G bipartite**: \(V = A \cup B, A \cap B = \emptyset \), and each edge in E has one end in A and one end in B.
Example
Reduction to a network flow problem

- Add a source s and edges (s, a) for $a \in A$, with capacity 1.
- Add a sink t and edges (b, t) for $b \in B$, with capacity 1.
- Direct edges in G from A to B, with capacity 1.
- Integral flows f correspond to matchings M, with $\text{val}(f) = |M|$.
- Ford-Fulkerson takes time $O((m + n)n)$, since $\nu^* \leq n$.
- This can be improved to $O(\sqrt{n}m)$.
Marriage theorem

Theorem (Hall).
A bipartite graph $G = (A \cup B, E)$, with $|A| = |B| = n$, has a perfect matching if and only if for all $B' \subseteq B$, $|B'| \leq |N(B')|$, where $N(B')$ is the set of all neighbors of nodes in B'.
Proof

Let \((S, T)\) be an \((s, t)\)-cut in the corresponding network.

Let \(A_S = A \cap S\), \(A_T = A \cap T\), \(B_S = B \cap S\), \(B_T = B \cap T\).

\[
\text{cap}(S, T) = \sum_{e \in E \cap S \times T} \text{cap}(e)
\]
\[
= |A_T| + |B_S| + |N(B_T) \cap A_S|
\]
\[
\geq |N(B_T) \cap A_T| + |N(B_T) \cap A_S| + |B_S|
\]
\[
= |N(B_T)| + |B_S|
\]
\[
\geq |B_T| + |B_S| = |B| = n
\]

By the max-flow min-cut theorem, the maximum flow is at least \(n\).
König’s theorem

- $G = (V, E)$ undirected graph

- $C \subseteq V$ is a vertex cover if every edge of G has at least one end in C.

- Lemma: For any matching M and any vertex cover C, we have $|M| \leq |C|$.

- Theorem (König). For a bipartite graph G,

$$\max \{|M| : M \text{ a matching }\} = \min \{|C| : C \text{ a vertex cover }\}.$$
Network connectivity

- $G = (V, E)$ directed graph, $s, t \in V, s \neq t$.

- **Theorem (Menger).** The maximum number of arc-disjoint paths from s to t equals the minimum number of arcs whose removal disconnects all paths from node s to node t.

- **Theorem (Menger).** The maximum number of node-disjoint paths from s to t equals the minimum number of nodes whose removal disconnects all paths from node s to node t.
Duality in linear programming

- Primal problem

\[z_P = \max \{ c^T x \mid Ax \leq b, x \in \mathbb{R}^n \} \quad (P) \]

- Dual problem

\[w_D = \min \{ b^T u \mid A^T u = c, u \geq 0 \} \quad (D) \]
General form

<table>
<thead>
<tr>
<th>(P)</th>
<th>(D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\min c^T x)</td>
<td>(\max u^T b)</td>
</tr>
<tr>
<td>w.r.t. (A_{i^*} x \geq b_i, \ i \in M_1)</td>
<td>w.r.t (u_i \geq 0, \ i \in M_1)</td>
</tr>
<tr>
<td>(A_{i^*} x \leq b_i, \ i \in M_2)</td>
<td>(u_i \leq 0, \ i \in M_2)</td>
</tr>
<tr>
<td>(A_{i^*} x = b_i, \ i \in M_3)</td>
<td>(u_i \text{ free}, \ i \in M_3)</td>
</tr>
<tr>
<td>(x_j \geq 0, \ j \in N_1)</td>
<td>((A_{*j})^T u \leq c_j, \ j \in N_1)</td>
</tr>
<tr>
<td>(x_j \leq 0, \ j \in N_2)</td>
<td>((A_{*j})^T u \geq c_j, \ j \in N_2)</td>
</tr>
<tr>
<td>(x_j \text{ free}, \ j \in N_3)</td>
<td>((A_{*j})^T u = c_j, \ j \in N_3)</td>
</tr>
</tbody>
</table>
Duality theorems

- **Weak duality** If x^* is primal and u^* is dual feasible, then
 \[c^T x^* \leq z_P \leq w_D \leq b^T u^*. \]

- **Strong duality** If both (P) and (D) have a finite optimum, then $z_P = w_D$.

- **Only four possibilities**
 1. z_P and w_D are both finite and equal.
 2. $z_P = +\infty$ and (D) is infeasible.
 3. $w_D = -\infty$ and (P) is infeasible.
 4. (P) and (D) are both infeasible.
Maximum flow and duality

- **Primal problem**

 \[
 \max \sum_{e: \text{source}(e) = s} x_e - \sum_{e: \text{target}(e) = s} x_e \\
 \text{s.t.} \sum_{e: \text{target}(e) = v} x_e - \sum_{e: \text{source}(e) = v} x_e = 0, \quad \forall v \in V \setminus \{s, t\} \\
 0 \leq x_e \leq c_e, \quad \forall e \in E
 \]

- **Dual problem**

 \[
 \min \sum_{e \in E} c_e y_e \\
 \text{s.t.} \quad z_w - z_v + y_e \geq 0, \quad \forall e = (v, w) \in E \\
 z_s = 1, \quad z_t = 0 \\
 y_e \geq 0, \quad \forall e \in E
 \]
Maximum flow and duality

- Let \((y^*, z^*)\) be an optimal solution of the dual.

- Define \(S = \{v \in V \mid z_v^* > 0\}\) and \(T = V \setminus S\).

- \((S, T)\) is a minimum cut.

- Max-flow min-cut theorem is a special case of linear programming duality.
A matrix A is **totally unimodular** if each subdeterminant of A is 0, +1 or −1.

Theorem (Hoffman and Kruskal). $A \in \mathbb{Z}^{m \times n}$ is totally unimodular iff the polyhedron $P = \{x \in \mathbb{R}^n \mid Ax \leq b, x \geq 0\}$ is integral, i.e., $P = \text{conv}(P \cap \mathbb{Z}^n)$, for any $b \in \mathbb{Z}^m$.

Corollary. $A \in \mathbb{Z}^{m \times n}$ is totally unimodular iff for any $b \in \mathbb{Z}^m, c \in \mathbb{Z}^n$ both optima in the LP duality equation

$$\max\{c^T x \mid Ax \leq b, x \geq 0\} = \min\{b^T u \mid A^T u \geq c, u \geq 0\}$$

are attained by integral vectors (if they are finite).

Proposition. The constraint matrix A arising in a maximum flow problem is totally unimodular.
References

