Mixed cycles

For a given choice of alignment edges we can efficiently check whether the connected components allow such a partial order by searching for a *mixed cycle* Z, which is a cycle in the extended alignment graph $G = (V, E, H)$:

A mixed cycle contains at least one arc $a \in H$ and hence at least two alignment edges $e, f \in E$.
A mixed cycle Z is called \textit{critical}, if all nodes in $Z \cap a^p$ occur consecutively in Z, for all sequences $a^p \in A$. That is, the cycle enters and leaves each sequence at most once.

We have the following result:

\textbf{Lemma.} A subset $T \subseteq E$ is a trace, if and only if $G' = (V, T, H)$ does not contain a critical mixed cycle.

\textbf{Proof.} Exercise.

Given edge weights for the alignment edges, we can reformulate the Maximum Weight Trace problem as follows:

\textbf{Problem.} Given an extended alignment graph $G = (V, E, H)$, find a subset $T \subseteq E$ with maximal weight such that $G = (V, T, H)$ does not contain a mixed cycle.
How to encode the Maximum Weight Trace Problem problem as an integer LP?

Assume we are given an extended alignment graph $G = (V, E, H)$, with $E = \{e_1, e_2, \ldots, e_n\}$.

Each edge $e_i \in E$ is represented by a variable x_i, that will take on value 1, if e_i belongs to the best scoring trace, and 0, if not.

Hence, our variables are x_1, x_2, \ldots, x_n.

To ensure that the variables are \textit{binary}, we add constraints $x_i \leq 1$ and $x_i \geq 0$ and require the x_i to be integer.

Additional inequalities must be added to prevent mixed cycles.
For example, consider:

There are three possible critical mixed cycles in the graph, one using e_1 and e_3, one using e_2 and e_3, and one using e_2 and e_4. We add the constraints

$$x_1 + x_3 \leq 1,$$

$$x_2 + x_3 \leq 1,$$

$$x_2 + x_4 \leq 1.$$

to ensure that none of the critical mixed cycles is realized.
For example, consider:

\[
\begin{array}{c}
A \rightarrow U \rightarrow G \rightarrow C \\
\downarrow e1 \quad \downarrow e2 \\
U \rightarrow U \rightarrow C \rightarrow U \\
\downarrow e3 \\
C \rightarrow U \rightarrow C \rightarrow U
\end{array}
\]

with three edges \(e_1, e_2,\) and \(e_3\) that all participate in a critical mixed cycle. The constraint

\[
x_1 + x_2 + x_3 \leq 2
\]

prevents them from being realized simultaneously.
In summary, given an extended alignment graph $G = (V, E, H)$ with $E = \{e_1, e_2, \ldots, e_n\}$, and a score ω defined for every edge $e_i \in E$.

We can obtain a solution to the MWT problem by solving the following ILP:

$$\max \sum_{e_i \in E} \omega_i x_i$$

subject to

$$\sum_{e_i \in C \cap E} x_i \leq |C \cap E| - 1 \quad \text{for all critical mixed cycles } C$$

$$x_i \in \{0, 1\} \quad \text{for all } i = 1, \ldots, n$$

Now we discuss an extension of this ILP formulation. [Remember: one advantage of ILPs is that problem variants/modifications can often be expressed quite easily.]
Given a set of sequences $A = \{a^1, a^2, \ldots, a^r\}$. The complete alignment graph is usually too big to be useful.

Often, we are given a set of block matches between pairs of the sequences a^p and a^q, where a match relates a substring of a^p and a substring of a^q via a run of non-crossing edges (called a block), as shown here for two blocks D and D':

```
A → U → G → C → U → G → C
G → U → C → U → G → U → C
C → U → G → A → U → G → A
```

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th>D'</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>D</td>
</tr>
</tbody>
</table>

In the following, we will assume that the edges of the alignment graph $G = (V, E)$ were obtained from a set of matches, and we are given a partition of E into blocks. [Note that overlapping matches lead to a multigraph. Fortunately, this does not cause problems in our formulation.]
Given a partition \mathcal{D} of the edges of $G = (V, E)$ obtained from a set of matches. Then we require that for any given block $D \in \mathcal{D}$, either all edges in D are realized, or none. Each block D is assigned a positive weight $\omega(D)$.

Problem. Given an extended alignment graph $G = (V, E, H)$ and a partition \mathcal{D} of E into blocks with weights $\omega(D)$ for all $D \in \mathcal{D}$. The *generalized maximum trace problem (GMT)* is to determine a set $M \subseteq \mathcal{D}$ of maximum total weight such that the edges in $\bigcup_{D \in M} D$ do not induce a mixed cycle on G.

Instead of having a variable for every edge in an extended alignment graph, we now have a variable for every set of the partition \mathcal{D}.

Otherwise the ILP remains the same.
We define a surjective function \(v : E \rightarrow D \), which maps each edge \(e \in E \) to the block \(d \in D \) in which \(e \) is contained and define

\[
v(X) = \bigcup_{e \in X} v(e) \quad \text{for } X \subseteq E .
\]

It is now easy to formulate GMT as an integer linear program. For every \(d \in D \) we have a binary variable \(x_d \in \{0, 1\} \) indicating whether \(d \) is in the solution or not. Then the GMT-problem can be written as:

\[
\begin{align*}
\max & \sum_{d \in D} \omega_d \cdot x_d \\
\text{s.t.} & \sum_{d \in v(C \cap E)} x_d \leq |v(C \cap E)| - 1 \quad \forall \text{ critical mixed cycles } C \text{ in } G \\
& x_d \in \{0, 1\} \quad \forall d \in D
\end{align*}
\]