Constraint Programming
Constraint Programming

- **Basic idea:** Programming with constraints, i.e. constraint solving embedded in a programming language

- **Constraints:** linear, non-linear, finite domain, Boolean, . . .

- **Programming:** logic, functional, object-oriented, imperative, concurrent, . . .

- **Systems:** Prolog III/IV, CHIP, ECLIPSE, ILOG, OCRE, NCL, . . .
Constraint satisfaction problem (CSP)

- n variables x_1, \ldots, x_n

- For each variable x_j a finite domain D_j of possible values, often $D_j \subseteq \mathbb{N}$.

- m constraints C_1, \ldots, C_m, where $C_i \subseteq D_{i_1} \times \ldots \times D_{i_{k_i}}$ is a relation between k_i variables $x_{i_1}, \ldots, x_{i_{k_i}}$. Write also $C_{i_1, \ldots, i_{k_i}}$.

- A solution is an assignment of a value D_j to x_j, for each $j = 1, \ldots, n$, such that all relations C_i are satisfied.
Decide whether a map can be colored by 3 colors such that neighboring regions get different colors.

For each region a variable x_j with domain $D_j = \{\text{red, green, blue}\}$.

For each pair of variables x_i, x_j corresponding to two neighboring regions, a constraint $x_i \neq x_j$.

NP-complete problem.
• Instantiate the variables in some order.

• As soon as all variables in a constraint are instantiated, determine its truth value.

• If the constraint is not satisfied, backtrack to the last variable whose domain contains unassigned values, otherwise continue instantiation.
1. If the domain D_j of a variable x_j contains a value v that does not satisfy C_j, this will be the cause of repeated instantiation followed by immediate failure.

2. If we instantiate the variables in the order x_1, x_2, \ldots, x_n, and for $x_i = v$ there is no value $w \in D_j$, for $j > i$, such that $C_{ij}(v, w)$ is satisfied, then backtracking will try all values for x_j, fail and try all values for x_{j-1} (and for each value of x_{j-1} again all values for x_j), and so on until it tries all combinations of values for x_{i+1}, \ldots, x_j before finally discovering that v is not a possible value for x_j.

The identical failure process may be repeated for all other sets of values for $x_1, \ldots, x_{j-1} \text{ with } x_i = v$.
Local Consistency

- Consider CSP with unary and binary constraints only.

- Constraint graph G
 - For each variable x_i a node i.
 - For each pair of variables x_i, x_j occurring in the same binary constraint, two arcs (i, j) and (j, i).

- The node i is consistent if $C_i(v)$, for all $v \in D_i$.

- The arc (i, j) is consistent, if for all $v \in D_i$ with $C_i(v)$ there exists $w \in D_j$ with $C_j(w)$ such that $C_{ij}(v, w)$.

- The graph is node consistent resp. arc consistent if all its nodes (resp. arcs) are consistent.
Algorithm AC-3 (Mackworth 77):

begin
 for $i \leftarrow 1$ until n do $D_i \leftarrow \{v \in D_i \mid C_i(v)\}$;
 $Q \leftarrow \{(i,j) \mid (i,j) \in \text{arcs}(G), i \neq j\}$
 while Q not empty do
 begin
 select and delete an arc (i,j) from Q;
 if REVISE(i,j) then
 $Q \leftarrow Q \cup \{(k,i) \mid (k,i) \in \text{arcs}(G), k \neq i, k \neq j\}$
 end
 end
end
procedure REVISE\(i,j\):
begin
 DELETE ← false
 for each \(v \in D_i\) do
 if there is no \(w \in D_j\) such that \(C_{ij}(v,w)\) then
 begin
 delete \(v\) from \(D_i\);
 DELETE ← true
 end;
 return DELETE
end
Crossword Puzzle

Word List
Aft
Aft
Ale
Eel
Hike
Eel
Hoses
Heel
Knot
Knot
Laser
Laser
Lee
Lee
Line
Line
Sails
Sails
Sheet
Sheet
Steer
Steer
Tie
Tie

Dechter 92
Apply local consistency dynamically during search

- **Forward Checking**: After assigning to x the value v, eliminate for all uninstantiated variables y the values from D_y that are incompatible with v.

- **Partial Lookahead**: Establish arc consistency for all (y, y'), where y, y' have not been instantiated yet and y will be instantiated before y'.

- **Full Lookahead**: Establish arc consistency for all uninstantiated variables.
n-Queens Problem

Place n queens in an $n \times n$ chessboard such that no two queens threaten each other.

- **Variables** x_i, $i = 1, \ldots, n$ with domain $D_i = \{1, \ldots, n\}$ indicating the column of the queen in line i.

- **Constraints**
 - $x_i \neq x_j$, for $1 \leq i < j \leq n$ (vertical)
 - $x_i \neq x_j + (j - i)$, for $1 \leq i < j \leq n$ (diagonal 1)
 - $x_i \neq x_j - (j - i)$, for $1 \leq i < j \leq n$ (diagonal 2)
Forward Checking

```
<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Q</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>X</td>
<td>X</td>
<td>Q</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Q</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>X</td>
<td>Q</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>7</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>8</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
```

Values:
- 1A
- 2C
- 3E
- 4BG
- 5B
- 6D
- 5D
- 4H
- 5B
- 6D
- 7F
- 6 (no more value)
- 5D
- 4 (no more value)
- 3F

4013
Partial Lookahead

1A
2C
3E (delete 4B and 5D)
4GH
5B (no value left for 6)
3F (delete 6D and 6E)
4BH (failed, backtrack to 4)
3G (delete 5D and 7E)
4B

No value for queen 6
Typical structure of a constraint program

- Declare the variables and their domains
- State the constraints
- Enumeration (labeling)

The constraint solver achieves only local consistency.

In order to get global consistency, the domains have to be enumerated.
Labeling

- Assigning to the variables their possible values and constructing the corresponding search tree.

Important questions

1. In which order should the variables be instantiated (variable selection) ?
2. In which order should the values be assigned to a selected variable (value selection) ?

Static vs. dynamic orderings

Heuristics
Dynamic variable/value orderings

- **Variable orderings**
 - Choose the variable with the smallest domain “first fail”
 - Choose the variable with the smallest domain that occurs in most of the constraints “most constrained”
 - Choose the variable which has the smallest/largest lower/upper bound on its domain.

- **Value orderings**
 - Try first the minimal value in the current domain.
 - Try first the maximal value in the current domain.
 - Try first some value in the middle of the current domain.
Constraint programming systems

<table>
<thead>
<tr>
<th>System</th>
<th>Avail.</th>
<th>Constraints</th>
<th>Language</th>
<th>Web site</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-prolog</td>
<td>comm.</td>
<td>FinDom</td>
<td>Prolog</td>
<td>www.probp.com</td>
</tr>
<tr>
<td>CHIP</td>
<td>comm.</td>
<td>FinDom, Boolean, Linear \mathbb{Q} Hybrid</td>
<td>Prolog, C, C++</td>
<td>www.cosytec.com</td>
</tr>
<tr>
<td>Choco</td>
<td>free</td>
<td>FinDom</td>
<td>Claire</td>
<td>choco-constraints.net</td>
</tr>
<tr>
<td>Eclipse</td>
<td>free non-profit</td>
<td>FinDom, Hybrid</td>
<td>Prolog</td>
<td>www.icparc.ic.ac.uk/eclipse/</td>
</tr>
<tr>
<td>GNU Prolog</td>
<td>free</td>
<td>FinDom</td>
<td>Prolog</td>
<td>gnu-prolog.inria.fr</td>
</tr>
<tr>
<td>IF/Prolog</td>
<td>comm.</td>
<td>FinDom, Boolean, Linear \mathbb{R}</td>
<td>Prolog</td>
<td>www.ifcomputer.co.jp</td>
</tr>
<tr>
<td>ILOG</td>
<td>comm.</td>
<td>FinDom, Hybrid</td>
<td>C++, Java</td>
<td>www.ilog.com</td>
</tr>
<tr>
<td>NCL</td>
<td>comm.</td>
<td>FinDom</td>
<td></td>
<td>www.enginest.com</td>
</tr>
<tr>
<td>Mozart</td>
<td>free</td>
<td>FinDom</td>
<td>Oz</td>
<td>www.mozart-oz.org</td>
</tr>
<tr>
<td>Prolog IV</td>
<td>comm.</td>
<td>FinDom, nonlinear intervals</td>
<td>Prolog</td>
<td>www.prologia.fr</td>
</tr>
<tr>
<td>Sicstus</td>
<td>comm.</td>
<td>FinDom, Boolean, linear \mathbb{R}/\mathbb{Q}</td>
<td>Prolog</td>
<td>www.sics.se/sicstus/</td>
</tr>
</tbody>
</table>
Practical Problem Solving

- Model building: Language
- Model solving: Algorithms
IP vs. CP: Language

<table>
<thead>
<tr>
<th></th>
<th>IP</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variables</td>
<td>0-1</td>
<td>Finite domain</td>
</tr>
<tr>
<td>Constraints</td>
<td>Linear equations and inequalities</td>
<td>Arithmetic constraints</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Symbolic/global constraints</td>
</tr>
</tbody>
</table>

Example

- **Variables**: $x_1, \ldots, x_n \in \{0, \ldots, m - 1\}$
- **Constraint**: Pairwise different values
Example (2)

- Integer programming: Only linear equations and inequalities
 \[x_i \neq x_j \iff x_i < x_j \lor x_i > x_j \]
 \[x_i \leq x_j - 1 \lor x_i \geq x_j + 1 \]

- Eliminating disjunction
 \[x_i - x_j + 1 \leq my_i, \quad x_j - x_i + 1 \leq my_j, \quad y_i + y_j = 1, \]
 \[y_i, y_j \in \{0, 1\}, \quad 0 \leq x_i, x_j \leq m - 1, \]

- New variables: \(z_{ik} = 1 \) iff \(x_i = k \), \(i = 1, ..., n \), \(k = 0, ..., m - 1 \)
 \[z_{i0} + \cdots + z_{im-1} = 1, \quad z_{1k} + \cdots + z_{nk} \leq 1, \]

- Constraint programming \(\rightsquigarrow \) symbolic constraint
 \[\text{alldifferent}(x_1, ..., x_n) \]
Symbolic/global constraints

- **alldifferent**([x₁, ..., xₙ])

- **cumulative**([s₁, ..., sₙ], [d₁, ..., dₙ], [r₁, ..., rₙ], c, e).

 ▶ n tasks: starting time sᵢ, duration dᵢ, resource demand rᵢ

 ▶ resource capacity c, completion time e.

![Examples of cumulative constraints](cumulative_constraints.png)
Diffn Constraint

Beldiceanu/Contejean'94

- Nonoverlapping of n-dimensional rectangles $[O_1, \ldots, O_n, L_1, \ldots, L_n]$, where O_i resp. L_i denotes the origin resp. length in dimension i

- $\text{diffn}([[O_{11}, \ldots, O_{1n}, L_{11}, \ldots, L_{1n}], \ldots, [O_{m1}, \ldots, O_{mn}, L_{m1}, \ldots, L_{mn}]])$

- General form: $\text{diffn}(\text{Rectangles, Min_Vol, Max_Vol, End, Distances, Regions})$
IP vs. CP: Algorithms

<table>
<thead>
<tr>
<th></th>
<th>IP</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inference</td>
<td>Linear programming</td>
<td>Domain filtering</td>
</tr>
<tr>
<td></td>
<td>Cutting planes</td>
<td>Constraint propagation</td>
</tr>
<tr>
<td>Search</td>
<td>Branch-and-relax</td>
<td>Branch-and-bound</td>
</tr>
<tr>
<td></td>
<td>Branch-and-cut</td>
<td></td>
</tr>
<tr>
<td>Bounds on</td>
<td>Two-sided</td>
<td>One-sided</td>
</tr>
<tr>
<td>the objective</td>
<td>function</td>
<td></td>
</tr>
<tr>
<td>function</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Local vs. global reasoning

Linear arithmetic constraints

\[3x + y \leq 7, \]
\[3y + x \leq 7, \]
\[x + y = z, \]
\[x, y \in \{0, ..., 3\} \]

Global reasoning in CP ? \(\leadsto \) global constraints !

CP \(x, y \leq 2, z \leq 4 \)
LP \(x, y \leq 2, z \leq 3.5 \)
IP \(x, y \leq 2, z \leq 3 \)
Global reasoning in CP

Example

- \(x_1, x_2, x_3 \in \{0, 1\} \)
- pairwise different values
- **Local** consistency: 3 disequalities: \(x_1 \neq x_2, x_1 \neq x_3, x_2 \neq x_3 \)
 \(\leadsto x_1, x_2, x_3 \in \{0, 1\} \), i.e., no domain reduction is possible
- **Global** constraint: \texttt{alldifferent}(x_1, x_2, x_3)
 \(\leadsto \) detects infeasibility (uses bipartite matching)

Global reasoning in CP: inside global constraints
Summary

<table>
<thead>
<tr>
<th>Language</th>
<th>ILP</th>
<th>CP(FD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear arithmetic</td>
<td>—</td>
<td>Arithmetic constraints</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Symbolic constraints</td>
</tr>
<tr>
<td>Algorithms</td>
<td>Global consistency (LP)</td>
<td>Local consistency</td>
</tr>
<tr>
<td></td>
<td>Cutting planes</td>
<td>Domain reduction</td>
</tr>
<tr>
<td></td>
<td>Branch-and-bound</td>
<td>User-defined enumeration</td>
</tr>
<tr>
<td></td>
<td>Branch-and-cut</td>
<td></td>
</tr>
</tbody>
</table>

- Symbolic constraints \Rightarrow more expressivity + more efficiency
- Unifying framework for CP and IP: *Branch-and-infer* (Bockmayr/Kasper 98)
Discrete Tomography

- Binary matrix with \(m \) rows and \(n \) columns
 - Horizontal projection numbers \((h_1, \ldots, h_m)\)
 - Vertical projection numbers \((v_1, \ldots, v_n)\)

- Properties
 - Horizontal convexity \((h)\)
 - Vertical convexity \((v)\)
 - Connectivity (polyomino) \((p)\)

- Complexity (Woeginger’01)
 - Polynomial: \((\)\), \((p,v,h)\)
 - NP-complete: \((p,v)\), \((p,h)\), \((v,h)\), \((v)\), \((h)\), \((p)\)
IP Model

- **Variables**

 \[x_{ij} = \begin{cases}
 0 & \text{cell}(i,j) \text{ is labeled white} \\
 1 & \text{cell}(i,j) \text{ is labeled black}
 \end{cases} \]

- **Constraints I: Projections**

 \[\sum_{j=1}^{n} x_{ij} = h_i, \quad \sum_{i=1}^{m} x_{ij} = v_j \]

- **Constraints II: Convexity**

 \[h_i x_{ik} + \sum_{l=k+h_i}^{n} x_{il} \leq h_i, \quad v_j x_{kj} + \sum_{l=k+v_j}^{m} x_{lj} \leq v_j, \]
Constraints III: Connectivity

\[\sum_{k=j}^{j+h_i-1} x_{ik} - \sum_{k=j}^{j+h_i-1} x_{(i+1)k} \leq h_i - 1 \]

Various linear arithmetic models possible, e.g. convexity

Enormous differences in size and running time, e.g. 1 day vs. < 1 sec

Large number of constraints (~ 3mn in the above model)
Finite Domain Model

- **Variables**
 - x_i start of horizontal convex block in row i, for $1 \leq i \leq m$
 - y_j start of vertical convex block in column j, for $1 \leq j \leq n$

- **Domain**
 - $x_i \in [1, \ldots, n - h_i + 1]$, for $1 \leq i \leq m$
 - $y_j \in [1, \ldots, m - v_j + 1]$, for $1 \leq j \leq n$
Conditional Propagation

- Projection/Convexity modelled by FD variables

- Compatibility of x_i and y_j

 $$x_i \leq j < x_i + h_i \iff y_j \leq i < y_j + v_j$$

 for $1 \leq i \leq m$ and $1 \leq j \leq n$

- Conditional propagation

 if $x_i \leq j$ then (if $j < x_i + h_i$ then $(y_j \leq i, i < y_j + v_j)$)
Connectivity

Block i must start before the end of block $i + 1$

$$x_i \leq x_{i+1} + h_{i+1} - 1, \text{ for } 1 \leq i \leq m - 1$$

Block $i + 1$ must start before the end of block i

$$x_{i+1} \leq x_i + h_i - 1, \text{ for } 1 \leq i \leq m - 1$$