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Chapter 1

Introduction and Overview

1.1 Overview

Markov random processes

Space Discrete Space Continuous

Time Discrete Markov chain Time-discretized Brownian / Langevin Dynamics
Time Continuous Markov jump process Brownian / Langevin Dynamics

Corresponding Transport equations

Space Discrete Space Continuous

Time Discrete Chapman-Kolmogorow Fokker-Planck
Time Continuous Master Equation Fokker-Planck

Examples Space discrete, time discrete: Markov state models of MD, Phylo-
genetic trees/molecular evolution

time cont: Chemical Reactions

Space cont, time disc: Single Particle Tracking / FRET Experiments, Financial
systems

time cont: Particle motion, Molecular Dynamics, Weather system

1.2 Some terms from measure theory

Samples / Outcomes ω ∈ Ω is a sample or outcome from sample space Ω. A
sample is the result of a single execution of the model.
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CHAPTER 1. INTRODUCTION AND OVERVIEW 6

Examples:

Coin toss: Ω = {heads, tails}
Die roll: Ω = {1, 2, 3, 4, 5, 6}
Roulette: Ω = {0, ..., 36}
Gaussian random variable: Ω = R.

Events An event E is a set containing zero or more outcomes. Events are de-
fined because in many situations individual outcomes are of little practical use.
More complex events are defined in order to characterize groups of outcomes.

Examples:

Die roll: even = {2, 4, 6}, odd = {1, 3, 5}
Events may be non-exclusive, e.g.

Roulette: red = {1, 3, 5, ...}, black = {2, 4, 6, ...}, 0 = {0}, even, odd, ...

All intervals on the real axis: {ix1,x2 = [x1, x2] | x1 ≤ x2; x1, x2 ∈ R}

Algebra In stochastics, the term algebra is used to refer to the event set above,
and it is a collection of sets of samples ω with particular properties. It is not
related to the term algebra as a field of mathematics.

In order to define algebras, we first introduce the term Power Set: Given a set
Ω, the power set Ω, written P(Ω) or 2Ω, is the set of all subsets of Ω, including
the empty set ∅ and Ω itself. Thus, the elements of P(Ω) contain all events
that could possibly defined for the sample space Ω. For example the elements
of the powerset of {x, y, z} are:

σ-algebra Definition (σ-algebra): over a set Ω is a nonempty collection Σ of sub-
sets of Ω (including Ω itself) that is closed under complementation and countable
unions of its members. It is a Boolean algebra, completed to include countably infinite
operations.
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Example: if Ω = {a, b, c, d}, one possible σ algebra on Ω is:

Σ = {∅, {a, b}, {c, d}, {a, b, c, d}}.

Measure A measure on a set is a systematic way to assign to each suitable
subset a number, intuitively interpreted as the size of the subset. In this sense,
a measure is a generalization of the concepts of length, area, volume, et cetera. A
particularly important example is the Lebesgue measure on a Euclidean space,
which assigns the conventional length, area and volume of Euclidean geometry
to suitable subsets of R

n, n = 1, 2, 3, .... For instance, the Lebesgue measure
of [0,1] in the real numbers is its length in the everyday sense of the word,
specifically 1. Measures are monotonic in the sense that the measure of a set is
nondecreasing when the set is augmented:

Definition (measure): Let Σ be a σ-algebra over a set Ω. A function µ : Σ → R is
called a measure if it satisfies the following properties:

1. Non-negativity:
µ(E) ≥ 0 ∀E ∈ Σ.

2. Null empty set:
µ(∅) = 0.

3. Countable additivity (or σ-additivity): For all countable collections {Ei} of pair-
wise disjoint sets in Σ:

µ
(⋃

i∈I

Ei

)

= ∑
i∈I

µ(Ei).
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Measure space Definition (measure space): is a triple (Ω, Σ, µ) containing a
nonempty set Ω a σ-Algebra Σ on Ω and a measure µ : Σ → R

1.3 Probabilities, probability spaces and discrete ran-

dom variables

Probability measure Definition (probability measure): P is a measure with the
additional property that µ(Σ) = 1.

This can be ensured by normalizing another measure:

P(E) =
µ(E)

µ(Σ)
.

We call P(E) the probability of E. As a consequence, the measure of the com-
plement is:

P(EC) = 1 − P(E). ∀E ∈ Σ

In the case that all samples are equally likely, the probability of a particular
event E is given by the ratio of the number of combinations leading to E over
the total number of combinations:

P(E) =
nE

ntot

For example consider drawing black or white balls from a large urn given that
for each draw the probability of black or white is equal. We are interested in the
probability of getting k black balls in n ≥ k draws, where we are not interested
in the sequence of the draw. The number of ways to draw k black balls is given
by the binomial coefficient:

(
n

k

)

=
n!

k! (n − k)!
=

n · (n − 1) · · · (n − k + 1)

k · (k − 1) · · · 1
if k ∈ {0, 1, . . . , n},

The total number of combinations is 2n, and thus the probability is

P(k) = 2−n

(
n

k

)
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Conditional Probability Definition (conditional probability): The conditional
probability of event A given B is given by

P(A | B) =
P(A ∩ B)

P(B)
, (whence P(B) 6=0)

Here A ∩ B is the intersection of A and B, that is, it is the event that both events
A and B occur.

Independence Definition (independence): Two events A and B are independent
if and only if

P(A ∩ B) = P(A)P(B)

More generally, any collection of events-possibly more than just two of them-are mu-
tually independent if and only if for any finite subset A1, ..., An of the collection we
have

P

(
n⋂

i=1

Ai

)

=
n

∏
i=1

P(Ai).

This is called the multiplication rule for independent events.

Probability space Definition (probability space): is a measure space (Ω, Σ, P)
with a probability measure P. Ω is called sample space and E ∈ Σ are the events. EC

is called counter event. P(E) is called probability and P(EC) counter probability of E.

Once the probability space is established, it is assumed that “nature” makes its
move and selects a single outcome, ω, from the sample space Ω. Then we say
that all events from F containing the selected outcome ω (recall that each event
is a subset of Ω) “have occurred”. The selection performed by nature is done
in such a way that if we were to repeat the experiment an infinite number of
times, the relative frequencies of occurrence of each of the events would have
coincided with the probabilities prescribed by the function P.

1.4 Random Variables

Given a probabilty space (Ω, Σ, P), a discrete random variable X(ω) : Ω → R

is a map from outcomes to values. We will first take a look at discrete random
variables

Example 1: Coin toss. State space Ω = {heads, tails}. We can introduce a
random variable Y as follows:



CHAPTER 1. INTRODUCTION AND OVERVIEW 10

Y(ω) =

{

1, if ω = heads,

0, if ω = tails.

Example 2: Die roll. State space Ω = {1, 2, 3, 4, 5, 6}. The “even” function e(ω)
is given by

e(ω) =

{

0, if one of {1,3,5} is rolled,

1, if one of {2,4,6} is rolled,

Probability density function In probability theory, a probability density func-
tion (abbreviated as pdf, or just density) of a continuous random variable is a
function that describes the relative likelihood for this random variable to occur
at a given point in the observation space. The probability of a random variable
falling within a given set is given by the integral of its density over the set.

A probability density function is most commonly associated with continuous
univariate distributions. In the discrete case, the probability density

fX(x) = P[x]

is identical with the probability of an outcome, and is also called probability
distribution.

Example 1: coin toss

fY(y) =

{
1
2 , if y = 1,
1
2 , if y = 0.

Example 2: die roll

fX(x) =

{
1
6 , if x = 1, 2, 3, 4, 5, 6,

0, otherwise.

We have that probability density can be summed over sets:

P[A] = ∑
x∈A

P[x] = ∑
x∈A

fX(x)

and the cumulative density function is given by:

FX(x0) = P[x ≤ x0] = ∑
x≤x0

P[x] = ∑
x≤x0

fX[x]
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As a result of normalization:

FX(−∞) = 0

FX(∞) = 1

Moments: expectation, variance, covariance If f is a probability density func-
tion, then the value of the following integral above is called the nth moment of
the probability distribution.

µn = E(xn) = ∑
x∈Ω

xn f (x)

The first moment is the mean (µ1 or in short µ). For any two random variables
X, Y it holds that

µ1(X + Y) = E(X +Y) = ∑
x∈Ω

∑
y∈Ω

x f (x) + y g(y) = E(X) + E(Y)

The nth central moment of the probability distribution of a random variable X
is

µn = E((X − µ)n).

For example:

µ2 = Var(x) = E((x − µ)2)

= E(x2 − 2xµ + µ2) = E(x2)− 2µE(x) + µ2

= E(x2)− µ2

For the variance of X + Y we have the integral

Var(X + Y) = E((x − µx) + (y − µy))
2)

= E((x − µx)
2) + 2E((x − µx)(y − µy)) + E((y − µy))

2)

= Var(X) + 2Cov(X, Y) + Var(Y)
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Correlation or Pearson’s correlation coefficient is defined by:

Corr(X, Y) =
Cov(X, Y)

√

Var(X)Var(Y)

For uncorrelated random variables it holds that:

Var(X +Y) = Var(X) + Var(Y)

as then Cov(X, Y) = 0. Note that correlation does not imply independence.

Independence Definition (independent random variables): Two random vari-
ables X and Y are independent if and only if for any numbers a and b the events
{X ≤ a} and {Y ≤ b} are independent events as defined above. Similarly an arbitrary
collection of random variables – possible more than just two of them—is independent
precisely if for any finite collection X1, ..., Xn and any finite set of numbers a1, ..., an,
the events X1 ≤ a1, ..., Xn ≤ an are independent events as defined above.

For independent random variables it holds for any moments:

µn(X +Y) = µn(X) + µn(Y)

If two variables are independent, then they are also uncorrelated. The converse
of these, i.e. the proposition that if two random variables have a correlation of
0 they must be independent, is not true.

Furthermore, random variables X and Y with probability densities fX(x) and
fY(y), are independent if and only if the combined random variable (X, Y) has
a joint distribution

fX,Y(x, y) = fX(x) fY(y)

1.5 Central Limit Theorem

The central limit theorem states that when a random effect results from the sum
of many independent random variables, each of them having a finite variance
both otherwise from arbitrary distributions, then this summed effect will tends
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towards a Gaussian distribution. This is the reason why Gaussian distributions
are so ubiquitously found: Many real-life processes are complex in the sense
that they result from the interaction of many stochastic degrees of freedom,
thus the central limit theorem kicks in and produces Gaussian distributions of
observed variables.

The proof of the CLT will come later in the continuous random variable sec-
tion. For now, we’ll just give the following statements: Let Sn be the sum of n
independent random variables with zero mean and variance σ2, given by

Sn = X1 + · · ·+ Xn.

Then, if we define new random variables

Zn =
Sn − nµ√

n
=

Sn√
n
=

n

∑
i=1

Xi√
n

,

then
lim

n→∞
P(Zn) = N (0, σ2) :

they will converge in distribution to the normal distribution N (0, σ2) as n ap-
proaches infinity. N (0, σ2) is thus the asymptotic distribution of Zn. Zn can
also be expressed as

Zn =
√

n(Xn − µ) =
√

n Xn,

where

Xn =
Sn

n
=

1

n
(X1 + · · ·+ Xn)

is the sample mean. It directly follows that the quantity Zn/
√

n = (X̄n − µ) =
X̄n, i.e. the estimation error of the mean, has a variance of σ2/n. For any
random variable X:

Var{X̄n − E(X)} =
Var(X)

n

for n independent samples.



Chapter 2

Markov chains

We will now focus our attention to Markov chains and come back to space-
continuous processes later. The motivation for this is that whenever studying
a space-continuous process in practice, it needs to be in some way discretized,
and thus effectively becomes a Markov chain. The numerical properties of such
a discretization will be studied later.

Let X = {1, ..., n} be a discrete state space and let x(t) be a Markov chain (with
the Markov property as defined above) on X, where t may be either discrete or
continuous. The system “jumps” between the states of X in time. Such a jump
is called a transition.

Time-discrete Markov processes All of the processes we had described here
are Markov processes they are defined by the fact that the propagation of the
system is entirely determined by knowing its present state xt, and is thus inde-
pendent on its past. Formally, for discrete times:

P(x(t) | x(t − 1), x(t − 2), ..., x(1)) = P(x(t) | x(t − 1))

The dynamics then is entirely defined by the transition probabilities P(x(t) |
x(t − 1)) : [X × X] → R . In the state-continuous case this is a transition
density that acts between points of the state space. In the state-discrete case
this is a transition (probability) matrix, often denoted by P = [Pij] or T = [Tij].

Higher-order Markov chains A Markov chain of order m (or a Markov chain
with memory m) where m is finite, is a process satisfying

P(x(t) | x(t− 1), x(t− 2), ..., x(1)) = P(x(t) | x(t− 1), x(t− 2), ..., x(t−m)) for t > m

14
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In other words, the future state depends on the past m states. It is possible to
construct a chain (y(t)) from (x(t)) which has the ’classical’ Markov property
as follows:

Let y(t) = (x(t), x(t − 1), ..., y(t − m + 1)), the ordered m-tuple of x values.
Then y(t) is a Markov chain with state space Xm and has the classical Markov
property. This is a result of Taken’s embedding theorem.

Applications (see Wiki pages)

Internet applications The PageRank of a webpage as used by Google is de-
fined by a Markov chain. It is the probability to be at page i in the stationary
distribution on the following Markov chain on all (known) webpages. If N is
the number of known webpages, and a page i has ki links then it has transition

probability α
ki
+ 1−α

N for all pages that are linked to and 1−α
N for all pages that

are not linked to. The parameter α is taken to be about 0.85.

Markov models have also been used to analyze web navigation behavior of
users. A user’s web link transition on a particular website can be modeled us-
ing first- or second-order Markov models and can be used to make predictions
regarding future navigation and to personalize the web page for an individual
user.

Economics and finance Markov chains are used in Finance and Economics
to model a variety of different phenomena, including asset prices and mar-
ket crashes. The first financial model to use a Markov chain was the regime-
switching model of James D. Hamilton (1989), in which a Markov chain is used
to model switches between periods of high volatility and low volatility of as-
set returns. A more recent example is the Markov Switching Multifractal asset
pricing model, which builds upon the convenience of earlier regime-switching
models It uses an arbitrarily large Markov chain to drive the level of volatility
of asset returns.

Dynamic macroeconomics heavily uses Markov chains. An example is using
Markov chains to exogenously model prices of equity (stock) in a general equi-
librium setting.

Mathematical biology Markov chains also have many applications in bio-
logical modelling, particularly population processes, which are useful in mod-
elling processes that are (at least) analogous to biological populations. The
Leslie matrix is one such example, though some of its entries are not proba-
bilities (they may be greater than 1). Another important example is the mod-
eling of cell shape in dividing sheets of epithelial cells. The distribution of
shapes—predominantly hexagonal—was a long standing mystery until it was
explained by a simple Markov Model, where a cell’s state is its number of sides.
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Empirical evidence from frogs, fruit flies, and hydra further suggests that the
stationary distribution of cell shape is exhibited by almost all multicellular an-
imals. Yet another example is the state of Ion channels in cell membranes.

Gambling Markov chains can be used to model many games of chance. Persi
Diakonis, a famous mathematician currently in Stanford, has proven several
theorems concerning the decorrelation of Markov chains. One such proof shows
that the number of times a deck of cards needs to be shuffled in order to be con-
sidered to be well shuffled is 7.

2.1 General Properties of space-discrete Markov pro-

cesses

(also valid for Markov jump processes, see below)

Time-homogeneity Time-homogeneous Markov chains (or stationary Markov
chains) are processes where

P(x(t + 1) = i|x(t) = j) = P(x(s + t + 1) = i|x(s + t) = j)

for all s. The probability of the transition is an invariant property of the system,
i.e. independent of the time when we evaluate the Markov chain.

Reducibility A state j is said to be accessible from a state i (written i → j) if
a system started in state i has a non-zero probability of transitioning into state
j at some point. Formally, state j is accessible from state i if there exists a time
t ≥ 0 such that

P(x(t) = j|x(0) = i) > 0.

Allowing t to be zero means that every state is defined to be accessible from
itself.

A state i is said to communicate with state j (written i ↔ j) if both i → j and
j → i. A set of states C is a communicating class if every pair of states in C
communicates with each other, and no state in C communicates with any state
not in C. A communicating class is closed if the probability of leaving the class
is zero, namely that if i is in C but j is not, then j is not accessible from i.

Finally, a Markov chain is said to be irreducible if its state space is a single
communicating class; in other words, if it is possible to get to any state from
any state.
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Recurrence A state i is said to be transient if, given that we start in state i,
there is a non-zero probability that we will never return to i. Formally, let the
random variable Ti be the first return time to state i:

Ti = inf{t ≥ 1 : x(t) = i | x(0) = i}.

Then, state i is transient if and only if:

P(Ti = ∞) > 0.

If a state i is not transient (it has finite hitting time with probability 1), then it
is said to be recurrent or persistent. Although the hitting time is finite, it need
not have a finite expectation. Let Mi be the expected return time,

Mi = E[Ti].

Then, state i is positive recurrent if Mi is finite; otherwise, state i is null re-
current (the terms non-null persistent and null persistent are also used, respec-
tively).

A state i is called absorbing if it is impossible to leave this state.

Steady-state analysis and limiting distributions A Markov process has a
unique stationary distribution π if and only if it is irreducible and all of its
states are positive recurrent. Note that this in particular includes ergodic pro-
cesses, because ergodicity is a stronger requirement. In that case, π is related
to the expected return time:

πi =
1

Mi
.

Further, if the chain is both irreducible and aperiodic, then for any i and j,

lim
t→∞

P(x(t) = j | x(0) = i) =
1

Mj
.

Note that there is no assumption on the starting distribution; the chain con-
verges to the stationary distribution regardless of where it begins. Such π is
called the equilibrium distribution of the chain.

If a chain has more than one closed communicating class, its stationary dis-
tributions will not be unique (consider any closed communicating class in the
chain; each one will have its own unique stationary distribution. Any of these
will extend to a stationary distribution for the overall chain, where the proba-
bility outside the class is set to zero).
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2.2 Time-Discrete Markov Chains

A Markov chain on X, named after Andrey Markov, is a discrete random pro-
cess with the Markov property. A discrete random process means a system
which can be in various states, and which changes randomly in discrete steps.
It can be helpful to think of the system as evolving once a minute, although
strictly speaking the "step" may have nothing to do with time. The Markov
property states that the probability distribution for the system at the next step
(and in fact at all future steps) only depends on the current state of the system,
and not additionally on the state of the system at previous steps. Since the sys-
tem changes randomly, it is generally impossible to predict the exact state of
the system in the future. However, the statistical properties of the system at a
great many steps in the future can often be described. In many applications it
is these statistical properties that are important.

An example of a Markov chain is a random walk on the number line which
starts at zero and transitions +1 or −1 with equal probability at each step. The
position reached in the next transitions only depends on the present position
and not on the way this present position is reached.

Transition Matrix We define the propagator / transition matrix P ∈ R
n×n

which describes the evolution of the chain:

pij ≥ 0 ∀i, j

∑
j=1...n

pij = 1 ∀i

These conditions define a stochastic matrix. pij represents the transition proba-
bility of state i to state j within one step of the system (which may correspond
to a fixed physical time step τ):

pij = P[x(t + 1) = j | x(t) = i]

Markov chain (definition) We are given a countable set X = {1, ..., n} called
state space, a stochastic matrix P ∈ R

n×n, and a distribution p(0) ∈ R
n. The

series of random variables x(t), t = 0, 1, ..., T is called Markov chain of length
T with initial distribution p(0) and transition matrix P if:

• x(0) has distribution p(0)

• x(t + 1) has distribution px(t), i.e. the x(t)-th row of P for all t ≥ 0.
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That is, the next value of the chain depends only on the current value, not any
previous values. Thus it is often said that “Markov chains have no memory”.
Note that this is not exactly correct: Markov chains have memory depth 1.
A process without memory would be given by a sequence of independently
drawn random variables

Evolution P can be used to generate trajectories according to the definition
above:

1. Draw x(1) from the initial distribution p0

2. Draw x(t + 1) from the discrete distribution [px(t),1, ..., px(t),n]

Alternatively, we can also consider the probability to be in a given state i at
time t, pi(t). This can be viewed as the fraction of particles in each state. The
entire distribution of the system is described by the vector pt ∈ R

n. Thus the
time evolution can be described by the set of equations:

pj(t + 1) = ∑
i

pij pi(t) ∀j

which is equivalently written by the matrix equation

p(t + 1)T = p(t)TP

Chapman-Kolmogorow Equation We use the transition matrix twice and ob-
tain:

pj(t + 2) = ∑
i

pij pi(t + 1)

= ∑
i

∑
k

pki pijpk(t + 1)

or

p(t + 2)T = p(t)TP2

Note that this is possible because of Markovianity. Think about the form of
pj(t + 2) if the transition probabilities would not only depend on the current,
but also the previous state.

P can be used to transport this probability vector over longer times:
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p(t)T = p(0)TPt.

The probability to go from i to j in t time steps is:

P(x(t) = j | x(0) = i) = [Pt]ij

Stationary Distribution A Markov process has a unique stationary distribu-
tion π if and only if it is irreducible and all of its states are positive recurrent.
The stationary distribution, by definition is the distribution that is unchanged
by the action of P:

πT = πT P

we can also write this as

πT P = 1πT

PTπ = 1π

and see that this is an eigenvalue equation. Thus, π (and any multiple cπ,
c ∈ R) is a left eigenvector of P with eigenvalue 1. Since an irreducible and
positively recurrent chain has a unique stationary distribution, for a chain the
eigenvalue 1 is unique. For all other eigenvalues, it can be shown that they
have a norm strictly smaller than 1.

We can also ask for the corresponding right eigenvalue and find that

P1 = 1

Proof:

P






1
...
1




 =






∑j p1j1 = ∑j p1j

...

∑j pnj1 = ∑j pnj




 =






1
...
1




 .
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Convergence towards the stationary distribution For any diagonalizable ma-
trix P we can write:

Pri = riλi

P
[

r1 · · · rn
]

=
[

r1 · · · rn
]






λ1 0
. . .

0 λn






PR = RΛ

P = RΛR−1

and likewise

liP = λili





l1
...

ln




 P =






λ1 0
. . .

0 λn











l1
...

ln






LP = ΛL

P = L−1ΛL

or

P = RΛL

We assume a chain that is irreducible and positively recurrent. We consider the
Chapman-Kolmogorow equation:

p(t)T = p(0)TPt

and diagonalize P:

p(t)T = p(0)T (RΛL)t

= p(0)TRΛtL

= p(0)T
n

∑
i=1

λt
iril

T
i

Since the chain is irreducible and positively recurrent, it will have a single
eigenvalue 1 and otherwise eigenvalues with norm <1. We order them as fol-
lows:



CHAPTER 2. MARKOV CHAINS 22

λ1 = 1, λ2, ..., λn with |λk| ≤ |λk+1| for k > 1.

and can thus write:

p(t)T = p(0)Tλt
1r1lT

1 + p(0)T
n

∑
i=2

λt
iril

T
i

= p(0)T1πT + p(0)T
n

∑
i=2

λt
iril

T
i

thus, the infinite time distribution is

pT
∞ = lim

t→∞
p(t)T

= p(0)T1πT + lim
t→∞

(

p(0)T
n

∑
i=2

λt
iril

T
i

)

but since |λi| < 1 for all i > 1, the terms on the right cancel and we see that the
infinite time distribution is indeed π:

pT
∞ = p(0)T1πT

= p(0)T






π1 · · · πn
...

...
π1 · · · πn






=
[

π1 ∑j pj(0) · · · πn ∑j pj(0)
]

=
[

π1 · · · πn
]

= πT

Speed of convergence We are interested in how fast the stationary distribu-
tion is reached. Consider the error
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E(t) =
∥
∥
∥πT − p(t)T

∥
∥
∥

=

∥
∥
∥
∥
∥

πT − πT − p(0)T
n

∑
i=2

λt
iril

T
i

∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥

p(0)T
n

∑
i=2

λt
iril

T
i

∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥

p(0)Tλt
2r2lT

2 + p(0)T
n

∑
i=3

λt
iril

T
i

∥
∥
∥
∥
∥

Asymptotically, i.e. for times t ≫ −1/ ln |λ3|, all terms on the right will ap-
proximately zero, and we obtain for this regime:

E(t) ≈ λt
2

∥
∥
∥p(0)Tr2lT

2

∥
∥
∥

which means the error decays exponentially with λt
2. When comparing to an

exponential decay function exp(−kt), The rate of this decay is k2 = − ln λ2 and

the timescale of this decay is t2 = k−1
2 = −1/ ln λ2.

Note that if the initial distribution already happens to be πT , we see that we
get the coefficients:

∥
∥πTril

T
i

∥
∥ =

∥
∥lT

1 ril
T
i

∥
∥ for i > 1. However, as a result of the

diagonalization we have lT
i rj = 〈li, rj〉 = 0 for all i 6= j, and thus all coefficients

become 0, showing that convergence is indeed immediate in this case.

Periodicity A state i has period k if any return to state i must occur in multi-
ples of k time steps. Formally, the period of a state is defined as

k = gcd{n : P(Xn = i|X0 = i) > 0}

(where "gcd" is the greatest common divisor). Note that even though a state
has period k, it may not be possible to reach the state in k steps. For example,
suppose it is possible to return to the state in {6, 8, 10, 12, ...} time steps; then k
would be 2, even though 2 does not appear in this list.

If k = 1, then the state is said to be aperiodic i.e. returns to state i can occur at
irregular times. Otherwise (k > 1), the state is said to be periodic with period
k.

It can be shown that every state in a communicating class must have overlap-
ping periods with all equivalent-or-larger occurring sample(s).
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Ergodicity A state i is said to be ergodic if it is aperiodic and positive recur-
rent. If a Markov process is irreducible and all its states are ergodic, then the
process is said to be ergodic.

It can be shown that a finite state irreducible Markov chain is ergodic if it has
an aperiodic state.

Reversible Markov chain / Detailed balance A Markov chain is said to be
reversible if there is a π such that

πi pij = πj pji.

This condition is also known as the detailed balance condition.

Summing over i gives

∑
i

πi pij = πj

so for reversible Markov chains, π is always a stationary distribution.

The idea of a reversible Markov chain comes from the ability to "invert" a con-
ditional probability using Bayes’ Rule:

P(x(t) = i | x(t + 1) = j) =
P(x(t) = i, x(t + 1) = j)

P(x(t + 1) = j)

=
P(x(t) = i)P(x(t + 1) = j | x(t) = i)

P(x(t + 1) = j)

=
πi

πj
P(x(t + 1) = j | x(t) = i)

pji =
πi

πj
pij.

It now appears as if time has been reversed.

We can consequently define a backward propagator, which will be used later,
as:

p̃ij =
πj

πi
pji

which is in the reversible case identical to the forward propagator ( p̃ij = pij ∀i, j).
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Further Reading:

1. J. Norris: “Markov Chains”. Cambride University Press.
Parts available from: http://www.statslab.cam.ac.uk/~james/Markov/

2.3 Markov chain Monte Carlo (MCMC)

Monte Carlo idea The idea of Monte Carlo methods is to approximate a de-
terministic quantity with a probabilistic method. While the idea is quite old,
the first use of the term Monte Carlo can be traced back to von Neumann and
Ulam in the 1940s, who collaborated on the Manhattan project in Los Alamos.

For example, given that a circle inscribed in a square and the square itself have
a ratio of areas that is π/4, the value of π can be approximated using a Monte
Carlo method (see Wiki page on Monte Carlo):

1. Draw a square on the ground, then inscribe a circle within it.

2. Uniformly scatter N objects of uniform size (e.g. grains of rice) over the
square.

3. Count the number of objects inside the circle, Nx.

4. The ratio Nx/N is an estimate of π/4. Multiply the result by 4 to estimate
π.

Monte Carlo methods are often useful in cases where integrals need to be com-
puted and deterministic numerical approaches fail, e.g. because the domain
cannot be explicitly written or the integration space is too high-dimensional.

Generally, if we draw N samples (x1, ..., xN) from a discrete domain X and ac-
cept them according to probability distribution P(x), then we can approximate
the probability of a point x as

lim
N→∞

Nx

N
= P(x)

which allows expectations to be calculated, e.g.

E(x) = ∑
x∈Ω

xP(x) = lim
N→∞

1

N ∑
i

xi

E(a(x)) = ∑
x∈Ω

a(x)P(x) = lim
N→∞

1

N ∑
i

a(xi)

or in the continuous case, where f (x) is the probability density:
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E(x) =
∫

x∈Ω
dx x f (x) = lim

N→∞

1

N ∑
i

xi

E(a(x)) =
∫

x∈Ω
dx a(x) f (x) = lim

N→∞

1

N ∑
i

a(xi)

Metropolis Monte Carlo Metropolis Monte Carlo1 was the first MCMC al-
gorithm proposed. MCMC algorithms use the Monte Carlo idea above but
construct a Markov Chain of Monte Carlo moves that has an invariant distri-
bution identical to the desired sample distribution P. The MCMC approach
is useful for estimating probability density functions for which probability ra-
tios P(x1)/P(x2) are easy to calculate, but integrals ∑x∈A P(x) are hard or
impossible to calculate analytically or with deterministic numerical methods
because the domain A is very complex or the integration space is very high-
dimensional. Moreover, if there is only a small fraction of Ω where P(x) is
significantly greater than 0, then application of the direct Monte Carlo method
(see circle example above) is not useful, as it leads to mostly low-probability
samples.

The Metropolis Monte Carlo algorithm is a special MCMC method designed
for physical or chemical systems that have an energy E(x) and where the sta-
tionary distribution is given by the Boltzmann distribution

P(x) = Z−1 exp(−βE(x)) , (2.1)

x is the the state of the system, i.e. the conformation of a molecule, Z is the
partition function,

Z = ∑
x∈Ω

exp(−βE(x))

with β = 1
kBT where kB is the Boltzmann constant and T is the temperature.

We assume that we have a model that allows us to calculate E(x) and thus also
exp(−βE(x)) for a given x, but we cannot calculate probabilities of large sets
of states, especially Z, because we simply cannot afford to enumerate all states.
Metropolis Monte Carlo defines a Markov chain with propagator P with the
following properties:

1. The chain is reversible, i.e. we have a stationary distribution π with
πi pij = πj pji

2. The stationary distribution is exactly the distribution we want to sample
from πi = P(i).

1Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller, and
Edward Teller, "Equation of State Calculations by Fast Computing Machines", Journal of Chemical
Physics 21, 1087 (1953)
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If we can construct a Markov chain we can generate realizations x(t) and esti-
mate expectation values from it. For a given distribution P(x) there are many
ways to construct a Markov chain which fulfills the above conditions and is
thus able to generate estimates of P(x). They differ mainly by their computa-
tional efficiency for different problems.

In the following we sketch the Metropolis Monte Carlo algorithm:

1. Pick a starting state x0

2. For k = 0 to N − 1:

(a) Pick a trial conformation xk → x′

(b) Calculate the probability ratio

P(x′)
P(xk)

= exp(−β[E(x′)− E(xk)])

(c) Accept the trial move with probability

pacc = min{1,
P(x′)
P(xk)

}

this can be realized by drawing a random number k ∈ [0, 1[ and
accepting if k ≤ pacc.

(d) If the trial move is accepted, xk+1 = x′, else xk+1 = xi

By looking at the acceptance criterion, we see that:

E(x′) > E(xi) ⇒ exp(−β∆E) < 1 ⇒ accepted if k < exp(−β∆E)
E(x′) ≤ E(xi) ⇒ exp(−β∆E) ≥ 1 ⇒ accepted if k < 1, i.e. always

The algorithm is correct, i.e. it indeed generates a reversible Markov chain
with stationary distribution P(x), provided that following requirements are
fulfilled:

1. The Boltzmann distribution can be evaluated at any point x.

2. The probability of making a trial move x → x′ is equal to the probability
of making the reverse trial move, i.e. P(x → x′) = P(x′ → x)

3. Any point x′ can be reached from any other point x by making trial
moves, i.e. the Markov chain is irreducible.



CHAPTER 2. MARKOV CHAINS 28

Proof of Metropolis Monte Carlo

• Unique stationary distribution: Assumption 2 means that the constructed
Markov chain is positively recurrent, Assumption 3 means that it is irre-
ducible. As a result, the constructed propagator P has a unique stationary
distribution.

• Reversibility: We call the probability to propose a move xi to xj is P(xi →
xj) and vice versa P(xj → xi). The probability to move from xi to xj, i.e.
to propose and accept, are pij and vice versa pji. Without restriction of
generality we assume E(xi) < E(xj). We find that:

pij = P(xi → xj) exp(−β[E(xj)− E(xi)]) = P(xi → xj)
exp(−βE(xj))

exp(−βE(xi))
= P(xi → xj)

P(xj)

P(xi)

pji = P(xj → xi)

by construction,

P(xi → xj) = P(xj → xi)

pij
P(xi)

P(xj)
= pji

resulting in the equations:

P(xi)pij = P(xj)pji ∀i, j

• It follows that P is a reversible chain with respect to the unique stationary
distribution π = P(x).

Metropolis-Hastings algorithm The Metropolis-Hastings algorithm is a gen-
eralization of the above idea by Hastings 2. Let us not assume that the proposal
probabilites are symmetric, i.e. in general P(xi → xj) = P(xj → xi) is not true
for all i, j. Let us consider two points xi, xj with P(xi) ≥ P(xj) and accept

xi → xj with probability
P(x j)P(x j→xi)

P(xi)P(xi→x j)
and the reverse move with probability 1.

We reconsider the proof of the Metropolis Monte Carlo algorithm:

pij = P(xi → xj)
P(xj)P(xj → xi)

P(xi)P(xi → xj)
=

P(xj)P(xj → xi)

P(xi)

pji = P(xj → xi)

2Hastings, W.K., "Monte Carlo Sampling Methods Using Markov Chains and Their Applica-
tions", Biometrika 57, pp. 97-109 (1970).
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such that again:
pijP(xi) = pjiP(xj).

This provides the following algorithm:

1. Pick a starting state x0

2. For k = 0 to N − 1:

(a) Propose a trial conformation xk → x′ with probability P(xi → x′)

(b) Accept the trial move with probability

pacc = min{1,
P(x′)P(x′ → xi)

P(xi)P(xi → x′)
}

(c) If the trial move is accepted, xk+1 = x′, else xk+1 = xi

Additionally to the requirements of the Metropolis Monte Carlo method we
need to be able the proposal probabilities P(xi → x′).

Remarks on the processes and convergences Consider the Markov process
x(t) with stationary probability π and let us assume that we can simulate its
dynamics with the propagator Px. Along the previous analysis, the direct sim-
ulation of this process will converge to π asymptotically with rate kx = − ln λx,
where λx is the largest eigenvalue of Px that is smaller than 1.

We can construct a MCMC method which samples π via a different propa-
gator Py. This MCMC process will converge to π asymptotically with rate
ky = − ln λy, where λy is the largest eigenvalue of Py that is smaller than 1.

Thus, it is important to distinguish the the original process and the MCMC pro-
cess constructed to sample the stationary distribution of the original process.
We can construct different processes that sample the same stationary distribu-
tion. Clearly, depending on λy these processes can have very different efficien-
cies. Ideally we would chose a strategy with λy < λx and thus obtain a faster
convergence than the original process itself.
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Analysis of Markov Chains

3.1 Hitting and Splitting/Committor Probabilities

Hitting probabilites for Markov Chains Given a stochastic process on state
space X = {1, ...., n}, the hitting time of set A: HA : X → {0, 1, 2, ...} ∪ {∞} is
defined as:

HA
i = inf{t ≥ 0 : x(t) ∈ A|x(0) = i}

and the hitting probability is the probability that starting from i we ever hit A:

hA
i = P(HA

i < ∞).

For a Markov chain on X with transition matrix P, the vector of hitting proba-
bilities hA = (hA

i : i ∈ I) is the minimal non-negative solution to the system of
linear equations:

hA
i = 1for i ∈ A

hA
i = ∑

j∈X

pijh
A
j for i /∈ A.

(Minimality means that if x = (xi : i ∈ X) is another solution with xi ≥ 0 for
all i, then xi ≥ hi for all i.)

Proof:

First we show that hA satisfies the above equation.

1) If x(0) = i ∈ A, then HA
i = 0, so hA

i = 1.

30
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2) If x(0) = i /∈ A, then HA
i ≥ 1, so by the Markov property:

P(HA
i < ∞ | x(1) = j) = P(HA

j < ∞) = hA
j

and

hA
i = P(HA

i < ∞)

= ∑
j∈X

P(HA
i < ∞, x(1) = j)

= ∑
j∈X

P(HA
i < ∞ | x(1) = j)P(x(1) = j | x(0) = i)

= ∑
j∈X

hA
j pij.

Next, we show that hA are the minimal solution

1) Suppose that x = (xi : i ∈ I) is any solution to the equation. then hA
i = xi =

1 for i ∈ A.

2) Suppose i /∈ A, then:

xi = ∑
j∈X

pijxj = ∑
j∈A

pij + ∑
j/∈A

pijxj

Substitute for xj to obtain:

xi = ∑
j∈X

pijxj = ∑
j∈A

pij + ∑
j/∈A

pij

(

∑
k∈A

pjk + ∑
k/∈A

pjkxk

)

= P(x(1) ∈ A | x(0) = i) + P(x(1) /∈ A, x(2) ∈ A | x(0) = i) + ∑
j/∈A

∑
k/∈A

pij pjkx(k).

By repeated substitution for x in the final term, we obtain after n steps:

xi = P(x(1) ∈ A | x(0) = i) + ... + P(x(1) /∈ A, ..., x(n− 1) /∈ A, x(n) ∈ A | x(0) = i).

+ ∑
j1 /∈A

... ∑
jn /∈A

pij1 pj1 j2 ...pjn−1jn xjn

Now if x is non-negative, so is the last term on the right, and the remaining
terms sum to P(HA

i < n). So xi ≥ P(HA
i < n) for all n and then:

xi ≥ lim
n→∞

P(HA
i < n) = P(HA

i < ∞) = hi.
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Committor Probabilities The committor probability, q+i pertaining to two
sets A, B is the probability that starting in state i, we will go to B next rather
than to A:

q+i = Pi(HB
< HA).

In order to compute this, we define an A-absorbing process as

p̂ij =







pij i /∈ A, j ∈ S
1 i ∈ A, i = j
0 i ∈ A, i /∈ j

and then compute the hitting probability to B. Since the process is absorbing
in A only, the hitting probability to B will reflect the probability to go to B next
rather than to A.

Using the hitting probability equations:

q+i = 1for i ∈ B

q+i = ∑
j∈X

pijq
+
j for i /∈ B.

with the absorbing process yields:

q+i = 0for i ∈ A

q+i = 1for i ∈ B

q+i = ∑
j∈X

pijq
+
j for i /∈ {A, B}.

The backward committor probability, q−i pertaining to two sets A, B is the prob-
ability that being in state i, we have been in A last rather than in B. In order

to get the backward committor, we use the backwards propagator p̃ij =
π j

πi
pji,

consider a B-absorbing process for the reverse dynamics and compute the hit-
ting probability for A:

q−i = 1for i ∈ A

q−i = 0for i ∈ B

q−i = ∑
j∈X

p̃ijq
−
j for i /∈ {A, B}.
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for reversibility / detailed balance, pij =
π j

πi
pji = p̃ij and thus:

q−i = 1for i ∈ A

q−i = 0for i ∈ B

q−i = ∑
j∈X

pijq
−
j for i /∈ {A, B}.

it can be easily checked that:

q− = 1 − q+

satisfies this equation as it transforms it to the forward committor equation.

3.2 Transition path theory / Reactive Flux:

Probability weight of reactive trajectories:

mR
i = πiq

−
i q+i

with ZAB = ∑i mR
i = ∑i πiq

−
i q+i < 1 it is clear that we need to normalize:

mAB
i = Z−1

ABπiq
−
i q+i .

For detailed balance, we have:

mAB
i = Z−1

ABπi(1 − q+i )q
+
i .

to obtain the probability distribution of reaction trajectories, i.e. the probability
to be at state i and to be reactive.

Probability current of reactive trajectories:

f AB
ij =

{
πiq

−
i pijq

+
j i 6= j

0 i = j
.

(for detailed balance, we have q−i = 1− q+i ). The probability current is the number
of jumps i → j which lie on reactive A → B trajectories.

We have a number of nice properties:

1) Flux conservation (Kirchhoff’s 1st law)
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∑
j∈X

( f AB
ij − f AB

ji ) = 0 ∀i /∈ {A, B}

Proof:

∑
j∈X

( f AB
ij − f AB

ji ) = πiq
−
i ∑

j 6=i

pijq
+
j − q+i ∑

j 6=i

πjq
−
j pji

= πiq
−
i ∑

j 6=i

pijq
+
j − πiq

+
i ∑

j 6=i

q−j p̃ij

Due to the committor equations, we have:

∑
j∈X

( f AB
ij − f AB

ji ) = πiq
−
i q+i − πiq

+
i q−i = 0.

From q+i = 1∀i ∈ A and q−i = 0∀i ∈ B we see that

f AB
ij = 0∀j ∈ A

f AB
ij = 0∀i ∈ B

thus flux is not conserved at A and B, but throughout the network such that:

∑
i∈A,j/∈A

f AB
ij = ∑

j/∈B,i∈B

f AB
ji .

Remarks:

- It is worth noting that by setting q+i as negative potential, f+ij as current and

πi pij as conductance provides an electric network theory with Ohm’s law and
Kirchhoff’s laws being valid.

- All TPT is valid when substituting pij in lij.

The Effective current is defined as

f+ij = max{ f AB
ij − f AB

ji , 0}

and gives the net average number of reactive trajectories per time unit making a
transition from i to j on their way from A to B.
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The total flux, i.e. the total number of reactive A → B trajectories per time unit
is simply given by the effective current flowing out of A and into B:

τ−1
cyc = K = ∑

i∈A,j/∈A

pAB
ij = ∑

i∈A,j/∈A

πi pijq
+
j = ∑

j/∈B,i∈B

f AB
ji = ∑

i∈B,j/∈B

πjq
−
j pij

If the system is ergodic, every trajectory must go back from B to A in order to be
able to transit to B again. Thus, K is also equal to the number of reactive B → A
trajectories and equal to the number of A → B → A cycles. Correspondingly,
the inverse of K, τcyc is the average cycle time.

The A → B total transition rate, i.e. number of reaction events given that we
start in A is given by

τ−1
AB = kAB =

K

∑i=X πiq
−
i

.

and this is the inverse A → B mean first passage time.

Transition Pathways - A reaction pathway w = (i0, i1, ..., in) from A to B is a
simple pathway, such that

i0 ∈ A, in ∈ B, i1...in /∈ {A, B}.

- the capacity of a pathway w is the minimal effective current:

c(w) = min
(i,j)∈w

{ f+ij }

- the bottleneck of a reaction pathway w is the edge with the minimal effective
current:

(b1, b2) = arg min
(i,j)∈w

{ f+ij }

- The best pathway is one that maximizes the minimal current. This is only nec-
essarily unique at the bottleneck. However, following algorithm is a rational
way to find a unique best pathway in graph

G = {X, f+}

:

BestPath(G,A,B)
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1. Determine bottleneck (b1, b2) in G

2. Decompose G into L and R, which are the parts of G “left” of b1 (nodes
{i : q+i ≤ q+b1

}) and “right” of b2 (nodes {i : q+i ≥ q+b2
})

3. wL =

{
b1 i f b1 ∈ A

BestPath(L, A, {b1}) else

4. wR =

{
b2 i f b2 ∈ B

BestPath(R, {b2}, B) else

5. return (wL,wR)

In order to decompose the network into individual pathways, let w = BestPath(G, A, B)
and subtract that pathway from the network:

( f+ij )
′ = f+ij − c(w) if (i, j) ∈ w

( f+ij )
′ = f+ij else.

It directly follows from the flux conservation laws that in the new pathways
we still have flux conservation and

K′ = K − c(w).

We will have K′ = 0 when all A → B pathways have been subtracted and
the decomposition is finished. This results in a set of A → B pathways whose
statistical contribution to the A → B is given by the capacity of each, c(w).

Further Reading:

1. P. Metzner, C. Schütte, and E. Vanden-Eijnden: “Transition Path Theory
for Markov Jump Processes”. Mult. Mod. Sim. (2007)

2. F. Noé, C. Schütte, E. Vanden-Eijnden, L. Reich, T. Weikl: “Constructing
the Full Ensemble of Folding Pathways from Short Off-Equilibrium Sim-
ulations”. PNAS (2009)

3.3 Eigenvector decomposition and interpretation

Right and Left eigenvectors can be defined by

Pri = λiri
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and

liP = λili

This can be written using the diagonal matrix of eigenvalues Λ = diag (λ1, . . . , λn)
by

PR = RΛ

and

LP = ΛL

We can use L := R−1, which is a valid matrix. We diagonalize an transition
matrix with the matrix of right eigenvectors R, its inverse denoted by L := R−1

and the diagonal matrix of eigenvalues Λab = δabλa by

Pt = RΛL

=
n

∑
i=1

riλ
t
i l

T
i

It can be easily seen, that the matrix L is also a matrix of left eigenvectors,
which helps with the interpretation. Note, that in principle any matrix of left
eigenvectors (in the rows) can be used, but only the one which fulfills L :=
R−1 is suitable for diagonalizing. This definition still allows for some scaling
freedom and requires only

〈li, ri〉 = 1 ∀i

〈li, rj〉 = 0 ∀i 6= j

We can see by this separation, that the transition matrix is working for each
eigenvector-eigenvalue pair working on different timescales, because the time
dependence is structurally only found in the potency of the eigenvalue. If we
apply this matrix to vector p, which we want to propagate, we get

p(t)T = p(0)TPt

=
n

∑
i=1

λt
i p(0)Tril

T
i

=
n

∑
i=1

λt
i〈p(0), ri〉lT

i

=
n

∑
i=1

γiλ
t
i l

T
i
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Which means, that the scalar product with the right eigenvector is the intensity
γi, how much the ith relaxation process is involved when relaxing from the
initial distribution p(t). The left eigenvector denotes the change of probability
density that is brought about by the ith relaxation process. If the system is
reversible we show that when ri is a right eigenvector of P, then the vector li

with

li = Πri

is a left eigenvector of P. Here, Π = diag{πi} with πT = πT P being the
stationary distribution.

Proof: reversibility implies detailed balance:

πi pij = πj pji ∀i, j

In Matrix form:

ΠP = PTΠ

ΠRΛR−1 =
(

RΛR−1
)T

Π

ΠRΛR−1 =
(

R−1
)T

ΛRTΠ

we note that R−1 is a left eigenvector matrix: L := R−1

ΠRΛL = LTΛRTΠ

which means that ΠR and LT span the same eigenspace and that when ri is a
right eigenvector,

Πri = li

is a left eigenvector.

Based on this we can rewrite the decomposition of P = RΛL: If P is reversible,
there exists a set of left and right eigenvectors, such that

P = RΛRTΠ

= Π−1LTΛL
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provided that the eigenvectors are properly normalized, i.e. RTΠR = Id and
LΠ−1LT = Id. This can be enforced by taking an arbitrary set of left eigenvec-

tors, l̂i, or right eigenvectors, r̂i and scaling them:

li = l̂i/
(

l̂T
i Π−1 l̂i

) 1
2

ri = r̂i/
(

r̂T
i Πr̂i

) 1
2

This can be used for the development of a probability distribution

p(t)T = p(0)TPt

=
n

∑
i=1

λt
i p(0)Tri(Πri)

T

=
n

∑
i=1

λt
i p(0)Trir

T
i Π

=
n

∑
i=1

λt
i p(0)TWiΠ

with Wi = rir
T
i being a projection matrix onto the basis of the right eigenvec-

tors. A probability distribution is projection onto this basis, weighted with the
stationary distribution and scaled according to the eigenvalue.

Fig. 3.1 shows an example of the relation between eigenvectors and the under-
lying dynamics.

3.4 Timescales and timescale test

The eigenvalues λi are related to a timescale in the manner, that the process
vanishes with increasing t slower or faster. Compare the discrete-time decay
λt

i and compare it to the exponential decay in continuous time with timescale
ti, exp(−t/ti):

λt
i = exp(−t/ti)

ti =
−1

log λi

and if we associate the transition matrix with a real time step τ then then we
have the implied timescales
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Figure 3.1: Example potential with computed eigenvectors indicatind pro-
cesses. The underlying dynamics was computed from a 1000 state transition
matrix with non-zero transition probabilities between neighboring states given
by a metropolis criterion.

ti[P(τ)] =
−τ

log λi(τ)

which can, using the semi-group property of the Markov system

P(mτ) = Pmτ

shown to be independent of the multiple m

ti[P(mτ)] = ti[P(τ)
m] =

−mτ

log λ[Pm]
=

−mτ

log λ[P]m
=

−mτ

m log λ[P]
= ti[P]

3.5 Correlation functions

We would now like to investigate correlation functions of observables a(t)
which are observables of Markov chains. Let x(t) be a Markov chain in state
space X = {1, ..., n}, discrete time t ∈ N0, with transition matrix P ∈ R

n×n and
let fa : X → R be a function that maps each state to an observable value. We
consider now that the observed time series a(t) has been produced by such an
observation of a Markov chain:

a(t) = fa(x(t))
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As a shorthand notation we also define a vector a = ( fa(1), ..., fa(n))T contain-
ing the observable of each state of X in the corresponding entry, i.e. we can
write in short:

a(t) = ax(t)

The autocorrelation function of a(t) can then be written as:

E(a(t) a(t + τ)) = E(ax(t)ax(t+τ)) = ∑
i,j∈X

P(x(t) = i, x(t + τ) = j) ai aj

where τ ∈ N0 is a discrete time lag. In the stationary and ergodic case this is
equivalent to:

E(a(t) a(t + τ)) = lim
T→∞

1

T − τ

T−τ

∑
t=0

a(t) a(t + τ)

We notice that we can rewrite:

E(a(t) a(t + τ)) = ∑
i,j∈X

P(x(t) = i, x(t + τ) = j) ai aj

= ∑
i,j∈X

πi pij(τ) ai aj

= aTΠPτa

Using spectral decomposition we can rewrite this as:

E(a(t) a(t + τ)) =
n

∑
i=1

λτ
i aTΠrir

T
i Πa

=
n

∑
i=1

λτ
i aTlil

T
i a

=
n

∑
i=1

λτ
i 〈a, li〉2

=
n

∑
i=1

λτ
i γi

with the choice γi = 〈a, li〉2. Thus, we can explain correlation functions in
terms of multi-exponential decays with timescales/rates given by the eigen-
values and intensities depending on the overlap of the observable a with the
eigenvectors. On the other hand, we can estimate E(a(t) a(t + τ)) from given
trajectory and explore its spectral properties by observing this multiexponen-
tial decay over τ.
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Further Reading:

• Timescales [4]



Chapter 4

Continuous Random
variables

We now consider continuous random variables. The basic object is as usual
a probability space (Ω, Σ, P), which describes the randomness in our experi-
ment. Ω is the set of basic samples that can occur, the algebra Σ is the set of
all possible events that we are interested in characterizing. P is a probability
measure that assigns a probability to each event S ∈ Σ. Since we are aiming
at continuous random variables, a useful sample space is Ω = R, and a useful
algebra is the Borel algebra:

Borel algebra is the smallest σ-algebra on the real numbers R. It contains all
intervals on the real axis, i.e.:

{ix1,x2 = [x1, x2] | x1 ≤ x2; x1, x2 ∈ R} ∪ R ∪ ∅

The probability measure P is a measure with the normalization condition P(Ω) =
1. A common measure for continuous spaces is the Lebesque measure µ, which
can be turned into a probability measure by normalizing with µ(Ω):

Lebesque measure is the ordinary notion of length, area, volume of subsets
of Euclidean spaces.

Example: It is useful to think of the probability space as a model for a computer
that generates high-quality random variables (high quality here means almost
uncorrelated). Computational random number generators usually have a sam-
ple space Ω = [0, 1] ⊂ R, the corresponding algebra is a Borel algebra on the
subset [0, 1] and the probability is given by the normalized Lebesque measure:

P([x1, x2]) =
∫ x2

x=x1
dx/

∫ 1
x=0 dx.

43
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4.1 Continuous random variables

Random variable (continuous) A measurable function X : Ω → R between
a probability space (Ω, Σ, P) and a measurable space (R,B(R)), where B(R)
is the Borel-Algebra of R, is a continuous random variable.

Measurable function Definition (measurable function): When (Ω1, Σ1) and
(Ω2, Σ2) are measurable spaces, a function f : Ω1 → Ω2 is (Σ1, Σ2)-measureable
if

f−1(E2) := {ω ∈ Ω1 : f (ω) ∈ E2} ∈ Σ1 ∀E2 ∈ Σ2

Lebesgue Integration A measure space (Ω, Σ, µ) is associated with the the-
ory of Lebesgue integration. Let g : Ω → R be a measurable function, then the
integral is defined as:

G :=
∫

Ω
g dµ =

∫

Ω
g(ω) dµ(ω)

In the “nice” case that the measure is absolutely continuous we can rewrite this
in terms of the ordinary Riemann integration

G =
∫

Ω
g(ω) µ(ω) dω

Probability density function In probability theory, a probability density func-
tion (abbreviated as pdf, or just density) of a continuous random variable is a
function that describes the relative likelihood for this random variable to occur
at a given point in the observation space. The probability of a random variable
falling within a given set is given by the integral of its density over the set.

A probability density function is most commonly associated with continuous
univariate distributions. A random variable X has density f , where f is a non-
negative Lebesgue-integrable function, if:

P[a ≤ X ≤ b] =
∫ b

a
dµ(x) =

∫ b

a
f (x) dx.
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Cumulative distribution function Hence, if F is the cumulative distribution
function of X, then:

F(x) =
∫ x

−∞
f (u) du,

and

f (x) =
d

dx
F(x).

Intuitively, one can think of f (x)dx as being the probability of X falling within
the infinitesimal interval [x, x + dx].

Example: As in the example above, consider the probability space of a com-
puter that generates [0, 1] random variables with normalized Lebesque mea-
sure, ([0, 1],B([0, 1]), µ/µ([0, 1])). We define a random variable x ∈ R which
we want to be distributed according to f (x). This can be realized by defining
x = F−1(ω).

4.2 Properties of Random Variables X ∈ R

Moments: expectation, variance, covariance If f is a probability density func-
tion, then the value of the following integral above is called the nth moment of
the probability distribution.

µn = E(xn) =
∫ ∞

−∞
xn f (x) dx

For any two random variables X, Y it holds that

µ1(X + Y) = E(X + Y) =
∫ ∫

x f (x) y g(y) dx dy = E(X) + E(Y)

The properties discussed for discrete random variables can be transferred to
the continuous case likewise.

Correlations Consider the following distributions of two random variables
and their correlation coefficients:
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4.3 Transformation between random variables

If the probability density function of an independent random variable x is
given as fX(x), it is possible to calculate the probability density function of
some variable y = g(x). This is also called a “change of variable” and is in
practice used to generate a random variable of arbitrary shape fg(X) = fY us-
ing a known (for instance uniform) random number generator.

In order to perform this variable change we will need to rescale the new vari-
able. In order to get an expression for this we make use of the fact that the
probability contained in a differential area must be invariant under change of
variables. That is,

| fY(y) dy| = | fX(x) dx| ,

If the function g is monotonic, i.e. invertible, we can compute x = g−1(y), and
the resulting density function is then given by:

fY(y) =

∣
∣
∣
∣

dx

dy

∣
∣
∣
∣

fX(x) =

∣
∣
∣
∣

1

g′(g−1(y))

∣
∣
∣
∣

fX(g−1(y)).

Multidimensional case:

Let x be a n-dimensional random variable with joint density fX(x) and y =
h(x) a bijective and diffentiable function, then y has density

fY(y) =

∣
∣
∣
∣
det

(
dx

dy

)∣
∣
∣
∣

fX(x)

where
(

dx

dy

)

= Jx =






dx1
dy1

· · · dx1
dyn

dxn
dy1

dxn
dyn




 .
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Example 1:

fX(x) = a exp(− x

2σ2
)

y =
√

x

x = y2

dx

dy
= 2y

fY(y) = 2y exp(− y2

2σ2
)

Example 2:

Let us consider a gas with identical particles of mass m at sufficiently high
thermal motion. The kinetic energy of a particle is given by:

E =
1

2
mv2

where v =
√

v2
x + v2

y + v2
z is the speed of the particle. Each state of the system,

characterized by vx, vy, vz has a probability weight given by the Boltzmann
distribution:

p(vx, vy, vz) =
( m

2πkT

)3/2
exp

(

− m

2kT
(v2

x + v2
y + v2

z)
)

We use the transformation v =
√

v2
x + v2

y + v2
z and obtain

p(v) =
∫

v2=v2
x+v2

y+v2
z

p(vx, vy, vz)dvxdvydvz

= 4πv2 p(vx, vy, vz)

= v2

√

16π2
( m

2πkT

)3
exp

(

−mv2

2kT

)

= v2

√

2

π

( m

kT

)3
exp

(

−mv2

2kT

)

.

This is the probability distribution of speeds v, which is known as the Maxwell-
Boltzmann distribution.

We next consider the distribution of kinetic energies which can for each speed

v be calculated as E = 1
2 mv2. Here we perform a variable transformation and

obtain via the function v =
√

2E/m:
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p(E) =
dv

dE
p(v(E))

=
d

dE

√

2E

m
p

(
2E

m

)

=

√

1

2Em

2E

m

√

2

π

( m

kT

)3
exp

(

− E

kT

)

= 2

√

E

π(kT)3
exp

(

− E

kT

)

4.4 Linear Error Propagation

We consider n random variables x1, ..., xn that we aggregate in the vector x =
(x1, ..., xm)T . xj are distributed according to probability distribution p(x1, ..., xn) =
p(x). We assume that we have the probability distribution p available and
can compute its maximum over x and the variances and covariances of the
x-variables. However, we are interested in another set of random variables
y = (y1, ..., ym)T that are given by a generally nonlinear function of x1, ..., xn:

y1 = f1(x1, ..., xn)

...

ym = fn(x1, ..., xn)

Let us assume that the direct evaluation of the distribution p(y) is difficult,
such that we cannot easily calculate maxima and variances of the y-variables
directly. In particular we are interested in “error propagation”, i.e. how the
variances in x propagate through the f onto y. We are now seeking an approx-
imate way to do this.

One approach is to estimate the uncertainties on yi by Monte Carlo sampling.
Here, we investigate linear error propagation, which provides an analytical
result, but at the sacrifice of making two approximations: (1) The distribu-
tion function of xi is approximated by a multivariate Gaussian, and (2) the
functions f j are linearized. Clearly, these approximations are only meaning-
ful in certain situations, especially if the distribution is monomodal and near-
Gaussian around its maximum, and if the f j are close-to linear within the high-
probability range of xi.

Gaussian approximation of the density We first seek the x that maximizes
the probability density p(x):

x̂ = arg max p(x)
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By definition, the gradient at x̂ is zero. Next, we calculate second derivative
matrix H, the Hessian matrix:

Σ−1 = H =







∂p(x)
∂x1x1

· · · ∂p(x)
∂xnx1

...
...

∂p(x)
∂x1xn

· · · ∂p(x)
∂xnxn







.

It can be shown that if p(x) is a multivariate Gaussian distribution with covari-
ance matrix Σ containing the covariances:

σij = E(xixj)− E(xi)E(xj),

it is Σ−1 = H(x̂), i.e. the inverse of the Hessian at the maximum yields the
covariance matrix. Based on this fact, we approximate p(x) around x̂ via:

p(x)≈N (x̂, Σx̂).

Note that if p(x) is not actually a Gaussian, the σij are generally smaller than the
true covariances E(xixj) − E(xi)E(xj). The Gaussian approximation is only
valid within the vicinity of x̂, and therefore especially useful if p(x̂) is very
peaked around x̂. For distributions coming from estimation procedures this is
usually the case when a relatively large amount of data has been collected.

Linear approximation of the transfer function Next we will approximate
our functions f j which can generally be very nonlinear. We take the first-order
(linear) approximation of the Taylor series around x̂:

f j(x) = f j(x̂) + (x − x̂)T∇ f j
(x̂) +O(‖x − x̂‖2)

≈ f j(x̂) + (x − x̂)T∇ f j
(x̂)

≈ f j(x̂)− x̂T∇ f j
(x̂) + xT∇ f j

(x̂)

≈ aj + xTbj

where we have defined aj = f j(x̂)− x̂T∇ f j
(x̂) and bj := ∇ f j

(x̂). If we aggre-

gate as follows: y = (y1, ..., ym)T, a = (a1, ..., am)T and B = [b1, ..., bm]T, we can
write the entire system as:

y ≈ a + Bx

This is a second approximation. We assume that the functions f j, although
generally nonlinear, are almost linear within the range of x values around x̂
that are accessible with high probability.
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Propagation Generally, if y = a+Bx is an affine transformation of the Gaussian-
distributed variables x ∼ N (x̂, Σ), then it can be shown that:

y ∼ N (a + Bx̂, BΣBT).

Thus, the covariance matrix of the y-Variables is given by BΣBT . Of special
interest are the variances of the y variables which are found on the diagonal:

(BΣBT)ii = biΣbT
i

We can thus estimate the maximum probability ŷ and the covariances Σy of the
target variables through Gaussian error propagation without further approxi-
mations.

Example We consider again the Boltzmann-distributed particles. Let us as-
sume that we have a Device that allows us to measure the kinetic energy E and
we are interested in calculating the velocity the particle had. We can make use

of the equation v =
√

2E
m . However, given that the measuremed value Ẽ has a

measurement error of magnitude sE with respect to the true value E, such that
the distribution of Ẽ is given by:

p(Ẽ|E) = N (E, s2
E).

What can we now say about the error in v, sv?

Let us assume we measure a value Ẽ. We first used Bayes inversion in order to
write down the probability distribution of E in terms of Ẽ:
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p(E|Ẽ) ∝ p(E)p(Ẽ|E)

∝
1

2πs2
E

exp

(

− (E − Ẽ)2

2s2
E

)

2

√

E

π(kT)3
exp

(

− E

kT

)

∝
√

E exp

(

− E

kT

)

exp

(

− (E − Ẽ)2

2s2
E

)

∝
√

E exp

(

− (E − Ẽ)2kT + 2s2
EE

2s2
EkT

)

∝
√

E exp

(

−E2kT − 2(ẼkT − s2
E)E + Ẽ2kT

2s2
EkT

)

∝
√

E exp




−

(
√

kTE − (ẼkT−s2
E)√

kT
)2 − (ẼkT−s2

E)
2

kT + Ẽ2kT

2s2
EkT






∝
√

E exp



− (E − (ẼkT−s2
E)

kT )2

2s2
E





We abbreviate mE =
(ẼkT−s2

E)
kT and obtain:

dp(E|Ẽ)
dE

=

(

1

2
√

E
−

√
E

s2
E

(E − mE)

)

exp

(

− (E − mE)
2

2s2
E

)

which becomes zero for:

Ê = arg max p(E|Ẽ) =
mE ±

√

m2
E + 2s2

E

2

of which we choose the positive solution:

Ê =
mE +

√

m2
E + 2s2

E

2
.

Note that for vanishing error Ê = mE = Ẽ.

The variance of E in a Gaussian approximation around Ê is given by the inverse

second derivative at Ê. Using the abbreviation α =
√

m2
E + 2s2

E, we obtain:
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σ2
E =

(
d2 p(E|Ẽ)

dE2

∣
∣
∣
∣
Ê

)−1

=
s2

E

√
2mE + 2α

2 exp(− (α−mE)2

8s2
E

)α

Thus, we have approximated:

p(E|Ẽ) ≈ N (Ê, σ2
E).

Now we use the equation v =
√

2E
m which is linearized by:

v(E) ≈
√

2Ê

m
+

√

1

2mÊ
(E − Ê)

≈
√

2Ê

m
−
√

Ê

2m
+

√

1

2mÊ
E

≈
√

Ê

(√

2

m
−
√

1

2m

)

+

√

1

2mÊ
E

And hence

σ2
v =

(
dv

dE

)2

σ2
E =

s2
E

√
2mE + 2α

2m(mE + α) exp(− (α−mE)2

8s2
E

)α

if we take m = 1 unitless then

σ2
v =

s2
E√

2mE + 2α exp(− (α−mE)2

8s2
E

)α

For small errors sE, this is approximately:

σ2
v ≈ s2

E

2Ẽ3/2

4.5 Characteristic Functions

An alternative way to represent a probability density fX(x) is by its Fourier
transform. This is called characteristic Function G(ω), defined for all ω ∈ R:
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G(ω) = G(ω){x} = E[eiωx] =
∫

eiωx fX(x) dx

This is also the moment generating function of the distribution because its Tay-
lor expansion turns out to be

G(ω) =
∞

∑
m=0

(iω)m

m!
µm = 1 + iωµ − 1

2
ω2µ2 + ...

with the moments µm.

The characteristic function completely determines the behavior and properties
of the probability distribution of the random variable X. The two approaches
are equivalent in the sense that knowledge of one of the functions can always
be used in order to find the other one, yet they both provide different insight
for understanding the features of our random variable. However, in particular
cases, there can be differences in whether these functions can be represented as
expressions involving simple standard functions.

If a random variable admits a density function, then the characteristic function
is its dual, in the sense that each of them is a Fourier transform of the other.

Proof of the central limit theorem For a theorem of such fundamental im-
portance to statistics and applied probability, the central limit theorem has
a remarkably simple proof using characteristic functions. It is similar to the
proof of a (weak) law of large numbers. For any random variable, Xi, with
zero mean, the characteristic function of Xi is, by Taylor’s theorem,

G(ω) = 1 − σ2ω2

2
+ o(ω2)

where o(ω2) is "little o notation" for some function of ω that goes to zero more
rapidly than ω2. Thus, the characteristic function of Zn is

G(ω){Zn} = G(ω)

{
n

∑
i=1

Xi

}

=
n

∏
i=1

G

(
ω√

n

)

{Xi}

=

[

1 − σ2ω2

2n
+ o

(
ω2

n

)]n

→ e−ω2σ2/2, n → ∞.



Chapter 5

Markov chain estimation

5.1 Bayesian Approach

Bayes Theorem: Consider two events A and B. Based on the definition of the
conditional probability we can follow:

P (A | B) =
P(A ∩ B)

P(B)

=

P(A∩B)
P(A)

· P(A)

P(B)

=
P (B | A) · P(A)

P (B)
.

Let us consider a model M and observation O. Bayes’ rule states that:

P(M | O) = P(M)
P(O | M)

P(O)

in particular, when we consider only one given observation O, we can state:

P(M | O) ∝ P(M) P(O | M).

where we call

P(M | O) posterior probability
P(M) prior probability of the model M
P(O) prior probability of the data O

P(O | M) likelihood

54
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since usually we only work with a given dataset P(O) is constant, and it is
sufficient to know that:

P(M | O) ∝ P(M) P(O | M)

The likelihood P(O | M) is usually easy to compute if we have specified the
type of model and we have the data at hand. The prior P(M) is a probability
that has the function to bias the estimator towards models that are reasonable.
If no prior is used that is equivalent to using a uniform prior, which may not
always be a good choice. Choosing P(M) is a modeling problem, so there is
“right” or “wrong” here and it must be chosen with expertise for the process
observed. The significance of the prior is to be able to have a well-defined prob-
ability distribution even in the case that no or almost no data is at hand. When
more and more data is collected, the likelihood P(O | M) will get sharper and
thus eventually dominate the prior. Thus, it is generally a good idea to use a
rather weak prior that rules out unphysical results but can be easily overcome
when some data is collected.

When seeking optimial models we will maximize the posterior:

P(M | O) → max

or alternatively we can draw samples xk from it, e.g. with a MCMC approach:

xk ∼ P(M | O)

5.2 Transition Matrix Estimation from Observations;

Likelihood

We consider an observed sequence x(t) ∈ X, t = {0, ..., T} in a state space
X = {1, ..., n}.

We assuming that x(t) has been generated from a Markov chain with transition
matrix P, which we would like to infer from the data. This is a very common
problem in many applications, such as finance, game theory, molecular physics
and biology.

Let the frequency matrix Z = (zij) ∈ R
n×n count the number of observed

transitions between states, i.e. zij is the number of observed transitions from
state i at time t to state j at time t + 1, summed over all times t:

zij = |{x(t) = i, x(t + 1) = j | t = 0...T − 1}|.
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It is easy to treat the case of observing multiple sequences x(1)(t), ..., x(N)(t) by

noticing that their count matrices add up: Z = Z(1)+ ...+Z(N). As a shorthand
notation we define:

zi :=
n

∑
k=1

zik.

is the total number of observed transitions leaving state i. It is intuitively clear
that in the limit of an infinitely long trajectory, the elements of the true transi-
tion matrix are given by the trivial estimator:

p̂ij =
zij

∑k zik
=

zij

zi
, (5.1)

For a trajectory of limited length, the underlying transition matrix P cannot be
unambiguously computed. The probability that a particular P would generate
the observed trajectory x(t) is given by:

P(x(0), ..., x(T) | P) =
T−1

∏
t=0

px(t),x(t+1) = P(Z|P) =
n

∏
i,j=1

p
zij

ij

Vice versa, the probability that the observed data was generated by a particular
transition matrix P is

P(P|Z) ∝ P(P)P(Z|P) = P(P)
n

∏
i,j=1

p
zij

ij , (5.2)

where P(P) is the prior probability of transition matrices before observing any
data. P(Z|P) is called likelihood. Transition matrix estimation is often ap-
proached by identifying the maximum of P(Z|P), i.e., the maximum likelihood
estimator. For the case of a uniform prior, this is identical to the transition ma-
trix with maximum posterior probability. Otherwise, we now restrict ourselves
to prior distributions which are conjugate to the likelihood (“conjugate prior”),
i.e. have the same functional form. This leads to:

P(P|Z) ∝ ∏
i,j

p
bij+zij

ij = ∏
i,j

p
cij

ij , (5.3)

with the prior count matrix B = [bij] and we have defined the total (posterior)
number of counts C = B + Z. In the following we will always work with C.
The likelihood estimation C = Z is a special case.
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5.3 Maximum Probability Estimator

We will now derive the Maximum Probability Estimator by finding the tran-
sition matrix that maximizes P(P|Z). The probability is difficult to work with
due to the product. For optimization purposes it is therefore a common “trick”
to instead work with the logarithm of the likelihood (log-likelihood):

Q = log P(P|C) = ∑
i,j

cij log pij.

This is useful since the logarithm is a monotonic function: as a result, the maxi-
mum of log f is also the maximum of f . However, this function is not bounded
from above, since for pij → ∞, Q → ∞. Of course, we somehow need to restrict
ourselves to sets of variables which actually form transition matrices, i.e., they
satisfy the constraint:

∑
j

pij = 1.

When optimizing with equality constraints, one uses Langrangian multipliers.
The Lagrangian for Q is given by:

F = Q + λ1(∑
j

p1j − 1) + ... ++λm(∑
j

pmj − 1).

This function is maximized by the maximum likelihood transition matrix. It
turns out that F only has a single stationary point, which can be easily found
by setting the partial derivatives to zero. Those are given by

∂ log F

∂pij
=

cij

pij
+ λi.

Set to 0:

cij

p̂ij
+ λi = 0

λi p̂ij = −cij.

We now make use of the transition matrix property:

λi

m

∑
j=1

p̂ij = λi = −
m

∑
j=1

cij = −ci
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and thus:

cij

p̂ij
− ci = 0

p̂ij =
cij

ci
.

It turns out that P̂(τ), as provided by Eq. (5.1), is the maximum of P(C|P)
and thus also of P(P|C) when transition matrices are assumed to be uniformly
distributed a priori. In the limit of infinite sampling, P(P|C) converges towards
a delta distribution with its peak at P̂(τ).

5.4 Maximum Likelihood Estimator of Reversible

Matrices

It will turn out that in particular when estimating conformation dynamics from
short trajectories, it is essential to additionally require that the transition matrix
is reversible. The reason is that the system itself is in equilibrium, and a statis-
tical model for the equilibrium case is desired, but the individual trajectories
are far off equilibrium, as they are too short to be considered “relaxed” on the
timescale of the molecule. George Boxer (Princeton) has suggested the follow-
ing way to compute the maximum likelihood reversible transition matrix:

Let xij = πi pij be the unconditional transition probabilities with the additional
constraint that ∑i,j xij = 1, the detailed balance condition is given by

xij = xji.

The transition probabilities are given in terms of xij as:

pij =
xij

∑
n
k=1 xik

,

such that the log-likelihood is given by:

and then our goal is to find X = (xji) in order to maximize

Q =
m

∑
i,j=1

cij

(

log xij − log

(
m

∑
k=1

xik

))

.

The partial derivatives are given by:
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∂Q

∂xij
=

cij

xij
+

cji

xji
−

m

∑
j′=1

cij′

∑
m
k=1 xik

−
m

∑
j′=1

cjj′

∑
m
k=1 xjk

and writing ci = ∑
n
k=1 cki and xi = ∑

n
k=1 xki we have

∂Q

∂xji
=

cji + cij

xji
− ci

xi
− cj

xj

When Q is maximized ∂Q
∂x ji

= 0 and so this gives the condition that

xji =
cij + cji

ci
xi
+

c j

x j

and we can iterate this condition to convergence.

5.5 Error Propagation

We start again with the posterior distribution of transition matrix P ∈ R
n×n:

P(P|Z) ∝ ∏
i,j

p
cij

ij , (5.4)

setting U = (uij) = (cij + 1), we can rewrite this as:

P(P|Z) ∝ ∏
i

∏
j

p
uij−1

ij = ∏
i

Dir (pi, ui)

where Dir is a Dirichlet distribution, a well-known distribution. Based on
known properties of this distribution we can state using the abbreviation ui =
∑j uij:

p̄ij = [E(P)]ij =
uij

ui
=

cij + 1

ci + n

p̂ij = [P̂]ij = (arg max P(P|Z))ij =
uij − 1

uij − n
=

cij

ci

Var(pij) =
uij(ui − uij)

u2
i (ui + 1)

=
p̄ij(1 − p̄ij)

(ui + 1)
=

p̄ij(1 − p̄ij)

ci + n + 1

Cov(pij, pik) =
−uijuik

u2
i (ui + 1)

∀i 6= j
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We now are interested in the question how the uncertainties given by Var(pij)
propagate onto uncertainties of functions derived from transition matrices,
such as eigenvalues. If we do not use constraints between different rows such
as detailed balance, the rows can be treated as independent sets of random
variables and thus:

Cov
(

pij, plk

)
= 0, i 6= l

We can thus define a Covariance matrix separately for each row as:

Σ
(i)
jk := Cov

(
pij, pik

)
=

1

u2
i (ui + 1)

[

uiδjkuij − uijuik

]

=
1

(ui + 1)

[

δjk p̄ij − p̄ij p̄ik

]

where δ is the Kronecker delta. Alternatively, we can write the covariance ma-
trix in vector notation:

Σ(i) =
1

(ui + 1)

[

diag ( p̄i)− p̄i p̄
T
i

]

This means, that the covariance for the Dirichlet processes scales with the total
number of count in a row.

Using this first two moments of the distribution we can approximate each row
in the transition matrix Pi by a multivariate Gaussian distribution of the form

Pi ∼ N
(

p̂i, Σ(i)
)

This we can use in Gaussian error propagation for linear functions of the tran-
sition matrix (see above). Let us assume we have a scalar function f (P) :
R

n×n → R. The first order Taylor approximation is given by:

f (P) = f (P̂) +∑
i,j

∂ f

∂pij

(
P̂
)
(pij − p̂ij).

Since we know that the rows are independent we define a sensitivity vector for
each row separately

s
(i)
j =

∂ f

∂pij
(P̂)
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and with the function for the error propagation we get

f̂ = f
(

P̂
)

and

Var ( f ) = Cov( f , f ) = ∑
i

(

s(i)
)T

Σ(i)s(i)

Example: Eigenvalues For properly normalized eigenvectors we have:

Λ = LPR

λ(k) = l(k)Pr(k)

= ∑
i,j

l
(k)
i pijr

(k)
j

∂λ(k)

∂pij
= l

(k)
i r

(k)
j

and for unnormlized eigenvectors this is corrected by:

∂λ(k)

∂pij
=

l
(k)
i r

(k)
j

〈l(k), r(k)〉

and thus, using the linear perturbation approach:

Var
(

λ(k)
)

=
n

∑
i=1

∑
a,b

∂λ(k)

∂pia
Cov(pab)

∂λ(k)

∂pib

=
1

〈l(k), r(k)〉2

n

∑
i=1

∑
a,b

l
(k)
i r

(k)
a

(

∑
a

uia(ui − uia)

u2
i (ui + 1)

+ ∑
a,b 6=a

−uiauib

u2
i (ui + 1)

)

l
(k)
i r

(k)
b

In the special case of p = 1 we have li = πi, ri = 1 with l · r = 1 and we get
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Var
(

λ(1)
)

=
n

∑
i=1

∑
a 6=b

∂λ(k)

∂pia
Var(p

(i)
aa )

∂λ(k)

∂pia
+ ∑

a 6=b

∂λ(k)

∂pia
Cov(p

(i)
ab )

∂λ(k)

∂pib

=
n

∑
i=1

π2
i

(

∑
a

uia(ui − uia)

u2
i (ui + 1)

+ ∑
a,b 6=a

−uiauib

u2
i (ui + 1)

)

=
n

∑
i=1

π2
i

u2
i (ui + 1)

(

∑
a 6=b

uiaui − uiauia − ∑
a,b 6=a

uiauib

)

=
n

∑
i=1

π2
i

u2
i (ui + 1)

(

ui ∑
a

(uia − uia)

)

= 0

which is the expected result, since the first eigenvalue is constant.

The limitation of this approach is that it does not work well in situations where
the Transition matrix distribution is far from Gaussian (especially in the situa-
tion of little data). Furthermore, the more nonlinear a given function of interest
is in terms of pij, the more the estimated uncertainty on this function might be
wrong.

Further Reading:

• Error Estimation [3, 1]

5.6 Full Bayesian Estimation

Here, a general method to sample transition matrices according to the posterior
probability (5.3) based on Markov Chain Monte Carlo (MCMC) is proposed.
While it is computationally more expensive than the linear error analysis and
the Dirichlet sampling, it is more general than these methods. In particular,
it allows (i) the complete distribution of arbitrary observables to be approxi-
mated to the desired degree of accuracy, (ii) the sampling to be restricted to
transition matrices fulfilling additional constraints, such as detailed balance
and predefined π, and (iii) arbitrary prior distributions, p(T), to be employed.
The method is illustrated on µs MD simulations of a hexapeptide for which the
distributions and uncertainties of the free energy differences between confor-
mations, the transition matrix elements and the transition matrix eigenvalues
are estimated.

To sample the distribution 5.3, a sampling procedure is proposed based on
taking Monte-Carlo steps in T-space: Given a current matrix T and a proposed
new matrix T′, the acceptance probability is computed by:
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paccept =
p(T′ → T)

p(T → T′)
p(T′|C)
p(T|C) (5.5)

where p(T → T′) and p(T′ → T) denote the probability to propose T′ given
T and vice versa. Any proposal step can be used to sample the probability
p(T|C), provided that two conditions are satisfied:

• p(T → T′) and p(T′ → T) can be evaluated for every possible proposal
step, such that (5.5) can be evaluated.

• The proposal steps generate an ergodic chain, i.e. if T denotes the set
of matrices to be sampled from, then from any matrix T ∈ T any other
matrix T′ ∈ T must be accessible with a finite number of steps.

MCMC sampling of transition matrices: See paper F. Noé: “Probability Dis-
tributions of Molecular Observables computed from Markov Models”, J. Chem.
Phys 128, 244103 (2008).

5.6.1 Metropolis-Hastings sampling

We want to sample

p(P|Z) ∝ p(P)p(Z|P) = p(P)∏
i,j

p
cij

ij (5.6)

where pij is the transition probability from state i to state j and cij are the num-
ber of observed transitions in the data set. For the sake of simplicity we assume
a uniform prior

p(P|Z) ∝ p(Z|P) = ∏
i,j

p
cij

ij , (5.7)

however, the use of non-uniform priors is straight forward. Using the Metropolis-
Hastings algorithm, we have

pMH =
p(P′ → P) p(P′|Z)
p(P → P′) p(P|Z) =

p(P′ → P) p(Z|P′)
p(P → P′) p(Z|P) =

p(P′ → P) ∏i,j p′
cij

ij

p(P → P′) ∏i,j p
cij

ij

(5.8)

The goal is to find proposal steps P → P′ and the corresponding proposal prob-
ability p(P → P′), such that the proposed transition matrices P′ fulfill certain
constraints, e.g. stochasticitiy, detailed balance or fixed stationary distribution.
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5.6.2 Non-reversible shift element

Shifts a single off-diagonal element pij of the original transition matrix P by
∆. The reverse element pji is not altered and, therefore, detailed balance is not
guaranteed. Stochasticity is preserved by an appropriate modification of the
diagonal element pii:

p′ij = pij − ∆ (5.9)

p′ii = pii + ∆ , (5.10)

where ∆ is a uniform random number in
[
−pii, pij

]
. The forward and backward

proposal probabilities are symmetric:

p(P → P′) =
1

pij + pii
(5.11)

p(P′ → P) =
1

pij − ∆ + pii + ∆
= p(P → P′) . (5.12)

and, thus,

pMH =
∏i,j p′

cij

ij

∏i,j p
cij

ij

=

(

pij − ∆

pij

)cij (
pii + ∆

pii

)cii

(5.13)

5.6.3 Reversible shift element

Shifts a off-diagonal element pij of the original transition matrix P by ∆. The
reverse element pji is altered such that detailed balance

πi pij = πj pji (5.14)

is maintained. Stochasticity is preserved by an appropriate modification of the
diagonal elements pii and pjj:

p′ij = pij − ∆ (5.15)

p′ji = pji −
πi

πj
∆ (5.16)

p′ii = pii + ∆ (5.17)

p′jj = pjj +
πi

πj
∆ (5.18)

Allowed range of ∆:



CHAPTER 5. MARKOV CHAIN ESTIMATION 65

upper bound:
(a) p′ij = pij − ∆ ≥ 0 → ∆ ≤ pij

(b) p′ji = pji − πi
π j

∆ ≥ 0 → ∆ ≤ π j

πi
pji = pij

lower bound:
(c) p′ii = pii + ∆ ≥ 0 → ∆ ≥ −pii

(d) p′jj = pjj +
πi
π j

∆ ≥ 0 → ∆ ≥ −π j

πi
pjj

and thus

∆ ∈
[

max

(

−pii,−
πj

πi
pjj

)

, pij

]

. (5.19)

The proposal probability in the forward direction is

p(P → P′) =
1

pij − max
(

−pii,−
π j

πi
pjj

) (5.20)

and in the backward direction

p(P′ → P) =
1

p′ij − max
(

−p′ii,−
π j

πi
p′jj
)

, p′ij
(5.21)

=
1

pij − ∆ − max
(

−pii − ∆,−π j

πi
(pjj +

πi
π j

∆)
) (5.22)

=
1

pij − ∆ − max
(

−pii − ∆,−π j

πi
pjj − ∆

) (5.23)

= P(P → P′) . (5.24)

The accepting probability is

pacc = min{1, pMH} (5.25)

(5.26)

pMH =
∏i,j p′

cij

ij

∏i,j p
cij

ij

=

(

pij − ∆

pij

)cij (
pii + ∆

pii

)cii





pji − πi
π j

∆

pji





c ji




pjj +
πi
π j

∆

pjj





c jj

(5.27)

If P fulfills detailed balance, the stationary distribution remains unchanged
(π′ = π):

πP′ = [π1, ..., πi−1,

π1 p1i + ... + πi(pii + ∆) + ... + πj(pji −
πi

πj
∆) + ... + πm pmi, πi+1, ..., πj−1,

π1 p1j + ... + πi(pij − ∆) + ... + πj(pjj +
πi

πj
∆) + ... + πm pmj, πj+1, ..., πm]

= [π1, ..., πm] = π. �
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Furthermore, if P fulfills detailed balance, P′ fulfills detailed balance as well:

π′
i p′ij = πi(pij − ∆) = πi pij − πi∆

π′
j p

′
ji = πj(pji −

πi

πj
∆) = πj pji − πi∆

Thus

πi pij = πj pji ⇒ π′
i p′ij = π′

j p
′
ji.

�

5.6.4 Row Shift

Finally a step is considered which scales the self-transition probability, pii, and
all outgoing transition probabilities, pij as follows:

p′ij = αpij

p′ii = 1 − ∑
k 6=i

p′ik

= 1 − α ∑
k 6=i

pik

= 1 − α(1 − pii)

= αpii − α + 1

The step thus changes the ith row of P. The parameter α is subject to the fol-
lowing constraints:

αpij ≥ 0 → α ≥ 0 (a)
αpii − α + 1 ≤ 1 → α ≥ 0 (b)
αpii − α + 1 ≥ 0 → α ≤ 1

1−Tii
(c)

αpij ≤ 1 ∀j 6= i → α ≤ 1
max(Tij)

∀j 6= i (d)

Note that (1− pii) ≥ pij for all j 6= i, and thus (1− pii)
−1 ≤ (max(pij))

−1, mak-
ing (d) redundant with (c). Consequently, α is drawn uniformly from following
range:

α ∈
[

0,
1

1 − pii

]
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The ratio of proposal probabilities is given by:

p(P′ → P)

p(P → P′)
=

pα(P′ → P)

pα(P → P′)
dA′

dA
=

dr′dA′

dr dA
,

where pα is the proposal probability along the line parametrized by α, while dA
is an area element orthogonal to that line and intersecting with P, and dA′ is the
scaled area element. With p(α) = 1 − pii and α = p′ij/pij = (1 − p′ii)/(1 − pii)

we obtain (see paper) pα(P′ → P)/pα(P → P′) = 1. The area element is pro-
portial to the (m − 2)nd power of the distance of the ith row from (0, ..., 0, pii =
1, 0, ..., 0), denoted by r:

dA ∝ (r · dc)(m−2)

dA′ ∝ (r′ · dc)(m−2).

With r =
√

(1 − pii)2 + ∑j 6=i p2
ij and r′ =

√

α2(1 − pii)2 + ∑j 6=i α2 p2
ij = αr one

obtains:

p(P′ → P)

p(P → P′)
= α(m−2).

Acceptance probability:

pacc =
p(P′ → P)

p(P → P′)
p(P′|C)
p(P|C)

= α(m−2)

(
p′ii
pii

)Cii

∏
j 6=i

(
p′ij
pij

)Cij

= α(m−2)

(
1 − α(1 − pii)

pii

)Cii

∏
j 6=i

αCij

= α(m−2+Ci−Cii)
(

1 − α(1 − pii)

pii

)Cii

with Ci = ∑
m
j=1 Cij.

The row shift operation will change the stationary distribution π. π is, for ex-
ample, required to conduct the reversible element shifts. Instead of recomput-
ing the stationary distribution expensively by solving an eigenvalue problem,
it may be efficiently updated as follows:
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π′
i =

πi

πi + α(1 − πi)

π′
j =

απj

πi + α(1 − πi)
.

Proof:

π′ = π′P′

has the elements πi and πj, j 6= i, given by:

π′
i = π′

1 p′1i + ... + π′
i−1 p′i−1,i + π′

i p′ii + π′
i+1 p′i+1,i + ... + π′

m p′mi

πi

πi + α(1 − πi)
=

απ1 p1i + ... + απi−1pi−1,i + πi[1 − α(1 − pii)] + απi+1 pi+1,i + ... + απm pmi

πi + α(1 − πi)

πi = α[π1 p1i + ... + πm pmi] + πi − απi

πi = π1 p1i + ... + πm pmi

and

π′
j = π′

1 p′1j + ... + π′
i−1 p′i−1,j + π′

i p′ij + π′
i+1 p′i+1,j + ... + π′

m p′mj

απj

πi + α(1 − πi)
=

απ1 p1j + ... + απi−1 pi−1,j + πiαpij + απi+1 pi+1,j + ... + απm pmj

πi + α(1 − πi)

πj = π1 p1j + ... + πm pmj.

Thus:

π = πP ⇔ π′ = π′P′

�



Chapter 6

Markov Jump Processes

Time-continuous Markov processes When time steps are taken to be spaced
differentially small, the above definition is also useful to define time-continuous
Markov processes. For example Brownian motion, Langevin dynamics, and
Master equation dynamics are all time-continuous Markov processes.

Intuitively, one can define a time-homogeneous Markov process as follows. Let
x(t) ∈ X = {1, ..., n} be the random variable describing the state of the process
at time t. Now prescribe that, given that the process starts in a state i at time t, it
has made the transition to some other state j 6= i at time t + h with probability
given by

p(x(t + h) = j | x(t) = i) = kijh + o(h),

where o(h) represents a quantity that goes to zero faster than h goes to zero. In
other words, the limit

lim
h→0+

dp(x(t+ h) = j | x(t) = i)

dh
= lim

h→0+

d

dh
(kijh + o(h)) = kij

exists. The transition rates kij, i, j ∈ X defined the transition rate matrix K ∈
R

n×n. For the probabilities to be conserved, i.e., the probabilities associated
with starting in a given state must add up to one, the off-diagonal elements of
K must be non-negative and the diagonal elements must satisfy

kii = −∑
j 6=i

kij.

With this notation, and letting pt ∈ R
n the probability to be at any state at time

t, the evolution of a continuous-time Markov process is given by the first-order
differential equation

69
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d

dt
pt = ptK

To see the reason of the definition of kii, we expand this equation out by com-
ponents:

d

dt
pi(t) =

n

∑
j=1

pj(t)kji

=
n

∑
j 6=i

pj(t)kji + pi(t)kii

=
n

∑
j 6=i

pj(t)kji

︸ ︷︷ ︸

gain

− ∑
j 6=i

pi(t)kij

︸ ︷︷ ︸

loss

.

which is known as the Master equation or gain-loss equation.

The probability that no transition happens in some time r is

P(x(s) = i ∀ s ∈ (t, t + h] | x(t) = i) = ekiih.

That is, the probability distribution of the waiting time until the first transition
is an exponential distribution with rate parameter −kii, and continuous-time
Markov processes are thus memoryless processes.

A time dependent (time heterogeneous) Markov process is a Markov process
as above, but with the k-rate a function of time, denoted kij(t).

6.1 Poisson process

This is an important stochastic process in physics modelling countable, singu-
lar events in continuous time, such as:

• The arrival of "customers" in a queue.

• The number of raindrops falling over an area.

• The number of photons hitting a photodetector.

• The number of particles emitted via radioactive decay by an unstable
substance, where the rate decays as the substance stabilizes.
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It is parametrized by a “rate” or “intensity” constant k, or equivalently the char-
acteristic timescale τ = k−1. A time-homogeneous Poisson process is defined
as a counting process N(t) where the number of counts (N(t + ∆t)− N(t)) in
the time interval (t, t + ∆t] follows a Poisson distribution with parameter k∆t.
This relation is given as:

P[(N(t + ∆t)− N(t)) = n] =
e−k∆t(k∆t)n

n!
n ∈ N0 (6.1)

k is the expected number of events per unit time and τ = k−1 is the expected
duration between two events. It can be shown that the moments of this distri-
bution are:

E[n] = k∆t,

i.e. the mean number of counts is simply the waiting time times the rate, and
also

Var[n] = k∆t.

For large enough statistics (∆t ≫ k−1), the central limit theorem makes the
Poisson distribution converge towards a Gaussian distribution with correspond-
ing moments:

lim
k∆t→∞

P[(N(t + ∆t)− N(t)) = n] = N (k∆t, k∆t).

For short enough times, the probability to get more than one count in ∆t van-
ishes:

lim
k∆t→0

P[(N(t + ∆t)− N(t)) > 1]

P[(N(t + ∆t)− N(t)) = 1]
= lim

k∆t→0

1

e−k∆tk∆t

∞

∑
n=2

e−k∆t(k∆t)n

n!

= lim
k∆t→0

∞

∑
n=2

(k∆t)n−1

n!

= 0

Thus in the short-time limit, we can ignore the possibility to get more than one
count:

P[(N(t + ∆t)− N(t)) = 0] = e−k∆t

P[(N(t + ∆t)− N(t)) = 1] = k∆t e−k∆t

P[(N(t + ∆t)− N(t)) > 1] ≈ 0.
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for k∆t → 0, we also have e−k∆t ≈ 1 − k∆t

P[(N(t + ∆t)− N(t)) = 0] ≈ 1 − k∆t

P[(N(t + ∆t)− N(t)) = 1] ≈ k∆t(1 − k∆t) ≈ k∆t.

which is identical to a binomial distribution P[(N(t + ∆t) − N(t)) = n] =
(k∆t)n(1 − k∆t)1−n for n ∈ {0, 1}.

Let us go back to the general case (6.1). Without loss of generality we start the
process at time t = 0 and ask for the probability of t1, the time at which the
first count occurs:

dt ft1(t) = P[(N(t1)− N(0) = 0] P[(N(t1 + dt)− N(t1) = 1]

= e−kt1 e−k dtk dt

= dt k e−kt1

Due to the independence of events in subsequent intervals, the probability den-
sity of any intermittance time t between two counts is:

ft(t) = k exp(−kt)

=
1

τ
exp

(

− t

τ

)

.

This also shows immediately that the mean waiting time is equal to τ:

E[t] =
∫ ∞

t=0
ft(t) t dt = τ = k−1

while the variance is

Var[t] = E[t2]− E[t]2 = τ2 = k−2

6.2 Markov Jump Process

Consider a system that can exist in two states such as the chemical reaction:

1
k→ 2
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and let the time-dependent populations of agents “1” and “2” be denoted by
p1(t) and p2(t). We can model their evolution by the following differential
equations

−dp1(t)

dt
= kp1(t) =

dp2(t)

dt

Solving for p1:

dp1

p1
= −kdt

∫ p1(t)

p1(0)

dp1

p1
= −k

∫ t

0
dt

ln
p1(t)

p1(0)
= −kt

p1(t) = p1(0) exp(−kt).

and for p2:

∫ p2(t)

p2(0)
dp2(t) = −

∫ p1(t)

p1(0)
dp1(t)

p2(t)− p2(0) = p1(0)− p1(t)

p2(t) = p1(0) + p2(0)− p1(0) exp(−kt)

Generally we can say that both time evolutions have the functional form pi(t) ∼
exp(−kt), while multiplicative and additive constants can be used to realize
different solutions.

Here, p1 and p2 are concentrations or amounts of the corresponding chemicals.
Now we change the viewpoint and look at a single copy of molecule 1. We ask
at which time, t, this copy will decay to molecule 2. Since this decay occurs
with a constant rate and independent of the past, it has to be ft(t) ∝ exp(−kt),
which normalized becomes:

ft(t) = k exp(−kt),

thus each exit process of a Markov jump process is a Poisson process. In other
words, a Markov jump process (which can generally consist of many states
that interconvert), is a superposition of Poisson processes, each occurring with
a rate that corresponds to the exit rate out of the current state.

As an example consider C2H6 → 2CH3. This reaction is irreversible and has a
rate of 5.46 · 10−4s−1 under normal temperature and pressure conditions.

Let us now consider the general case: We have m states (e.g. chemical species),
for each of them we consider a concentration, population or probability

pi ∈ R, i ∈ {1, ..., m}.
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And we have a number of simple reactions between species of the sort

pi

kij→ pj

between some pairs i, j ∈ {1, ..., m}. We can formally define all rates

kij ∈ R, i, j ∈ {1, ..., m},

and set those to 0 where no reaction exists.

6.3 Master equation

Now the time evolution of the pi is given by a differential equation with a sum
of gains and losses, called Master equation:

dpi

dt
= ∑

j 6=i

[
kji pj − kij pi

]

= ∑
j 6=i

kji pj + pi ∑
j 6=i

−kij

= ∑
j 6=i

kji pj + kii pi

=
m

∑
j=1

kji pj

where we have formally defined

kii = ∑
j 6=i

−kij,

allowing us to write the Master equation in matrix form simply as:

dpT(t)

dt
= pT(t)K.

with generator / rate matrix K ∈ R
m×m containing nonnegative off-diagonal

and nonpositive diagonal entries:

kij ≥ 0 ∀i 6= j

kii = −∑
i 6=j

kij ∀i
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Note that we have conservation of mass, i.e.

‖p‖1 =
m

∑
i=1

pi = ptot = const.

Using the normalization convention ptot = 1, we can look at the same equation
in terms of moving probability densities:

dp(t)T

dt
= p(t)TK.

The Master equation has the following formal solution:

pT(t + τ) = pT(t) exp(Kτ) (6.2)

(of course all constant shifts are also solutions).

This suggests to compare to Markov chains, where we have:

pT(t + τ) = pT(t)T(τ), (6.3)

showing that we have the equivalence:

T(τ) = exp(Kτ). (6.4)

where exp(·) is the Matrix exponential, which is defined as:

exp(Kτ) = exp(τRΛR−1)

= exp(τRdiag(κ1, ..., κm)R
−1)

= Rdiag(exp(τκ1), ..., exp(τκm))R
−1

where
R = [r1, ...rm]

is the right eigenvector matrix with eigenvectors ri in the columns, and

diag(κ1, ..., κm)

is a diagonal matrix with the eigenvalues κi on the diagonal.

Thus, the transition and the rate matrix are closely related. T(τ) is the prop-
agator for the solution of the Master equation for time interval τ. In other
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words, Eq. (6.3) is an exact solution of Eq. (6.2) at time points τ, i.e. an ex-
act time-discretization. We can compare this to the approximative solution that
is obtained when we make the time step τ very small, such that τκi → 0 ∀i ∈
{1, ..., m}, and exp(τκi) ≈ 1 + τκi ∀i ∈ {1, ..., m}:

exp(Kτ) = Rdiag(exp(τκ1), ..., exp(τκm))R
−1

≈ Rdiag(1 + τκ1, ..., 1+ τκm)R
−1

≈ Id + τK,

which is a first-order Taylor approximation. The resulting equation is

T(τ) ≈ Id + τK

and the associated solution approximation to the Master equation is

pT(t + τ) ≈ pT(t) + τpT(t)K,

which is just the Euler discretization of the Master equation.

Note that the formal inverse operation K = τ−1 log(T(τ)) should be avoided.
This operation is numerically very unstable (fluctuations of eigenvalues close
to 0 become strongly amplified by the log), and also T(τ) has a greater real-
valued support than K: T(τ) may have negative eigenvalues, in which case no
real-valued solution of the log exists. However the operation

Kp(τ) =
T(τ)− I

τ

is always permitted. Kp(τ) ≈ K is called pseudogenerator, and it is an approx-
imation to the true rate matrix in a Markov jump process. The approximation
becomes exact in the limit:

K = lim
τ→0+

T(τ)− I

τ
,

and if that limit exists, then the process is said to have the generator K. When in
fact the underlying process is already a time-discrete Markov chain at some fi-
nite time τ, then Kp(τ) is exact and we can treat the Markov chain as a Markov
jump process with Kp(τ) as rate matrix.

Due to the close relationship to Markov chains, many properties of Markov
chains have direct equivalents for Markov jump processes. If K is irreducible
and positively recurrent it has a stationary distribution given by
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0 = π
TK.

The backward generator is defined as:

k̃ij =
πj

πi
kji

If K is furthermore reversible it fulfills the detailed balance equation:

k̃ij = kij ∀i, j.

πikij = πjkji ∀i, j.

6.4 Solving very large systems

Consider a situation where state space is huge. For example, in the limit of few
particles, we would no longer like to use particle concentrations, but would
like to resolve particle number. For example, a virus A can replicate with some
rate k1, be killed by a drug B with some other rate k2, but the drug also degen-
erates with some rate k3:

A
k1→ 2A

A + B
k2→ B

B
k3→ 0

Now we are interested in the question: Given a set of rate constant and the fact
that a patient has initially [A] virus particles and receives [B] drug molecules,
will the virus be killed, or will it survive? We need to resolve few particle
numbers, because a single surviving virus could spawn a new population, or
a single surviving drug can still kill a small population. So the difference be-
tween 0 and 1 copies is important and cannot be resolved by a concentration.
Now the state space of our system is huge, because each combination of copy
numbers of A and B is a state, e.g. [(0,0), (0,1), (1,0), ...]. In principle the state
space is infinite, but even when we limit ourselves to 1000 copies per species at
most (which is only reasonable for certain settings of initial concentrations and
rate constants), then we already have 106 states, and we don’t want to make
linear algebra operations with a 106 × 106 rate matrix. Therefore we need a
way to simulate this system without ever evaluating the entire matrix.

We notice two facts:
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1. At a given time t, consider we are in state i. Exit out of this state occurs via
a Poisson process with rate ki = ∑j kij = −kii. This means the lifetime, or
waiting time, τi, is distributed as:

p(τi) = ki exp(−kiτi).

with the cdf

F(τi) = P(τ′
i ≤ τi) = ki

∫ τi

0
dt exp(−kiτ

′
i )

= ki[−
1

ki
exp(−kiτi) +

1

ki
]

= 1 − exp(−kiτi)

whose inverse is:

τi = − ln[1 − F(t0)]

ki

thus, if v is a uniform random variable in [0, 1], then − ln u/ki is dis-
tributed as p(t).

2. Given that we in a state i and have two options to leave, using rates k1

and k2, what is the probability to choose 1 versus 2? Call the exit time to
state 1 t2 and to state 2 t2:

P(t1 < t2) =
∫ ∞

t=0
p(t1 = t) P(t2 > t) dt

=
∫ ∞

t=0
k1 exp(−k1t) [1 − (1 − exp(−k2t)] dt

=
∫ ∞

t=0
k1 exp(−k1t) exp(−k2t) dt

=
∫ ∞

t=0
k1 exp(−t(k1 + k2)) dt

=
k1

k1 + k2

and

P(t2 < t1) =
k2

k1 + k2
.

This argument can be easily extended to more than 2 states.

Based on these two arguments, we can propose an algorithm to sample tra-
jectories from rate systems without evaluating the full matrix. The Gillespie
algorithm for simulating the time evolution of a system where some processes
can occur with known rates K can be written as follows:

1. Set the time t = 0 and initial state i = i0.
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2. Form a list of all possible states that can be reached from the current state
i and corresponding rates ki1, ..., kin. Let the total reaction rate be ki =
∑

n
j=1 kij

3. Calculate the cumulative function pj =
∑

j
s=1 kis

ki
for j = 0, . . . , n.

4. Generate a uniform random number u ∈ (0, 1] and find the event to carry
out j by finding the j for which pj−1 < u ≤ pj (this can be achieved
efficiently using binary search). Update state i

5. Generate a uniform random number v ∈ (0, 1] and update time by t =

t − log v
ki

6. Return to step 2.

This algorithm is known in different sources variously as the residence-time
algorithm or the n-fold way or the Bortz-Kalos-Liebowitz (BKL) algorithm,
Gillespie algorithm, or just the kinetic Monte Carlo (KMC) algorithm. It is
important to note that the timestep involved is a function of the probability
that all events i, did not occur.

6.5 Hitting Probabilities, Committors and TPT fluxes

Similar as for transition matrices, we can derive simply expressions for transi-
tion path theory using rate matrices.

Hitting probabilites for Markov Jump Processes Using

hA
i = 1for i ∈ A

hA
i = ∑

j∈I

pijh
A
j for i /∈ A.

with K = P − I (The linear expansion is sufficient for solving a linear system
of equations) yields

hA
i = 1for i ∈ A

hA
i = ∑

j∈I,j 6=i

kijh
A
j + (kii + 1)hA

i for i /∈ A.

and thus
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hA
i = 1for i ∈ A

∑
j∈I

kijh
A
j = 0for i /∈ A.

Committor Probabilities

k̂ij =

{
kij i /∈ A
0 i ∈ A

substituted into the Dirichlet problem:

q+i = 1for i ∈ B

∑
j∈I

kijq
+
j = 0for i /∈ B.

yields

q+i = 0for i ∈ A

q+i = 1for i ∈ B

∑
j∈I

kijq
+
j = 0for i /∈ {A, B}.

In order to get the backward committor, we define the backwards propagator

k̃ij =
π j

πi
kji and obtain:

q−i = 1for i ∈ A

q−i = 0for i ∈ B

∑
j∈I

k̃ijq
−
j = 0for i /∈ {A, B}.

for reversibility / detailed balance, kij =
π j

πi
kji and it can be easily checked that:

q− = 1 − q+

The TPT fluxes are exactly equivalent:

fij = πiq
−
i kijq

+
i

f+ij = max{0, fij − f ji}.



Chapter 7

Continuous Markov Processes

7.1 Random Walk

Define a random process on the set of whole numbers that in each turn makes
a step, randomly and equally probable by +1 or -1, starting with position 0.
The number of different walks of n steps where each step is +1 or −1 is clearly
2n. For the simple random walk, each of these walks are equally likely. Thus,
to have m “+1” steps and n − m “-1” steps we have (n

m) combinations. Such a
walk will proceed to the coordinate sn = 2m − n, such that we can also write
the number of combinations as ( n

(n+sn)/2), which is 0 if n+ sn is odd. Therefore,

the probability density of sn is equal to

P(sn) = 2−n

(
n

(n + sn)/2

)

.

As an alternative view, we can draw n random numbers xi uniformly from
{−1, 1}. We define the random variable sn as

Sn =
n

∑
i=1

xi

7.1.1 Long-time approximation and transition to continuous
variables

Since the xi are independent, we have

Var(sn) =
n

∑
i=1

Var(xi) = n

81
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Following the central limit theorem (see above), we obtain for large n the ap-
proximation

sn ∼ N (0,
n2σ2

n
) = N (0, n),

i.e. the position of the walker is distributed as a Gaussian with zero mean
and variance n. This is identical to saying that after an initial burnin phase
the mean square displacement of the walker grows linearly with time n, or its
mean displacement (standard deviation) with square root of time,

√
n.

Thus,

P(sn) ≈
1√
2πn

exp(− s2
n

2n
)

this can also be shown using the de Moivre-Laplace theorem, which is a central
limit theorem for Binomial distributions.

Next, we go to a continuous space. We make the subsitutions:

n = t/∆t

sn = x/∆x

Since variable sn = x/∆x is substituted, we must make a change of variables
(see above). We have dsn/dx = 1/∆x:

p(x) ≈
∣
∣
∣
∣

dSn

dx

∣
∣
∣
∣

P(Sn)

=
1

|∆x|
√

2π t
∆t

exp(− x2∆t

2t(∆x)2
)

=
1√

4πD
exp(− x2

4Dt
)

= Nx(0, 2Dt)

where we have defined the diffusion constant

D :=
∆x2

2∆t
.

which determines the proportionality constant of the increase of the mean
square displacement:

2D∆t = ∆x2.
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Hence we can also write down a transition density, i.e. the conditional proba-
bility density to jump from point x to point y in time step τ:

p(x, y; τ) =
1√

4πD
exp(− (x − y)2

4Dτ
)

7.1.2 Wiener Process and Brownian dynamics

In mathematics, the Wiener process is a continuous-time stochastic process
named in honor of Norbert Wiener. It is often called Brownian motion, af-
ter Robert Brown. It is one of the best known Lévy processes (càdlàg stochastic
processes with stationary independent increments) and occurs frequently in
pure and applied mathematics, economics and physics.

Definition:

1. W0 = 0

2. Wt is almost surely continuous

3. Wt has independent increments with distribution Wt −Ws ∼ N (0, t− s),
(for 0 ≤ s ≤ t).

The condition that it has independent increments means that if 0 ≤ s1 ≤ t1 ≤
s2 ≤ t2 then Wt1 − Ws1 and Wt2 − Ws2 are independent random variables, and
the similar condition holds for n increments.

Consider the unit Brownian motion (normalized white noise) process:

dx = dWt

Numeric realization at time step ∆t:

1. x0 = 0

2. xt+1 = xt +
√

t∆W with ∆W ∼ N (0, 1)

Brownian dynamics

dx = σdWt =
√

2DdWt

This scaled Wiener process is simply the continuous version of the 1-dimensional
random walk, also known as one-dimensional free diffusion with diffusion, be-
cause:

1. x0 = 0
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2. xt ∼ N (0, 4Dt)

Since we have an explicit description of the time-dependent probability dis-
tribution, we can also imagine an ensemble of trajectories to evolve in time,
whose distribution has the time-dependent moments:

µ(t) = 0

σ(t) =
√

2Dt

At t → 0+ the distribution starts out as a Dirac function at x = 0 and then
broadens into a Gaussian that gets flatter and flatter. This is a Fokker-Planck
type description and will be studied in more detail later.

7.2 Langevin and Brownian Dynamics

Consider the one-dimensional Langevin equation in x ∈ R

m
d2x

dt2
= −∇V(x)− γm

[
dx

dt
+
√

2DdW

]

,

with mass m, friction γ and the Wiener process dW. In the overdamped case,
the drag force due to friction is much larger than the inertial force (|γẋ| ≫
|mẍ|), and it is thus assumed |mẍ| ≈ 0, obtaining Brownian dynamics:

0 = −∇V(x)− γm

[
dx

dt
+
√

2DdW

]

,

which is more conveniently written as:

dx

dt
= −∇V(x)

γm
+
√

2DẆ,

The fluctuation-dissipation theorem (Einstein-Smoluchowski) relates friction
and temperature T via the diffusion constant D:

D =
kBT

γm

with kB being the Boltzmann constant. This allows us to write:

dx

dt
= −D

∇V(x)

kBT
+
√

2DdW.
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The stationary density of Brownian dynamics is:

π(x) ∝ exp

(

−V(x)

kBT

)

Using an Euler discretization, we can integrate the Brownian dynamics equa-
tion as:

xt+τ − xt = −Dτ
∇V(xt)

kBT
+
√

2Dτηt.

ηt = N (0, 1).

Calling the present position x and the subsequent position y, we can write
down the conditional transition probability density:

p(x, y; τ) = Ny

(

x − Dτ
∇V(x)

kBT
, 2Dτ

)

.

=
1√

4πD
exp




−

(

y − x + Dτ
∇V(x)

kBT

)2

4Dτ






Example: The local potential is assumed to be harmonic:

V(x) =
α

2
(x − µ)2

yielding

dx

dt
= −αD

x − µ

kBT
+
√

2DdW.

and the stationary density:

π(x) ∝ exp

(

−α(x − µ)2

2kBT

)

= N
(

µ,
kBT

α

)

.

We will later see that when starting with a delta- or Gaussian distribution in a
Brownian dynamics in a harmonic potential, then the solution is still Gaussian
at any time later.

7.2.1 Applications

Molecular Dynamics Consider the motion of an ion in a channel
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Cellular Dynamics Consider the motion of proteins in or on a membrane

7.2.2 Further reading

• Stochastic Processes: [5]



Chapter 8

Markov model discretization
error

8.1 Basics

Let Ω be a real-valued vector space R
d (state space) and µ, p, l, r functions on

a Hilbert space H = {p : Ω → R :
∫

Ω
dx p2(x) < ∞} with scalar product

〈u, v〉w =
∫

Ω
dx u(x) v(x) w(x). We consider a Markov process zt on Ω which

is stationary and ergodic with respect to its unique stationary (invariant) dis-
tribution µ(x) ≡ p(zt = x) ∀t. We use variables x, y ∈ Ω to denote points in
state space. The dynamics of the process zt are characterized by the transition
density

p(x, y; τ) = p(zt+τ = y | zt = x),

and the correlation density, i.e., the probability density of finding the process
at points x and y at a time spacing of τ, is defined by

C(x, y; τ) = µ(x) p(x, y; τ) = p(zt+τ = y, zt = x).

We further assume zt to be reversible with respect to its stationary distribution,
i.e.:

µ(x) p(x, y; τ) = µ(y) p(y, x; τ) (8.1)

C(x, y; τ) = C(y, x; τ). (8.2)

Reversibility is not strictly necessary but tremendously simplifies the forth-
coming expressions and their interpretation [?]. In physical simulations, re-
versibility is the consequence of the simulation system being in thermal equi-
librium with its environment, i.e. the dynamics in the system is purely a con-
sequence of thermal fluctuations and there are no external driving forces.

87
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Consider a probability density pt(x) ≡ p(zt = x). We can write the propaga-
tion of this density via propagator P(τ) as:

pτ(y) = P(τ) ◦ p0(x) =
∫

x
dx p0(x) p(x, y; τ)

8.2 Spectral decomposition

The transition density can be decomposed into spectral components of the
propagator [?]:

p(x, y; τ) =
∞

∑
i=1

λi(τ) µ−1(x) li(x) li(y)

Suppose we are interested in the dominant m eigenvalues. We then only need
to consider a finite sum, and a “fast” part that quickly decays in τ:

p(x, y; τ) =
m

∑
i=1

λi(τ) µ−1(x) li(x) li(y) + pfast(x, y; τ)

where l are eigenfunctions and λi are eigenvalues of the propagator, i.e.

λi(τ) li = P(τ) li.

and eigenvalues shall be sorted as λ1 = 1 > λ2 ≥ λ3.... The eigenfunctions are
normalized by:

〈li, lj〉µ−1 =
∫

x
dx µ−1(x) li(x) lj(x) = δij. (8.3)

where δij is the Kronecker delta. For the first term we have

l1 = P(τ) l1,

i.e. l1 is proportional to the stationary (invariant) density. As a result of the
normalization conditions we have ‖l1‖1 =

∫

x dx l1(x) = 1 and

l1(x) = µ(x)

is identical to the stationary density. As a result of reversibility, the fast part
pfast vanishes for long times τ and we are left with:

p(x, y; τ) =
m

∑
i=1

λi(τ) µ−1(x) li(x) li(y) (8.4)

=
m

∑
i=1

exp(−κiτ) µ−1(x) li(x) li(y) (8.5)
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where κi is an implied rate. Correspondingly, the correlation density can be
written as:

C(x, y; τ) =
m

∑
i=1

λi(τ) li(x) li(y)

Example

Consider a two-well potential with a spectral gap, κ2 ≪ κ3. Then, there exists a

family of τ > pκ−1
3 where p is a sufficiently large number (usually 3 or greater),

such that

p(x, y; τ) ≈ µ(x) + λ2(τ) µ−1(x) l2(x) l2(y)

C(x, y; τ) ≈ µ(x)µ(y) + λ2(τ) l2(x) l2(y).

I.e., for describing the dynamics on long timescales, we only need to approxi-
mate µ, l2 and λ2.

8.3 Raleigh variational principle

In nontrivial dynamical systems neither the correlation densities p(x, y; τ) and
C(x, y; τ) nor the eigenvalues λi and eigenfunctions li are analytically avail-
able. This section provides a variational principle based on which these quanti-
ties can be estimated from simulation data generated by the dynamical process
zt. For this, the formalism introduced above is used to formulate the Raleigh
variational principle used in quantum mechanics [?] for Markov processes.

The density C(x, y; τ) is considered to act as a the kernel of a correlation oper-
ator. Let f be a real-valued function of state, f = f (x) : Ω → R, its autocorre-
lation with respect to the stochastic process zt is given by:

acf( f ; τ) = E[ f (z0) f (zτ)] =
∫

x

∫

y
dx dy f (x) C(x, y; τ) f (y) (8.6)

Remark 1. In the Dirac notation often used in physical literature, integrals such
as the one above may be abbreviated by E[ f (x0) f (xτ)] = 〈 f | C | f 〉 with the
correlation operator defined as | C | f 〉 =

∫

x dx f (x) C(x, y; τ).

Theorem 2. The autocorrelation function of a weighted eigenfunction rk =
µ−1lk is its eigenvalue λk:

acf(rk; τ) = E [rk(z0) rk(zτ)] = λk
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Proof. Using (8.6) with f = µ−1lk, it directly follows that:

acf(rk; τ) =
∫

x

∫

y
dx dy µ−1(x) lk(x) C(x, y; τ) µ−1(y) lk(y) (8.7)

=
m

∑
i=1

λi(τ)
∫

x

∫

y
dx dy µ−1(x) lk(x) li(x) li(y) µ−1(y) lk(y)

=
m

∑
i=1

λi(τ) 〈lk, li〉2
µ−1

=
m

∑
i=1

λi(τ) δik

= λk(τ).

Theorem 3. Let r̂2 = µ−1 l̂2 be an approximate model for the second eigenfunc-
tion, which is normalized and orthogonal to the true first eigenfunction:

〈l̂2, µ〉µ−1 = 0 (8.8)

〈l̂2, l̂2〉µ−1 = 1, (8.9)

then
acf(r̂2; τ) = E [r̂2(z0) r̂2(zτ)] ≤ λ2

Proof. l̂2 is written in terms of the basis of eigenfunctions li:

l̂2 = ∑
i

aili.

Due to 〈l̂2, µ〉µ−1 = 〈l̂2, 1〉 = 0, µ(x) ≥ 0, and µ−1 l̂2 = ∑i aiµ
−1li = a11 +

∑i≥2 aiµ
−1li it follows a1 = 0. Hence:

l̂2 = ∑
i≥2

aili = a2l2 + ∑
i>2

aili = a2l2 + ǫ.

Using the normalization condition (8.9), the following equality can be derived
for the amplitudes:

1 = 〈l̂2, l̂2〉µ−1

= 〈∑
i≥2

aili, ∑
j≥2

ajlj〉µ−1

= ∑
i≥2

ai ∑
j≥2

aj〈li, lj〉µ−1

= ∑
i≥2

a2
i (8.10)
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then

acf(µ−1 l̂2; τ) = ∑
i

λi(τ)
∫

x

∫

y
dx dy µ−1(x)

(

∑
j≥2

ajlj(x)

)

li(x) li(y) µ−1(y)

(

∑
j≥2

ajlj(y)

)

= ∑
i

λi(τ)

[
∫

x
dx µ−1(x)

(

∑
j≥2

ajlj(x)

)

li(x)

]2

= ∑
i

λi(τ)

[

∑
j≥2

aj〈lj, li〉µ−1

]2

= ∑
i

a2
i λi(τ)

= a2
2λ2(τ) +∑

i

a2
i λi(τ)

≤ a2
2λ2(τ) +∑

i

a2
i λ2(τ) = λ2(τ)∑

i

a2
i = λ2(τ) (8.11)

Corollary 4. Let r̂k = µ−1 l̂k be an approximate model for the k’th eigenfunc-
tion, with the normalization and orthogonality constraints:

〈l̂k, li〉µ−1 = 0, ∀i < k (8.12)

〈l̂k, l̂k〉µ−1 = 1,

then
acf(r̂k; τ) = E [r̂k(z0) r̂k(zτ)] ≤ λk

The proof is analogous to Theorem 3, with Eq. (8.10) being ∑i≥k a2
i = 1.

Remark 5. A crucial assumption of the variational principle given by Theorems
(2) to (4) is that for estimating the k-th eigenfunction, the k − 1 dominant eigen-
functions are already known. In particular, the first eigenfunction, i.e. the sta-
tionary density must be known. In practice, these eigenfunctions are approxi-
mated via solving a variational principle. Nonetheless, some basic statements
can be made even if no eigenfunction is known exactly. For example, it is triv-
ial that when the estimated stationary density µ̂ is used in Theorem 2, then the
estimate of the first eigenvalue is still always correctly 1:

acf(µ̂−1µ̂; τ) = acf(1; τ) = 1

and from theorems 2 and 3 it follows that any function r̂k 6= µ̂

acf(r̂k; τ) < 1

hence the eigenvalue 1 is simple and dominant also when estimating eigenval-
ues from data.
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Remark 6. An important insight at this point is that a variational principle of
conformation dynamics can be formulated in terms of correlation functions. In
contrast to quantum mechanics or other fields where the variational principle
has been successfully employed, no closed-form expression of the operator C is
needed. The ability to express the variational principle in terms of correlation
functions with respect to C , means that the eigenvalues to be maximized can
be directly estimated from simulation data. When statistically sufficiently real-
izations of zt are available, then the autocorrelation function can be estimated
via:

acf(r̂k; τ) = E(r̂k(z0)r̂k(zτ)) ≈
1

N ∑ r̂k(z0)r̂k(zτ)

where N are the number of simulated time windows of length τ.

8.4 Ritz method

The Ritz method is a systematic approach to find the best possible approxima-
tion to the m first eigenfunctions of an operator C simultaneously in terms of a
linear combination of orthonormal functions [?]. Here the Ritz method is sim-
ply restated in terms of the present notation. Let χi : Ω → R, i ∈ {1, ..., m} be
a set of m orthonormal basis functions:

〈χi, χj〉µ = δij

and let χ denote the vector of these functions:

χ(x) = [χ1(x), ..., χm(x)]
T.

We seek a coefficient matrix B ∈ R
m×m with

B = [b1, ..., bm] (8.13)

with the column vectors bi = [bi1, ..., bim]
T that approximate eigenfunctions of

operator C as:

r̂i(x) = µ−1(x)l̂i(x) = bT
i χ(x) = ∑

j

bij χi(x) (8.14)

The matrix B that optimally approximates the eigenfunctions in terms of max-

imizing the Raleigh coefficients λ̂i(τ) = acf(µ̂−1 l̂i; τ) is found by the eigenvec-
tors of the eigenvalue problem:

HB = BΛ

with the individual eigenvalue/eigenvector pairs

Hbi = biλ̂i
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and the density matrix H = [hij] with:

hij =
∫

x

∫

y
dx dy χi(x) C(x, y; τ) χj(y) (8.15)

= E[χi(z0) χj(zτ)], (8.16)

or hij = 〈χi | C | χj〉 in the Dirac notation.

Remark 7. Due to the equality between Eq. (8.15) and (8.16) the elements of
the H matrix can be estimated as correlation functions of a simulation of the
process zt

8.5 Roothaan-Hall method

The Roothaan-Hall method is a generalization of the Ritz method used for solv-
ing the linear parameter optimization problem for the case when the basis set
is not orthogonal [?, ?]. Let the matrix S ∈ R

m×m with elements

Sij = 〈χi, χj〉

be the matrix of overlap integrals with the normalization conditions Sii = 1.
Note that S has full rank if and only if all χi are pairwise linearly indepen-
dent. The optimal solution B in the sense of Eqs (8.13)-(8.14) is found by the
eigenvectors of the generalized eigenvalue problem:

HB = SBΛ

with the individual eigenvalue/eigenvector pairs:

Hbi = Sbiλ̂i

The direct approach to solve this problem is given by

S−1HB = BΛ.

Remark 8. The Ritz and Roothaan-Hall methods are useful for eigenfunction
models that are expressed in terms linear combinations of basis functions. Non-
linear parameter models can also be handled with nonlinear optimization meth-
ods. In such nonlinear cases it needs to be tested whether there is a unique
optimum or not.
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Markov state model

Let {S1, ..., Sn} be pairwise disjoint sets partitioning Ω and let πi =
∫

Si
dxµ(x)

be the stationary probability of set Si ⊂ Ω. Consider the piecewise constant
functions

χi = 1Si

then the S-matrix is given by:

Sij = 〈χi, χj〉

= δij

∫

Si

dxµ(x)

= diagπ

= Π.

The corresponding H matrix evaluates to

hij =
∫

x

∫

y
dx dy 1Si

C(x, y; τ) 1Sj
(8.17)

=
∫

Si

∫

Sj

dx dy C(x, y; τ)

=
∫

Si

∫

Sj

dx dy µ(x)p(x, y; τ) (8.18)

=
πi

πi

∫

Si

dx dy µ(x)p(x, Sj; τ) (8.19)

= πiTij (8.20)

= cij

= ΠT

and using the Roothan-Hall method thus results in:

Π
−1

ΠTB = BΛ.

TB = BΛ.

Tbi = biλi.

and is therefore associated with the right eigenvector problem of a Markov
state model:

Tri = riλi.

Therefore, using a Markov model is identical with using the Roothan-Hall
method with the choice χi = 1Si

, i.e. using step functions as a Basis set. In
other words, the Markov model eigenvectors provide an optimal linear combi-
nation of step functions to the true eigenfunctions.
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8.6 Results

Approximation of κ2

The autocorrelation function of r̃2, which we denote as 〈r̃2(0)r̃2(τ)〉 = 〈r̃2(xt)r̃2(xt+τ)〉,
evaluates to

λ̃2(τ) = 〈r̃2(0)r̃2(τ)〉
= αe−κ2τ + ∑

i>2

〈ri, r̃2〉2
µe−κiτ (8.21)

where
α = 〈r2, r̃2〉2

µ.

This autocorrelation function does not yield the exact eigenvalue λ2(τ), but

some approximation λ̃2(τ). For τ ≫ κ−1
3 , which can readily be achieved for

clear two-state processes where κ2 ≫ κ3, the sum on the right hand side disap-
pears:

λ̃2(τ) ≈ αe−κ2τ . (8.22)

This suggests that the true rate, as well as a measure of reaction coordinate
quality, could be recovered from large tau decay of an appropriately good trial
function even from the projected process.

Single-τ rate estimators: A simple rate estimator is to directly take value of the
autocorrelation function of some function ψ̃2 at a single value of τ, and trans-
form it into a rate estimate by virtue of Eq. (8.22). We call these estimators
single-τ estimators. Ignoring statistical uncertainties, they yield a rate estimate
of the form

κ̃2,single = − ln λ̃2(τ)

τ
(8.23)

Quantitatively, the error can be bounded by the expression:

κ̃2,single − κ2 ≤ − ln α

τ
. (8.24)

Proof:
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κ̂2 = −τ−1 ln λ̃2(τ)

= −τ−1 ln

(

αλ2(τ) + ∑
i>2

a2
i λi(τ)

)

= −τ−1 ln

(

αe−τκ2 + ∑
i>2

a2
i e−τκi

)

= −τ−1 ln

(

e−τκ2

[

α + ∑
i>2

a2
i e−τ(κi−κ2)

])

= −τ−1

(

ln e−τκ2 + ln

[

α + ∑
i>2

a2
i e−τ(κi−κ2)

])

(8.25)

which leads to the systematic error in the rate κ̂2:

∆κ2,τ = κ̃2,τ − κ2 = −τ−1 ln

[

α + ∑
i>2

a2
i e−τ(κi−κ2)

]

(8.26)

Please note that the expression in the logarithm is smaller than unity, such that
the rate κ̂2 is always overestimated. We can continue to simplify to

∆κ2,τ = −τ−1 ln

(

α(1 + ∑
i>2

a2
i

α
e−τ(κi−κ2))

)

= τ−1 ln
1

α
− τ−1 ln

(

1 + ∑
i>2

a2
i

α
e−τ(κi−κ2)

)

(8.27)

as an expression for the estimation error. This error can then be bounded using
0 ≤ ln(1 + x) for x ≥ 0 by

0 ≤ ∆κ2,τ ≤ τ−1 ln
1

α
(8.28)

and since κi > κ2 is true for i > 2 we can also find a lower bound on the error
that only depends on the spectral gap κ3 − κ2 and the RCQ α

0 ≤ τ−1 ln
1

α
− τ−1 ln

(

1 +
1 − α

α
e−τ(κ3−κ2)

)

≤ ∆κ2,τ ≤ τ−1 ln
1

α
(8.29)

where we used that ln(1 + x) < x always holds. We conclude that the esti-
mation error ∆κ2 is dominated by a 1/τ dependence whereas the width of this
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error bound decreases exponentially in the spectral gap. For a two-state sys-
tem with with a large gap κ2 ≫ κ3 this uncertainty vanishes and the rate error
is indeed approximated by:

∆κ2,τ ≈ τ−1 ln
1

α
. (8.30)

The systematic error of single-τ estimators results from the fact that Eq. (8.23)
effectively attempts to fit the tail of a multiexponential decay λ̃2(τ) by a single-
exponential with the constraint λ̃2(0) = 1. Unfortunately, the ability to im-
prove these estimators by simply increasing τ is limited because the statistical
uncertainty of estimating Eq. 8.22 quickly grows in τ [?].



Chapter 9

Stochastic vs. Transport
Equations

9.1 Stochastic Differential Equations (SDE)

We want to integrate a stochastic differential equation of the following form

dXt

dt
= b (t, Xt) + σ (t, Xt) Rt

with b and σ being continuous functions and Rt a random variable representing
noise. The time integrated process is again a random variable.

9.1.1 Terminology

A probability measure space (Ω,A, P) is a triple of

• Ω the set of results

• A ∈ P(Ω) a σ-Algebra the set of measurable events, which we can asso-
ciate with a probability

• P : A → [0, 1] ⊂ R
+
0 a measure on Ω, which is normalized P(Ω) = 1 and

P(A) the probability that event A ∈ A occurs.

A random variable is a function X : Ω → R
n, which is measurable with respect

to the measure spaces (Ω,A, P) and (Rn,B (Rn)).

We can use an abbreviated form and write for a random variable f : Ω → R

98
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〈 f 〉 :=
∫

f dP =
∫

Ω
f (ω) dP(ω)

and in analogy

〈 f g〉 :=
∫

f g dP =
∫

Ω
f (ω) g(ω)dP(ω)

The expectation is then defined as

E( f ) := 〈 f 〉
All Moments 〈 f n〉 can be defined in a similar manner.

Each random variable X : Ω → R
n has an induced measure µX defined by

µX(B) := P(X−1(B)) = P({ω ∈ Ω | X(ω) ∈ B}), ∀B ∈ B (Rn)

and is thus equals the probability of the inverse image set X−1(B).

Using the induced measure we can use the random variable in the usual sense
with the probability measure space (Rn,B(Rn), µX) and consider µX(B) to be
the probability to generate a random number x ∈ B ⊂ B(Rn).

If we can represent µX by a a density function g : R
n → R with

µX(B) = P(X−1(B)) =
∫

B
g(x)dx

and we can rewrite the integration with measure µX by an integral in R
n.

In analogy a function f : R
n → R

m, which is measurable with respect to
(B(Rn),B(Rm)), can then be integrated with

〈 f (X)〉 =
∫

Ω
f (X(ω))dP(ω) =

∫

Rn
f (x)g(x)dx

9.1.2 Stochastic Processes

Let (Ω,A, P) be a probability space and (Rn,B(Rn)) the measure space with
the Borel-Algebra of R

n. If I ⊆ [0, ∞) an index set, then the family (Xt)t∈I
consisting of measurable functions Xt : Ω → R

n, t ∈ I is a stochastic process
(with state space R

n).

For fixed t the function Xt is a n-dimensional random variable.

For fixed ω the function (Xt)t∈I (ω) : I → R
n is one path of (Xt)t∈I and one

can consider ω as a particle and the path its trajectory.

Finally one can consider the function (Xt)t∈I : (t, ω) → R
n and ask for mea-

surability.
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9.1.3 Further Reading

• Introduction to SDE[2] (in German)

9.2 Master-Equation to Fokker-Planck

∂p(x, t)

∂t
=
∫

(K(y, x)p(y, t)− K(x, y)p(x, t))dy

We express K(x, y) by

K̂ (y, r(x, y)) = K(x, y), r(x, y) = x − y

so that we have

K̂ (y, r) = K (y + r, y)

This leads to

∂p(x, t)

∂t
=

∫
(
K̂(y, y − x)p(y, t)− K̂(x, x − y)p(x, t)

)
dr

=
∫
(
K̂(x − r, r)p(x − r, t)− K̂(x,−r)p(x, t)

)
dr

Now we assume that

1. K̂ (x, y) is of short range K̂ (y, r) ≈ 0, |y| > δ

2. K̂ (x, y) varies slowly K̂ (y + ∆y, r) ≈ K̂ (y, r) , |∆y| < δ

3. p(x, t) varies slowly in x

and do a Taylor expansion of the first integral in x + (−r) around x

K̂(x − r, r)p(x − r, t) ≈ K̂(x, r)p(x, t) +
(−r)1

1!

∂

∂x

(
K̂(x, r)p(x, t)

)
+

(−r)2

2!

∂2

∂x2

(
K̂(x, r)p(x, t)

)

≈ K̂(x, r)p(x, t)− r
∂

∂x

(
K̂(x, r)p(x, t)

)
+

1

2
r2 ∂2

∂x2

(
K̂(x, r)p(x, t)

)

Place this into the equation above and get
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∂p(x, t)

∂t
=
∫ (

K̂(x, r)p(x, t)− r
∂

∂x

(
K̂(x, r)p(x, t)

)
+

1

2
r2 ∂2

∂x2

(
K̂(x, r)p(x, t)

)
)

− K̂(x,−r)p(x, t)dr

=
∫

K̂(x, r)p(x, t)dr−
∫

r
∂

∂x

(
K̂(x, r)p(x, t)

)
dr+

1

2

∫

r2 ∂2

∂x2

(
K̂(x, r)p(x, t)

)
dr

−
∫

K̂(x,−r)p(x, t)dr

= p(x, t)
∫

K̂(x, r)dr−
∫

r
∂

∂x

(
K̂(x, r)p(x, t)

)
dr+

1

2

∫

r2 ∂2

∂x2

(
K̂(x, r)p(x, t)

)
dr

− p(x, t)
∫

K̂(x,−r)dr

The first and last integral are the same, because the last integral can be com-
puted for r → −r and maintains its value

∂p(x, t)

∂t
= −

∫

r
∂

∂x

(
K̂(x, r)p(x, t)

)
dr +

1

2

∫

r2 ∂2

∂x2

(
K̂(x, r)p(x, t)

)
dr

= − ∂

∂x

(

p(x, t)
∫

r
(
K̂(x, r)

)
dr

)

+
1

2

∂2

∂x2

(

p(x, t)
∫

r2
(
K̂(x, r)

)
dr

)

Now we can introduce the so called jump moments

an(x) =
∫

rn
(
K̂(x, r)

)
dr

and finally write the Fokker-Planck equation as an approximation of the master
equation

∂p(x, t)

∂t
= − ∂

∂x
(a1(x)p(x, t)) +

1

2

∂2

∂x2
(a2(x)p(x, t)) .

With the jump moments we also have a way to compute the the necessary drift
and diffusion functions in terms of the rate kernel function K(x, y).

The exact approximation with all terms of the Taylor expansion is known as
Kramer-Moyer-Expansion. It is equivalent to the Master-Equation.

∂p(x, t)

∂t
=

∞

∑
n=1

(−1)n

n!

∂n

∂xn
(an(x)p(x, t))
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9.3 Stochastic Integrals

The SDE above

dXt

dt
= u (t, Xt) + v (t, Xt) Rt

is discretized for time steps tj

Xj+1 − Xj

tj+1 − tj
= u(tj, Xj) + v(tj, Xj)Rj

and thus

Xj+1 = Xj + u(tj, Xj)∆t + v(tj, Xj)Rj∆t

Since the Rj cannot be independent due to non continuous paths we have to
replace Rj∆t by increments ∆Wj = Wtj+1

− Wtj
. And we want

these to be

1. independent for a finite number of time steps, so that ∆Wj−1, . . . , ∆W1 are
independent increment,s

2. stationary, so independent of movement in time t → t + τ and the distri-
bution of Wt − Ws depends only on t − s

3. and E (Wt − Ws) = 0

This is only fulfilled for the Wiener process, which is a stochastic process Wt :
Ω → R with

1. W0 = 0 (almost surely)

2. (Wt)t≥0 has independent increments

3. Wt −Ws ∼ N (0, t − s), ∀0 ≤ s < t

Then we compute

E(Wt) = E(Wt −W0) + E(W0) = 0

and

E((Wt −Ws)
2) = Var(Wt − Ws) + E((Wt − Ws))

2 = Var(Wt − Ws) = t − s
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E (Wt · Ws) = min {s, t}

With the Extension-theorem of Kolmogorov we can prove, that such a process
exists and the existence of a process, that is almost surely continuous follows
from the Continuity-theorem of Kolmogorov.

9.3.1 Ito-Integral

We derive the definition for the Stochastic Integral only for a set of elementary
function. It can then be shown, that for most stochastic process exists a suitable
series of elementary function that converge to it and the Ito-Integral can be
defined as the limit of the integral for the series of elementary functions.

The elementary functions have the form of time-wise constant random variable
ej(ω) and points tj = j · 2−n

φ(t, ω) = ∑
j≥0

ej(ω) · χ[tj,tj+1)
(t)

for fixed spacing n ∈ N. And we define a stochastic integral for these functions
by

∫ b

a
φ(t, ω)dWt(ω) = ∑

j≥0

ej(ω)
(

Wtj+1
−Wtj

)

and assume, that a and b are in accordance with the time grid induced by n.
Otherwise the points where Wt is evaluated have to be adapted at the end-
points accordingly.

Choose for example
ej(ω) := W(1−τ)tj+τtj+1

(ω)

and we compute the integral to

Iτ = ∑
j≥0

W(1−τ)tj+τtj+1

(

Wtj+1
−Wtj

)

with expectation

E(Iτ) = τ(b − a)

Strangely, the expectation of the integral depends on the position of evaluation.
We define the stochastic integral by
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Iτ [ f ](ω) = ∑
j≥0

f ((1 − τ)tj + τtj+1, ω)
(

Wtj+1
(ω)− Wtj

(ω)
)

and distinguish the two cases

• τ = 0 : The left-side of the intervals are used and the integral is called
Ito-Integral. The corresponds to the case where only information from the
past and present is used to compute information a specific time and so
is the resulting integrated stochastic process with Expectation zero. This
is the mathematical more consistent way to construct a new stochastic
process by integration.

• 0 < τ ≤ 1 : Now the expectation is not vanishing and the integral uses

“future” information. For τ = 1
2 it is called the Stratonovich Integral has

simpler transformation rules and a more reasonable physical interpreta-
tion:
Each path in an SDE that is almost continuous can be approximated by
smooth functions, which can be inserted into the SDE and then solved as
a deterministic DEQ. The solution converges to a random process in t and
can be identified with the Stratonovich integral. Thus it is the correct de-
scription for random forces in SDE and not necessarily randomness with
other origin, that is mimicked by a random process.

Both integrals are linear and can be split as ordinary integrals can.

For Ito-Integral there exists a transformation rule. If a SDE is given by

dXt = u dt + v dWt

and there is a function Yt := g(t, Xt) with

g : [0, ∞)× R → R

then

dYt =

(
∂g

∂t
+ u

∂g

∂x
+

1

2
v2 ∂2g

∂x2

)

dt + v
∂g

∂x
dWt

is also a stochastic process. From this transformation law follows the Fokker-
Planck-Equation. This means, that the Fokker-Planck Equation can be regarded
as an Ito-Process of the above form.
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9.3.2 Stratonovich Integral

For the Stratonovich Integral the solution is similar (denoted by ◦)

dXt = u dt + v ◦ dWt

is transformed by

dYt =

(
∂g

∂t
+ u

∂g

∂x

)

dt + v
∂g

∂x
◦ dWt

The above Stratonovich SDE will not transform into the Fokker-Planck-Equation,
but there exists also a transformation between both integration ways, which
then leads to an SDE, that is equivalent to the Fokker-Planck Equation. If
h : R → R is a smooth function, then

h(Wt) ◦ dWt =
1

2
h(Wt)

∂h

∂x
(Wt)dt + h(Wt)dWt

holds. This leads to the following relations between the different transport
equations and SDEs

P (j, tn+1 | i, tn−1, xn−2; tn−2; . . .) = P (j, tn+1 | i, tn−1) (Markov Process)
↓ ↓

p
(t+1)
i = ∑j p

(t)
j P(j → i) (Chapman-Kolmogorov)

↓ ↓
∂p(x,t)

∂t =
∫
(K(y, x)p(y, t)− K(x, y)p(x, t))dy (Master-Equation)

↓ ↓
∂p(x,t)

∂t = − ∂
∂x (u(x, t)p(x, t))+ 1

2
∂2

∂x2

(
v(x, t)2p(x, t)

)
(Fokker-Planck)

m m
dXt = u dt + v dWt (Ito Calculus)

m m
dXt =

(

u − 1
2 v ∂

∂x v
)

dt + v ◦ dWt (Stratonovich Calculus)



Chapter 10

Discretization

When working with state-continuous Markov processes in the computer, the
state space must be discretized. This is effectively transforming the state-continuous
Markov process into a state-discrete Markov process, i.e. a Markov chain, thus
allowing all Markov chain analysis and estimation tools above to be applied.
Importantly, it must be ensured that this Markov chain is still a good approxi-
mation of the original process, i.e. that the discretization error is small. This is
in detail worked out in the paper

M. Sarich, F. Noé and C. Schütte: “On the approximation error of Markov state
models“. Multiscale Model. Simul. (2010)
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