Reverse Engineering Algorithms

Ling Sun

14/03/2017
Review

- Model, $M = (I, K)$. (IG I has no multiple edges).
- ASTG, $T = (X, S)$, the dynamics generated by a model M.
- Proposition: 3 u-row types.
- Lemma: isomorphic groups of u-rows.
Extremal state and extremal row

Definition

(Lorenz2011) A state \(x = (x_u)_{u \in V} \) is called an extremal state, if \(x_u \in \{0, \max_u\} \), for all \(u \in V \).

A \(u \)-row \(\tau^u = (x^0, \ldots, x^{\max_u}) \) is extremal, if both \(x^0 \) and \(x^{\max_u} \) are extremal states.
Lemma

(Lorenz2011) Given a component $u \in V$ and a resource $\omega \subseteq \text{Pre}(u)$, there always exists an extremal state $x \in X$ such that $\text{Res}_u(x) = \omega$.

Proof.

For all $v \in V$, define

$$x_v := \begin{cases}
0 & v \notin \text{Pre}(u) \\
0 & \varepsilon(v, u) = + \land v \notin \omega \\
\max_v \varepsilon(v, u) = + \land v \in \omega \\
\max_v \varepsilon(v, u) = - \land v \notin \omega \\
0 & \varepsilon(v, u) = - \land v \in \omega
\end{cases} \quad (2.1)$$

Then by construction, $\text{Res}_u(x) = \omega$. \square

Extremal state of v_1

which has resource $\{v_1\}$

So that, $x = (x_{v_1}, x_{v_2}) =$?
Isomorphic u-rows with two states.

Lemma

(Lorenz 2013) Let $x, y \in X$ such that there exists a component $u \in V$ with $\text{Res}_u(x) \setminus u = \text{Res}_u(y) \setminus u$. Then the u-row $(x^0, \ldots, x^{\max u})$ containing x is isomorphic to the u-row $(y^0, \ldots, y^{\max u})$ containing y.

![Diagram](image-url)
Theorem

(Lorenz2013) For any model $M = (I, K)$, the state transition graph T_M is uniquely determined by I and the extremal rows of T_M.

Proof.

(Lorenz2013) For any u-row (x^0, \cdots, x^{max_u}), one can always find an extremal state y with $Res_u(x^0) = Res_u(y)$, according to Lemma 2. Quite directly, from Lemma of isomorphic u-rows with two states, the extremal row including y is isomorphic to the u-row (x^0, \cdots, x^{max_u}). □
Figure: The interaction graph and the extremal rows of an ASTG uniquely determine the complete ASTG. \(\vartheta(v_1, v_2) = 1 \) infers that, \(\tau_{v_2}^{v_1} \) is isomorphic with \(\tau_{v_1}^{v_1} \). Similarly, \(\vartheta(v_2, v_1) = 1 \) infers that, \(\tau_{v_1}^{v_1} \) is isomorphic with \(\tau_{v_1}^{v_1} \).
Figure: (a) IG I. (b) Logical parameter function K. (c) Corresponding ASTG T. (d) Alternative logical parameter function K'. $M_1 = (I, K)$ and $M_2 = (I, K')$ are two isomorphic models generating the same ASTG T, where K satisfies the Snoussi-condition but K' does not.
Definition

(Equivalent models) Let $M_1 = (I_1, K_1)$ and $M_2 = (I_2, K_2)$ be two models, where $I_1 = (V, E_1, \varepsilon_1, \vartheta_1, \max)$ and $I_2 = (V, E_2, \varepsilon_2, \vartheta_2, \max)$. M_1 and M_2 are equivalent if

$$\delta_{M_1}(u, x) = \delta_{M_2}(u, x), \forall x \in X, \forall u \in V.$$

(Let us see an example for this definition and the following Lemma.)
Lemma

(Lorenz2011) Given a model $M^1 = (I^1, K^1)$ with $I^1 = (V, E, \varepsilon^1, \vartheta^1, \max)$.

a) For IG $I^2 = (V, E, \varepsilon^2, \vartheta, \max)$, a logical parameter function K^2 is defined as, for all $u \in V$ and $\omega \in \text{Pre}(u) \mid I^1$

$$K^2(u, \omega) = K^1(u, \omega') \quad \omega' := \omega \Delta \{v \in \text{Pre}(u) \mid \varepsilon^1(v, u) \neq \varepsilon^2(v, u)\}$$

then, the model $M^2 = (I^2, K^2)$ defines the same ASTG as M^1.

b) For an IG $I^3 = (V, E^3 = E \sqcup E', \varepsilon^3, \vartheta^3, \max)$, for all $u \in V$, one can define its predecessors in the following way:

$\text{Pre}_E(u) := \{(v, u) \mid (v, u) \in E\}$, $\text{Pre}_{E'}(u) := \{(v, u) \mid (v, u) \in E'\}$, $\text{Pre}_{E^3}(u) := \text{Pre}_E(u) \cup \text{Pre}_{E'}(u)$. If the thresholds on those interactions from E, $\vartheta^3 \mid E$ is identical with ϑ, i.e., $\vartheta^3 \mid E \equiv \vartheta$, then one can define a K^3 as follows: $\forall u \in V \quad \forall \omega \subseteq \text{Pre}_{E^3}(u)$:

$$\omega' := \omega \Delta \{v \in \text{Pre}_E \mid \varepsilon^1(v, u) \neq \varepsilon^3(v, u)\}, \quad K^3(u, \omega) := K^1(u, \omega')$$

$M^3 := (I^3, K^3)$ defines the same ASTG as M^1. Moreover, K^3 is chosen that no edges in E' is visible.
(a) I^1.
(b) I^2.
(c) I^3.

(d) K^1
(e) K^2
(f) K^3

Figure: (a), (d) $M^1 = (I^1, K^1)$, (b), (e) $M^2 = (I^2, K^2)$, (c), (f) $M^3 = (I^3, K^3)$.

Figure: The ASTG T of the three models in Figure 3.