1 Exercise

Consider a metabolic network \mathcal{N} given by its stoichiometric $(m \times n)$-matrix S and the set of irreversible reactions Irr.

1. What is an elementary flux mode in \mathcal{N}?

2. Give a mixed integer linear program to compute a shortest elementary flux mode in \mathcal{N} involving some particular reaction j_0 (you may assume $Irr = \{1, \ldots, n\}$).

3. Give a mixed integer linear program to compute k shortest elementary flux mode in \mathcal{N} involving some particular reaction j_0 (you may assume $Irr = \{1, \ldots, n\}$).
2 Exercise Tutorial

Consider the following network:

1. Give an inequality description of the steady-state flux cone of \mathcal{N}, assuming that all stoichiometric coefficients belong to $\{-1, 0, 1\}$.
2. Determine the elementary modes of \mathcal{N}.
3. Determine for all pairs of reactions i and j, $i \neq j$, whether i is directionally coupled to j.
4. Which pairs of reactions are fully coupled?
Consider the following network:

1. Give an inequality description of the steady-state flux cone of \mathcal{N}, assuming that all stoichiometric coefficients belong to $\{-1, 0, 1\}$.

2. Determine the elementary modes of \mathcal{N}.

3. Determine for all pairs of reactions i and j, $i \neq j$, whether i is directionally coupled to j.

4. Which pairs of reactions are fully coupled?
4 Exercise Homework

Consider the following network:

1. Give an inequality description of the steady-state flux cone of \mathcal{N}, Assuming that all stoichiometric coefficients belong to $\{-1,0,1\}$.

2. Determine the elementary modes of \mathcal{N}.

3. Determine for all pairs of reactions i and j, $i \neq j$, whether i is directionally coupled to j.

4. Which pairs of reactions are fully coupled?

Justify your answers and send the solutions for exercise 3 and 4 until Friday, 16. June, 08:00 am to Annika.Roehl@fu-berlin.de