III. Matching

- $G = (V, E)$ undirected graph
- Matching: Subset of edges $M \subseteq E$, no two of which share an endpoint.
- Maximum (cardinality) matching: Matching of maximum cardinality
- Perfect matching: Every vertex in V is matched.
- Maximum weighted matching: Given a weight function $w : E \rightarrow \mathbb{R}$, find a matching M such that $w(M) = \sum_{e \in M} w(e)$ is maximal.

Augmenting paths

- Let M be a matching in $G = (V, E)$.
- A path $P = (v_0, v_1, ..., v_t)$ in G is called M-augmenting if:
 - t is odd,
 - $v_1 v_2, v_3 v_4, ..., v_{t-2} v_{t-1} \in M$,
 - $v_0, v_t \not\in \bigcup_{e \in M} e$.
- If P is an M-augmenting path and $E(P)$ the edge set of P, then
 $M' = M \triangle E(P) = (M \setminus E(P)) \cup (E(P) \setminus M)$
 is a matching in G of size $|M'| = |M| + 1$.

Berge’s Theorem

Theorem (Berge 1957)
Let M be a matching in the graph $G = (V, E)$. Then either M is a maximum cardinality matching or there exists an M-augmenting path.

Generic Matching Algorithm

Initialization: $M \leftarrow \emptyset$
Iteration: If there exists an M-augmenting path P, replace $M \leftarrow M \triangle E(P)$.

~ how can one find an M-augmenting path?

- Difficult in general ~ Edmonds’ matching algorithm (Edmonds 1965)
- Easy for bipartite graphs

Bipartite graphs

A graph $G = (V, E)$ is bipartite if there exist $A, B \subseteq V$ with $A \cup B = V, A \cap B = \emptyset$ and each edge in E has one end in A and one end in B.

Proposition
A graph $G = (V, E)$ is bipartite if and only if each circuit of G has even length.
Bipartite matching

Matching augmenting algorithm for bipartite graphs

Input: Bipartite graph $G = (A \cup B, E)$ with matching M.
Output: Matching M' with $|M'| > |M|$ or proof that no such matching exists.

Description: Construct a directed graph D_M with the same node set as G.
For each edge $e = \{a, b\}$ in G with $a \in A, b \in B$:
- if $e \in M$, there is the arc (b, a) in D_M.
- if $e \not\in M$, there is the arc (a, b) in D_M.
Let $A_M = A \setminus \bigcup M$ and $B_M = B \setminus \bigcup M$.
M-augmenting paths in G correspond to directed paths in D_M starting in A_M and ending in B_M.

Theorem
A maximum-cardinality matching in a bipartite graph $G = (V, E)$ can be found in time $O(|V||E|)$.

Bipartite matching as a maximum flow problem

- Add a source s and edges (s, a) for $a \in A$, with capacity 1.
- Add a sink t and edges (b, t) for $b \in B$, with capacity 1.
- Direct edges in G from A to B, with capacity 1.

- Integral flows f correspond to matchings M, with $\text{val}(f) = |M|$.
- Ford-Fulkerson takes time $O(|V||E|)$, since $v^* \leq |V|/2$.
- Can be improved to $O(\sqrt{|V||E|})$ (Hopcroft-Karp 1973).

Marriage theorem

Theorem (Hall 1935)
A bipartite graph $G = (A \cup B, E)$, with $|A| = |B| = n$, has a perfect matching if and only if for all $B' \subseteq B$, $|B'| \leq |N(B')|$, where $N(B')$ is the set of all neighbors of nodes in B'.
Proof

- Let \((S, T)\) be an \((s, t)\)-cut in the corresponding network.
- Define \(A_S = A \cap S, A_T = A \cap T, B_S = B \cap S, B_T = B \cap T\).
- Show \(\text{cap}(S, T) \geq n\) (Exercise)
- By the max-flow min-cut theorem, the maximum flow is at least \(n\).

\[
\begin{align*}
A_S &= A \cap S \\
A_T &= A \cap T \\
B_S &= B \cap S \\
B_T &= B \cap T
\end{align*}
\]

Network connectivity: Menger’s theorems

- \(G = (V, E)\) directed graph, \(s, t \in V, s \neq t\) non-adjacent.
- **Theorem** (Menger 1927) The maximum number of *arc-disjoint* paths from \(s\) to \(t\) equals the minimum number of arcs whose removal disconnects all paths from \(s\) to \(t\).
- **Theorem** (Menger 1927) The maximum number of *node-disjoint* paths from \(s\) to \(t\) equals the minimum number of nodes (different from \(s\) and \(t\)) whose removal disconnects all paths from \(s\) to \(t\).

References and further reading