Graph Algorithms

I. Shortest paths

- \(D = (V, A) \) directed graph, \(s, t \in V \).
- A walk is a sequence \(P = (v_0, a_1, v_1, \ldots, a_k, v_k), k \geq 0 \), where \(a_i \) is an arc from \(v_{i-1} \) to \(v_i \), for \(i = 1, \ldots, k \).
- \(P \) is a path, if \(v_0, \ldots, v_k \) are all different.
- If \(s = v_0 \) and \(t = v_k \), \(P \) is a \(s \)-\(t \) walk resp. \(s \)-\(t \) path of length \(k \) (i.e., each arc has length 1).
- The distance from \(s \) to \(t \) is the minimum length of any \(s \)-\(t \) path (and \(+\infty \) if no \(s \)-\(t \) path exists).

Shortest paths with unit lengths

Algorithm (Breadth-first search)

Initialization: \(V_0 = \{s\} \)

Iteration: \(V_{i+1} = \{v \in V \setminus (V_0 \cup V_1 \cup \cdots \cup V_i) \mid (u, v) \in A \text{, for some } u \in V_j\} \),
until \(V_{i+1} = \emptyset \).

Running time: \(O(|A|) \)

- \(V_i \) is the set of nodes with distance \(i \) from \(s \).
- The algorithm computes shortest paths from \(s \) to all reachable nodes.
- Can be described by a directed tree \(T = (V', A') \) with root \(s \) such that each \(u \)-\(v \) path in \(T \) is a shortest \(u \)-\(v \) path in \(D \).

Shortest paths with non-negative lengths

- Length function \(l : A \to \mathbb{Q}_+ = \{x \in \mathbb{Q} \mid x \geq 0\} \)
- For a walk \(P = (v_0, a_1, v_1, \ldots, a_k, v_k) \) define \(l(P) = \sum_{i=1}^{k} l(a_i) \).

Algorithm (Dijkstra 1959)

Initialization: \(U = V, f(s) = 0, f(v) = \infty, \text{for } v \in V \setminus \{s\} \)

Iteration: Find \(u \in U \) with \(f(u) = \min \{f(v) \mid v \in U\} \).
For all \(a = (u, v) \in A \text{ with } f(v) > f(u) + l(a) \) let \(f(v) = f(u) + l(a) \).
Let \(U \leftarrow U \setminus \{u\} \), until \(U = \emptyset \).

Upon termination, \(f(v) \) gives the length of a shortest path from \(s \) to \(v \).

Running time: \(O(|V|^2) \) (can be improved to \(O(|A| + |V| \log |V|) \)).

Example

![Graph example](image-url)
Graph algorithms, by A. Bockmayr, 24. Oktober 2016, 15:58

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$-$</td>
<td>${1,2,4,3,5}$</td>
<td>0</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>${2,3,4,5}$</td>
<td>0</td>
<td>1</td>
<td>10</td>
<td>3</td>
<td>∞</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>${3,4,5}$</td>
<td>0</td>
<td>1</td>
<td>10</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>${3}$</td>
<td>0</td>
<td>1</td>
<td>9</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>${}$</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>${3}$</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

Application: Longest common subsequence

- Sequences $a = a_1, \ldots, a_m$ and $b = b_1, \ldots, b_n$
- Find the longest common subsequence of a and b (obtained by removing symbols in a or b).

Modeling as a shortest path problem

- Grid graph with nodes $(i,j), 0 \leq i \leq m, 0 \leq j \leq n$.
- Horizontal and vertical arcs of length 1.
- Diagonal arcs $((i-1,j-1), (i,j))$ of length 0, if $a_i = b_j$.

The diagonal arcs on a shortest path from $(0,0)$ to (m,n) define a longest common subsequence.

Circuits of negative length

- Consider arbitrary length functions $l: A \rightarrow \mathbb{Q}$.
- A directed circuit is a walk $P = (v_0, a_1, v_1, \ldots, a_k, v_k)$ with $k \geq 1$ and $v_0 = v_k$ such that v_1, \ldots, v_k and a_1, \ldots, a_k are all different.
- If $D = (V,A)$ contains a directed circuit of negative length, there exist s-t walks of arbitrary small negative length.

Proposition

Let $D = (V,A)$ be a directed graph without circuits of negative length.

For any $s,t \in V$ for which there exists at least one s-t walk, there exists a shortest s-t walk, which is a path.

Shortest paths with arbitrary lengths

$D = (V,A), n = |V|, l: A \rightarrow \mathbb{Q}$.

Algorithm (Bellman-Ford 1956/58)

Compute $f_0, \ldots, f_n : V \rightarrow \mathbb{R} \cup \{\infty\}$ in the following way:

Initialization: $f_0(s) = 0$, $f_0(v) = \infty$, for $v \in V \setminus \{s\}$

Iteration: For $k = 1, \ldots, n$ and all $v \in V$:

$$f_k(v) = \min\{f_{k-1}(v), \min_{(u,v) \in A}(f_{k-1}(u) + l(u,v))\}$$

Running time: $O(|V||A|)$
Example

![Graph Diagram]

Properties

- For each $k = 0, ..., n$ and each $v \in V$:

 $$f_k(v) = \min \{ l(P) \mid P \text{ is an } s-v \text{ walk traversing at most } k \text{ arcs} \}$$

 (by induction)

- If D contains no circuits of negative length, $f_{n-1}(v)$ is the length of a shortest path from s to v.

Finding an explicit shortest path

- When computing $f_0, ..., f_n$ determine a predecessor function $p : V \rightarrow V$ by setting $p(v) = u$ whenever $f_{k+1}(v) = f_k(u) + l(u,v)$.

- At termination, $v, p(v), p(p(v)), ..., s$ gives the reverse of a shortest $s-v$ path.

Theorem

Given $D = (V, A), s, t \in V$ and $l : A \rightarrow \mathbb{Q}$ such that D contains no circuit of negative length, a shortest $s-t$ path can be found in time $O(|V||A|)$.

Remark

D contains a circuit of negative length reachable from s if and only if $f_n(v) \neq f_{n-1}(v)$, for some $v \in V$.

NP-completeness

For directed graphs containing circuits of negative length, the problem becomes NP-complete:

Theorem

The decision problem

Input: Directed graph $D = (V, A), s, t \in V$, $l : A \rightarrow \mathbb{Z}$, $L \in \mathbb{Z}$

Question: Does there exist an $s-t$ path P with $l(P) \leq L$?

is NP-complete.

Corollary

The shortest path problem with arbitrary lengths is NP-complete.

The longest path problem with non-negative lengths is NP-complete.
Application: Knapsack problem

- Knapsack, volume 8, 5 articles

<table>
<thead>
<tr>
<th>Article i</th>
<th>Volume a_i</th>
<th>Value c_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>

- Objective: Select articles fitting into the knapsack and maximizing the total value.

Possible models

- **Shortest path model**
 - Directed graph with nodes $(i, x), 0 \leq i \leq 6, 0 \leq x \leq 8$.
 - Arcs from $(i-1, x)$ to (i, x) resp. $(i, x+a_i)$ of length 0 resp. $-c_i$, for $0 \leq i \leq 5$.
 - Arcs from $(5, x)$ to $(6, 8)$ of length 0, for $0 \leq x \leq 6$.
 - A shortest path from $(0,0)$ to $(6,8)$ gives an optimal solution.

 \Rightarrow *pseudo-polynomial algorithm*

- **Linear 0-1 model**

$$
\max \{4x_1 + 7x_2 + 3x_3 + 5x_4 + 4x_5 \mid
5x_1 + 3x_2 + 2x_3 + 2x_4 + x_5 \leq 8, x_1, \ldots, x_5 \in \{0,1\}\}
$$