Polynomial reductions

- A polynomial reduction of $L_1 \subseteq \Sigma_1^*$ to $L_2 \subseteq \Sigma_2^*$ is a polynomially computable function $f : \Sigma_1^* \rightarrow \Sigma_2^*$ with $w \in L_1 \Leftrightarrow f(w) \in L_2$.

- **Proposition.** If L_1 is polynomially reducible to L_2, then
 1. $L_1 \in P$ if $L_2 \in P$ and $L_1 \in NP$ if $L_2 \in NP$
 2. $L_2 \notin P$ if $L_1 \notin P$ and $L_2 \notin NP$ if $L_1 \notin NP$.

- L_1 and L_2 are polynomially equivalent if they are polynomially reducible to each other.

NP-complete problems

- A language $L \subseteq \Sigma^*$ is NP-complete if
 1. $L \in NP$
 2. Any $L' \in NP$ is polynomially reducible to L.

- **Proposition.** If L is NP-complete and $L \in P$, then $P = NP$.

- **Corollary.** If L is NP-complete and $P \neq NP$, then there exists no polynomial algorithm for L.

Structure of the class NP

![Structure of the class NP](image)

Fundamental open problem: $P \neq NP$?

Proving NP-completeness

- **Theorem** (Cook 1971). SAT is NP-complete.

- **Proposition.** L is NP-complete if
 1. $L \in NP$
 2. there exists an NP-complete problem L' that is polynomially reducible to L.

- **Example:** INDEPENDENT SET

 Instance: Graph $G = (V, E)$ and $k \in \mathbb{N}, k \leq |V|$.

 Question: Is there a subset $V' \subseteq V$ such that $|V'| \geq k$ and no two vertices in V' are joined by an edge in E?
Reducing 3SAT to INDEPENDENT SET

- Let F be a conjunction of n clauses of length 3, i.e., a disjunction of 3 propositional variables or their negation.
- Construct a graph G with $3n$ vertices that correspond to the variables in F.
- For any clause in F, connect by three edges the corresponding vertices in G.
- Connect all pairs of vertices corresponding to a variable x and its negation $\neg x$.
- F is satisfiable if and only if G contains an independent set of size n.

NP-hard problems

- **Decision problem**: solution is either yes or no

 Example: Traveling salesman decision problem:
 Given a network of cities, distances, and a number B, does there exist a tour with length $\leq B$?

- **Search problem**: find an object with required properties

 Example: Traveling salesman optimization problem:
 Given a network of cities and distances, find a shortest tour.

- Decision problem NP-complete \Rightarrow search problem NP-hard
- NP-hard problems: at least as hard as NP-complete problems

NP-hard problems in bioinformatics

Sperschneider 08

- Multiple alignment
- Shortest common superstring
- Protein threading
- Pseudoknot prediction
- Bi-Clustering
- ...

Further complexity classes

$coNP$: Problems whose complement is in NP

$PSPACE$: Problems solvable in polynomial space

$EXPTIME$: Problems solvable in exponential time
Literature

- J. E. Hopcroft and J. D. Ullman: Introduction to automata theory, languages and computation. Addison-Wesley, 1979
- C. H. Papadimitriou: Computational complexity. Addison-Wesley, 1994