Hilbert’s Tenth Problem

Hilbert, International Congress of Mathematicians, Paris, 1900

Given a diophantine equation with any number of unknown quantities and with rational integral numerical coefficients: to devise a process according to which it can be determined by a finite number of operations whether the equation is solvable in rational integers.

Theorem (Matiyasevich 1970)
Hilbert’s tenth problem is undecidable.

Non-deterministic Turing machines

- Next move relation:
 \[\delta \subseteq (Q \times \Gamma) \times (Q \times \Gamma \times \{L,R\}) \]
- \(L(M) \) = set of words \(w \in \Sigma^* \) for which there exists a sequence of moves accepting \(w \).
- Proposition. If \(L \) is accepted by a non-deterministic Turing machine \(M_1 \), then \(L \) is accepted by some deterministic machine \(M_2 \).

Time complexity

- \(M \) a (deterministic) Turing machine that halts on all inputs.
- Time complexity function \(T_M : \mathbb{N} \to \mathbb{N} \)
 \[T_M(n) = \max \{ m \mid \exists w \in \Sigma^*, |w| = n \text{ such that the computation of } M \text{ on } w \text{ takes } m \text{ moves} \} \]
 (assume numbers are coded in binary format)
- A Turing machine is polynomial if there exists a polynomial \(p(n) \) with \(T_M(n) \leq p(n) \), for all \(n \in \mathbb{N} \).
- The complexity class \(P \) is the class of languages decided by a polynomial Turing machine.

Time complexity of non-deterministic Turing machines

- \(M \) non-deterministic Turing machine
- The running time of \(M \) on \(w \in \Sigma^* \) is
 - the length of a shortest sequence of moves accepting \(w \) if \(w \in L(M) \)
 - 1, if \(w \notin L(M) \)
- \(T_M(n) = \max \{ m \mid \exists w \in \Sigma^*, |w| = n \text{ such that the running time of } M \text{ on } w \text{ is } m \} \)
- The complexity class \(NP \) is the class of languages accepted by a polynomial non-deterministic Turing machine.
Deciding languages in NP

Theorem. If $L \in \text{NP}$, then there exists a deterministic Turing machine M and a polynomial $p(n)$ such that

- M decides L and
- $T_M(n) \leq 2^{p(n)}$, for all $n \in \mathbb{N}$.

Proof: Suppose L is accepted by a non-deterministic machine M_{nd} whose running time is bounded by the polynomial $q(n)$.

To decide whether $w \in L$, the machine M will

1. determine the length n of w and compute $q(n)$.
2. simulate all executions of M_{nd} of length at most $q(n)$. If the maximum number of choices of M_{nd} in one step is r, there are at most $r^{q(n)}$ such executions.
3. if one of the simulated executions accepts w, then M accepts w, otherwise M rejects w.

The overall complexity is bounded by $r^{q(n)} \cdot q'(n) = O(2^{p(n)})$, for some polynomial $p(n)$.

An alternative characterization of NP

- **Proposition.** $L \in \text{NP}$ if and only if there exists $L' \in \text{P}$ and a polynomial $p(n)$ such that for all $w \in \Sigma^*$:

 $$w \in L \iff \exists v \in (\Sigma')^* : |v| \leq p(|w|) \text{ and } (w, v) \in L'$$

- Informally, a problem is in NP if it can be solved non-deterministically in the following way:
 1. guess a solution/certificate v of polynomial length,
 2. check in polynomial time whether v has the desired property.

Propositional satisfiability

- **Satisfiability problem SAT**

 Instance: A formula F in propositional logic with variables x_1, \ldots, x_n.

 Question: Is F satisfiable, i.e., does there exist an assignment $I : \{x_1, \ldots, x_n\} \rightarrow \{0, 1\}$ making the formula true?

- Trying all possible assignments would require exponential time.
- Guessing an assignment I and checking whether it satisfies F can be done in (non-deterministic) polynomial time. Thus:
 - **Proposition.** SAT is in NP.