Hilbert’s Tenth Problem

Hilbert, International Congress of Mathematicians, Paris, 1900

Given a diophantine equation with any number of unknown quantities and with rational integral numerical coefficients: to devise a process according to which it can be determined by a finite number of operations whether the equation is solvable in rational integers.

Theorem (Matiyasevich 1970)
Hilbert’s tenth problem is undecidable.

Non-deterministic Turing machines

• Next move relation:
 \[\delta \subseteq (Q \times \Gamma) \times (Q \times \Gamma \times \{L, R\}) \]

• \(L(M) \) = set of words \(w \in \Sigma^* \) for which there exists a sequence of moves accepting \(w \).

• Proposition. If \(L \) is accepted by a non-deterministic Turing machine \(M_1 \), then \(L \) is accepted by some deterministic machine \(M_2 \).

Time complexity

• \(M \) a (deterministic) Turing machine that halts on all inputs.

• Time complexity function \(T_M : \mathbb{N} \to \mathbb{N} \)
 \[T_M(n) = \max \{ m \mid \exists w \in \Sigma^*, |w| = n \text{ such that the computation of } M \text{ on } w \text{ takes } m \text{ moves} \} \]
 (assume numbers are coded in binary format)

• A Turing machine is polynomial if there exists a polynomial \(p(n) \) with \(T_M(n) \leq p(n) \), for all \(n \in \mathbb{N} \).

• The complexity class \(P \) is the class of languages decided by a polynomial Turing machine.

Time complexity of non-deterministic Turing machines

• \(M \) non-deterministic Turing machine

• The running time of \(M \) on \(w \in \Sigma^* \) is
 – the length of a shortest sequence of moves accepting \(w \) if \(w \in L(M) \)
 – 1, if \(w \not\in L(M) \)

• \(T_M(n) = \max \{ m \mid \exists w \in \Sigma^*, |w| = n \text{ such that the running time of } M \text{ on } w \text{ is } m \} \)

• The complexity class \(NP \) is the class of languages accepted by a polynomial non-deterministic Turing machine.
Deciding languages in NP

Theorem. If \(L \in \mathbf{NP} \), then there exists a deterministic Turing machine \(M \) and a polynomial \(p(n) \) such that

- \(M \) decides \(L \) and
- \(T_M(n) \leq 2^{p(n)} \), for all \(n \in \mathbb{N} \).

Proof: Suppose \(L \) is accepted by a non-deterministic machine \(M_{nd} \) whose running time is bounded by the polynomial \(q(n) \).

To decide whether \(w \in L \), the machine \(M \) will

1. determine the length \(n \) of \(w \) and compute \(q(n) \).
2. simulate all executions of \(M_{nd} \) of length at most \(q(n) \). If the maximum number of choices of \(M_{nd} \) in one step is \(r \), there are at most \(r^{q(n)} \) such executions.
3. if one of the simulated executions accepts \(w \), then \(M \) accepts \(w \), otherwise \(M \) rejects \(w \).

The overall complexity is bounded by \(r^{q(n)} \cdot q'(n) = O(2^{p(n)}) \), for some polynomial \(p(n) \).

An alternative characterization of NP

- **Proposition.** \(L \in \mathbf{NP} \) if and only if there exists \(L' \in \mathbf{P} \) and a polynomial \(p(n) \) such that for all \(w \in \Sigma^* \):

\[
 w \in L \iff \exists v \in (\Sigma')^* : |v| \leq p(|w|) \text{ and } (w, v) \in L'
\]

- Informally, a problem is in \(\mathbf{NP} \) if it can be solved non-deterministically in the following way:

1. guess a solution/certificate \(v \) of polynomial length,
2. check in polynomial time whether \(v \) has the desired property.

Propositional satisfiability

- **Satisfiability problem SAT**

 Instance: A formula \(F \) in propositional logic with variables \(x_1, \ldots, x_n \).

 Question: Is \(F \) satisfiable, i.e., does there exist an assignment \(I : \{x_1, \ldots, x_n\} \rightarrow \{0,1\} \) making the formula true ?

- Trying all possible assignments would require exponential time.
- Guessing an assignment \(I \) and checking whether it satisfies \(F \) can be done in (non-deterministic) polynomial time. Thus:

- **Proposition.** SAT is in \(\mathbf{NP} \).