The union of two recursive languages is recursive. The union of two recursively enumerable languages is recursively enumerable.

Proof Let L_1 and L_2 be recursive languages accepted by algorithms M_1 and M_2. We construct M, which first simulates M_1. If M_1 accepts, then M accepts. If M_1 rejects, then M simulates M_2 and accepts if and only if M_2 accepts. Since both M_1 and M_2 are algorithms, M is guaranteed to halt. Clearly M accepts $L_1 \cup L_2$.

For recursively enumerable languages the above construction does not work, since M_1 may not halt. Instead M can simultaneously simulate M_1 and M_2 on separate tapes. If either accepts, then M accepts. Figure 8.2 shows the two constructions of this theorem.

Theorem 8.3 If a language L and its complement \overline{L} are both recursively enumerable, then L (and hence \overline{L}) is recursive.

Proof Let M_1 and M_2 accept L and \overline{L} respectively. Construct M as in Fig. 8.3 to simulate simultaneously M_1 and M_2. M accepts w if M_1 accepts w and rejects w if M_2 accepts w. Since w is in either L or \overline{L}, we know that exactly one of M_1 or M_2 will accept. Thus M will always say either "yes" or "no," but will never say both. Note that there is no a priori limit on how long it may take before M_1 or M_2 accepts, but it is certain that one or the other will do so. Since M is an algorithm that accepts L, it follows that L is recursive.

Theorems 8.1 and 8.3 have an important consequence. Let L and \overline{L} be a pair of complementary languages. Then

1) both L and \overline{L} are recursive,
2) neither L nor \overline{L} is r.e., or
3) one of L and \overline{L} is r.e. but not recursive; the other is not r.e.

An important technique for showing a problem undecidable is to show by diagonalization that the complement of the language for that problem is not r.e. Thus case (2) or (3) above must apply. This technique is essential in proving our first problem undecidable. After that, various forms of reductions may be employed to show other problems undecidable.

8.3 | UNIVERSAL TURING MACHINES AND AN UNDECIDABLE PROBLEM

We shall now use diagonalization to show a particular problem to be undecidable. The problem is: "Does Turing machine M accept input w?" Here, both M and w are parameters of the problem. In formalizing the problem as a language we shall restrict w to be over alphabet $\{0, 1\}$ and M to have tape alphabet $\{0, 1, B\}$. As the restricted problem is undecidable, the more general problem is surely undecidable as well. We choose to work with the more restricted version to simplify the encoding of problem instances as strings.

Turing machine codes

To begin, we encode Turing machines with restricted alphabets as strings over $\{0, 1\}$. Let

$$M = (Q, \{0, 1\}, \{0, 1, B\}, \delta, q_1, B, \{q_2\})$$

be a Turing machine with input alphabet $\{0, 1\}$ and the blank as the only additional tape symbol. We further assume that $Q = \{q_1, q_2, \ldots, q_n\}$ is the set of states, and that q_2 is the only final state. Theorem 7.10 assures us that if $L \subseteq (0 + 1)^*$ is accepted by any TM, then it is accepted by one with alphabet $\{0, 1, B\}$. Also, there...
is no need for more than one final state in any TM, since once it accepts it may as well halt.

It is convenient to call symbols 0, 1, and B by the synonyms X_1, X_2, X_3, respectively. We also give directions L and R the synonyms D_1 and D_2, respectively. Then a generic move $\delta(q_i, X_j) = (q_k, X_j, D_m)$ is encoded by the binary string

$$0^i1^j0^k1^m.$$

(8.1)

A binary code for Turing machine M is

$$111 \text{ code}_1, 11 \text{ code}_2, 11 \cdots 11 \text{ code}_n, 111,$$

(8.2)

where each code, is a string of the form (8.1), and each move of M is encoded by one of the code, s. The moves need not be in any particular order, so each TM actually has many codes. Any such code for M will be denoted $\langle M \rangle$.

Every binary string can be interpreted as the code for at most one TM; many binary strings are not the code of any TM. To see that decoding is unique, note that no string of the form (8.1) has two 1's in a row, so the code, s can be found directly. If a string fails to begin and end with exactly three 1's, has three 1's other than at the end, or has two pair of 1's other than five blocks of 0's in between, then the string represents no TM.

The pair M and w is represented by a string of the form (8.2) followed by w. Any such string will be denoted $\langle M, w \rangle$.

Example 8.1 Let $M = \langle (q_1, q_2, q_3), \{0, 1\}, \{0, 1, B\}, \delta, q_1, B, \{q_2\} \rangle$ have moves:

$$\begin{align*}
\delta(q_1, 1) &= (q_3, 0, R), \\
\delta(q_2, 0) &= (q_1, 1, R), \\
\delta(q_3, 1) &= (q_2, 0, R), \\
\delta(q_3, B) &= (q_3, 1, L).
\end{align*}$$

Thus one string denoted $\langle M, 1011 \rangle$ is

$$111010010001010100111100111011001000101010010011.$$

Note that many different strings are also codes for the pair $\langle M, 1011 \rangle$, and any of these may be referred to by the notation $\langle M, 1011 \rangle$.

A non-r.e. language

Suppose we have a list of $(0+1)^*$ in canonical order (see Section 7.7), where w_i is the ith word, and M_j is the TM whose code, as in (8.2) is the integer j written in binary. Imagine an infinite table that tells for all i and j whether w_i is in $L(M_j)$. Figure 8.4 suggests such a table; 0 means w_i is not in $L(M_j)$ and 1 means it is.

We construct a language L_d by using the diagonal entries of the table to determine membership in L_d. To guarantee that no TM accepts L_d, we insist that w_i is in L_d if and only if the (i, i) entry is 0, that is, if M_i does not accept w_i. Suppose that some TM M_j accepted L_d. Then we are faced with the following contradiction. If w_i is in L_d, then the (i, i) entry is 0, implying that w_i is not in $L(M_j)$ and contradicting $L_d = L(M_j)$. On the other hand, if w_i is not in L_d, then the (i, i) entry is 1, implying that w_i is in $L(M_j)$, which again contradicts $L_d = L(M_j)$. As w_i is either in or not in L_d, we conclude that our assumption, $L_d = L(M_j)$, is false. Thus, no TM in the list accepts L_d, and by Theorem 7.10, no TM whatsoever accepts L_d.

We have thus proved

Lemma 8.1 L_d is not r.e.

The universal language

Define L_u the "universal language," to be $\langle \langle M, w \rangle | M \text{ accepts } w \rangle$. We call L_u "universal" since the question of whether any particular string w in $(0+1)^*$ is accepted by any particular Turing machine M is equivalent to the question of whether $\langle M, w \rangle$ is in L_u, where M is the TM with tape alphabet $\{0, 1, B\}$ equivalent to M constructed as in Theorem 7.10.

Theorem 8.4 L_u is recursively enumerable.

Proof We shall exhibit a three-tape TM M_1 accepting L_u. The first tape of M_1 is the input tape, and the input head on that tape is used to look up moves of the TM M when given code $\langle M, w \rangle$ as input. Note that the moves of M are found between the first two blocks of three 1's. The second tape of M_1 will simulate the tape of M.
The alphabet of M is $\{0, 1, B\}$, so each symbol of M''s tape can be held in one tape cell of M_1's second tape. Observe that if we did not restrict the alphabet of M, we would have to use many cells of M_1's tape to simulate one of M's cells, but the simulation could be carried out with a little more work. The third tape holds the state of M, with q_i represented by 0^i. The behavior of M_1 is as follows:

1) Check the format of tape 1 to see that it has a prefix of the form (82) and that there are no two codes that begin with 0^i10^j for the same i and j. Also check that if $0^i10^i10^j0^n$ is a code, then $1 \leq i \leq 3$, $1 \leq j \leq 3$, and $1 \leq m \leq 2$. Tape 3 can be used as a scratch tape to facilitate the comparison of codes.

2) Initialize tape 2 to contain w, the portion of the input beyond the second block of three's. Initialize tape 3 to hold a single 0, representing q_0. All three tape heads are positioned on the leftmost symbols. These symbols may be marked so the heads can find their way back.

3) If tape 3 holds 00, the code for the final state, halt and accept.

4) Let X_j be the symbol currently scanned by tape head 2 and let 0^i be the current contents of tape 3. Scan tape 1 from the left end to the second 111, looking for a substring beginning 110101. If no such string is found, halt and reject; M has no next move and has not accepted. If such a code is found, let it be $0^i10^j10^k0^n$. Then put 0^i on tape 3, print X_j on the tape cell scanned by head 2 and move that head in direction D_m. Note that we have checked in (1) that $1 \leq i \leq 3$ and $1 \leq m \leq 2$. Go to step (3).

It is straightforward to check that M_1 accepts (M, w) if and only if M accepts w. It is also true that if M runs forever on w, M_1 will run forever on (M, w), and if M halts on w without accepting, M_1 does the same on (M, w).

The existence of M_1 is sufficient to prove Theorem 8.4. However, by Theorems 7.2 and 7.10, we can find a TM with one semi-infinite tape and alphabet $\{0, 1, B\}$ accepting L_w. We call this particular TM M_w, the universal Turing machine, since it does the work of any TM with input alphabet $\{0, 1\}$.

By Lemma 8.1, the diagonal language L_u is not r.e., and hence not recursive. Thus by Theorem 8.1, L_u is not recursive. Note that $L_u = \{w_i\} \setminus \{M_i\}$ where w_i is not recursive. We can prove the universal language $L_u = \{w_i\} \setminus \{M_i\}$ not to be recursive by reducing L_u to L_u. Thus L_u is an example of a language that is r.e. but not recursive. In fact, L_u is another example of such a language.

Theorem 8.5 L_u is not recursive.

Proof Suppose A were an algorithm recognizing L_u. Then we could recognize L_u as follows. Given string w in $(0 + 1)^*$, determine by an easy calculation the value of i such that $w = w_i$. Integer i in binary is the code for some TM M_i. Feed (M_i, w_i) to algorithm A and accept w if and only if M_i accepts w_i. The construction is shown in Fig. 8.5. It is easy to check that the constructed algorithm accepts w if and only if $w = w_i$ and w_i is in $L(M_i)$. Thus we have an algorithm for L_u. Since no such algorithm exists, we know our assumption, that algorithm A for L_u, exists, is false. Hence L_u is r.e. but not recursive.

8.4 RICE'S THEOREM AND SOME MORE UNDECIDABLE PROBLEMS

We now have an example of an r.e. language that is not recursive. The associated problem "Does M accept w?" is undecidable, and we can use this fact to show that other problems are undecidable. In this section we shall give several examples of undecidable problems concerning r.e. sets. In the next three sections we shall discuss some undecidable problems taken outside the realm of TM's.

Example 8.2 Consider the problem: "Is $L(M) \neq \emptyset$?" Let (M) denote a code for M as in (8.2). Then define

$$L_{w} = \{ (M) \in L(M) \neq \emptyset \} \quad \text{and} \quad L = \{ (M) \in L(M) = \emptyset \}$$

Note that L_{w} and L are complements of one another, since every binary string denotes some TM; those with a bad format denote the TM with no moves. All these strings are in L_u. We claim that L_{w} is r.e. but not recursive and that L is not r.e.

We show that L_{w} is r.e. by constructing a TM M_1 to recognize codes of TM's that accept nonempty sets. Given input (M), M_1 nondeterministically guesses a string x accepted by M_i and verifies that M_i does indeed accept x by simulating M_i on input x. This step can also be carried out deterministically if we use the pair generator described in Section 7.7. For pair (j, k) simulate M_i on the jth binary string (in canonical order) for k steps. If M_i accepts, then M accepts (M_i).

Now we must show that L is not recursive. Suppose it were. Then we could construct an algorithm for L_u, violating Theorem 8.5. Let A be a hypothetical algorithm accepting L_u. There is an algorithm B that, given (M, w), constructs a TM M' that accepts \emptyset if M does not accept w and accepts $(0 + 1)^*$ if M accepts w. The plan of M' is shown in Fig. 8.6. M' ignores its input x and instead simulates M on input w, accepting if M accepts.

Note that M' is not B. Rather, B is like a compiler that takes (M, w) as "source program" and produces M' as "object program." We have described what B must do, but not how it does it. The construction of B is simple. It takes (M, w).