tape head never moves left. Suppose also that on the output tape, M writes strings over some alphabet Σ, separated by a marker symbol $\#$.

We can define $G(M)$, the language generated by M, to be the set of w in Σ^* such that w is eventually printed between a pair of $\#$'s on the output tape.

Note that unless M runs forever, $G(M)$ is finite. Also, we do not require that words be generated in any particular order, or that any particular word be generated only once. If L is $G(M)$ for some TM M, then L is an r.e. set, and conversely.

The recursive sets also have a characterization in terms of generators; they are exactly the languages whose words can be generated in order of increasing size. These equivalences will be proved in turn.

Characterization of r.e. sets by generators

Lemma 7.1 If L is $G(M_1)$ for some TM M_1, then L is an r.e. set.

Proof Construct TM M_2 with one more tape than M_1. M_2 simulates M_1 using all but M_2's input tape. Whenever M_1 prints $\#$ on its output tape, M_2 compares its input with the word just generated. If they are the same, M_2 accepts; otherwise M_2 continues to simulate M_1. Clearly M_2 accepts an input x if and only if x is in $G(M_1)$. Thus $L(M_2) = G(M_1)$. \qed

The converse of Lemma 7.1 is somewhat more difficult. Suppose M_1 is a recognizer for some r.e. set $L \subseteq \Sigma^*$. Our first (and unsuccessful) attempt at designing a generator for L might be to generate the words in Σ^* in some order w_1, w_2, \ldots, run M_1 on w_1, and if M_1 accepts, generate w_2. Then run M_1 on w_2, generating w_2 if M_1 accepts, and so on. This method works if M_1 is guaranteed to halt on all inputs. However, as we shall see in Chapter 8, there are languages L that are r.e. but not recursive. If such is the case, we must contend with the possibility that M_1 never halts on some w_i. Then M_1 never considers w_i, w_{i+1}, w_{i+2}, \ldots, and so cannot generate any of these words, even if M_1 accepts them.

We must therefore avoid simulating M_1 indefinitely on any one word. To do this we fix an order for enumerating words in Σ^*. Next we develop a method of generating all pairs (i, j) of positive integers. The simulation proceeds by generating a pair (i, j) and then simulating M_1 on the ith word for j steps.

We fix a canonical order for Σ^* as follows. List words in order of size, with words of the same size in "numerical order." That is, let $\Sigma = \{a_0, a_1, \ldots, a_k\}$, and imagine that a_i is the "digit" i in base k. Then the words of length n are the numbers 0 through $k^n - 1$ written in base k. The design of a TM to generate words in canonical order is not hard, and we leave it as an exercise.

Example 7.9 If $\Sigma = \{0, 1\}$, the canonical order is ϵ, 0, 1, 00, 01, 10, 11, 000, 001, \ldots.

Next consider generating pairs (i, j) such that each pair is generated after some finite amount of time. This task is not so easy as it seems. The naive approach, $(1, 1), (1, 2), (1, 3), \ldots \ldots$ never generates any pairs with $i > 1$. Instead, we shall generate pairs in order of the sum $i + j$, and among pairs of equal sum, in order of increasing i. That is, we generate $(1, 1), (1, 2), (2, 1), (1, 3), (2, 2), (3, 1), (1, 4), \ldots$. The pair (i, j) is the $\left\lfloor \frac{(i + j - 1)(i + j - 2)}{2} + 1 \right\rfloor$th pair generated. Thus this ordering has the desired property that there is a finite time at which any particular pair (i, j) is generated.

A TM generating pairs (i, j) in this order in binary is easy to design, and we leave its construction to the reader. We shall refer to such a TM as the pair generator in the future. Incidentally, the ordering used by the pair generator demonstrates that pairs of integers can be put into one-to-one correspondence with the integers themselves, a seemingly paradoxical result that was discovered by Georg Cantor when he showed that the rationals (which are really the ratios of two integers) are equinumerous with the integers.

Theorem 7.7 A language is r.e. if and only if it is $G(M_2)$ for some TM M_2.

Proof With Lemma 7.1 we have only to show how an r.e. set $L = L(M_1)$ can be generated by a TM M_2. M_2 simulates the pair generator. When (i, j) is generated, M_2 produces the ith word w_i in canonical order and simulates M_1 on w_i for j steps. If M_1 accepts on the jth step (counting the initial ϵ as step 1), then M_2 generates w_i.

Surely M_2 generates no word not in L. If w is in L, let w be the ith word in canonical order for the alphabet of L, and let M_1 accept w after exactly j moves. As it takes only a finite amount of time for M_2 to generate any particular word in canonical order or to simulate M_1 for any particular number of steps, we know that M_2 will eventually produce the pair (i, j). At that stage, w will be generated by M_2. Thus $G(M_2) = L$. \qed

Corollary If L is an r.e. set, then there is a generator for L that enumerates each word in L exactly once.

Proof M_2 described above has that property, since it generates w_i only when considering the pair (i, j), where j is exactly the number of steps taken by M_1 to accept w_i. \qed

Characterization of recursive sets by generators

We shall now show that the recursive sets are precisely those sets whose words can be generated in canonical order.