Recursive languages

- A language \(L \subseteq \Sigma^* \) is recursively enumerable if \(L = L(M) \), for some Turing machine \(M \).

\[w \rightarrow M \rightarrow \begin{cases}
\text{yes,} & \text{if } w \in L \\
\text{no,} & \text{if } w \notin L \\
M \text{ does not halt,} & \text{if } w \notin L
\end{cases} \]

- A language \(L \subseteq \Sigma^* \) is recursive if \(L = L(M) \) for some Turing machine \(M \) that halts on all inputs \(w \in \Sigma^* \).

\[w \rightarrow M \rightarrow \begin{cases}
\text{yes,} & \text{if } w \in L \\
\text{no,} & \text{if } w \notin L
\end{cases} \]

- **Lemma.** \(L \) is recursive iff both \(L \) and \(\overline{L} = \Sigma^* \setminus L \) are recursively enumerable.

Enumerating languages

- An enumerator is a Turing machine \(M \) with extra output tape \(T \), where symbols, once written, are never changed.
- \(M \) writes to \(T \) words from \(\Sigma^* \), separated by $.
- Let \(G(M) = \{ w \in \Sigma^* \mid w \text{ is written to } T \} \).

Some results

- **Lemma.** For any finite alphabet \(\Sigma \), there exists a Turing machine that generates the words \(w \in \Sigma^* \) in canonical ordering (i.e., \(\pi_h (w) < \pi_h (w') \Leftrightarrow |w| < |w'| \) or \(|w| = |w'| \) and \(w \prec \pi_{\text{lex}} w' \)).
- **Lemma.** There exists a Turing machine that generates all pairs of natural numbers (in binary encoding).

 Proof: Use the ordering \((0,0), (1,0), (0,1), (2,0), (1,1), (0,2), \ldots\)
- **Proposition.** \(L \) is recursively enumerable iff \(L = G(M) \), for some Turing machine \(M \).

Computing functions

- Unary encoding of natural numbers: \(i \in \mathbb{N} \mapsto [\overbrace{\ldots}^{i \text{ times}}] = i' \)

 (binary encoding would also be possible)
- \(M \) computes \(f : \mathbb{N}^k \rightarrow \mathbb{N} \) with \(f(i_1, \ldots, i_k) = m \):

 - Start: \(\overbrace{\ldots 0 0 \ldots}^{i_1} 0 0 \ldots \overbrace{1 1 \ldots 1}^{k} \)

 - End: \(\overbrace{\ldots 1 \ldots}^{m} \)
- \(f \) partially recursive:

 \[i_1, \ldots, i_k \rightarrow M \rightarrow \begin{cases}
\text{halts with } f(i_1, \ldots, i_k) = m, & \text{halts with } f(i_1, \ldots, i_k) = m, \\
\text{does not halt, i.e., } f \text{ undefined.} & \text{does not halt, i.e., } f \text{ undefined.}
\end{cases} \]
- \(f \) recursive:

 \[i_1, \ldots, i_k \rightarrow M \rightarrow \text{halts with } f(i_1, \ldots, i_k) = m. \]
Turing machines codes

- May assume
 \[M = (Q, \{0, 1\}, \{0, 1, \#\}, \delta, q_1, \#, \{q_2\}) \]
- Unary encoding
 \[0 \mapsto 0, 1 \mapsto 00, \# \mapsto 000, L \mapsto 0, R \mapsto 00 \]
- \(\delta(q_i, X) = (q_j, Y, R) \) encoded by
 \[010\ldots010\ldots0 \]
- \(\delta \) encoded by
 \[111 \text{ code}_1, 11 \text{ code}_2 11 \ldots 11 \text{ code}_r, 111 \]
- Encoding of Turing machine \(M \) denoted by \(\langle M \rangle \).

Numbering of Turing machines

- **Lemma.** There exists a Turing machine that generates the natural numbers in binary encoding.
- **Lemma.** The language of Turing machine codes is recursive.
- **Proposition.** There exists a Turing machine \(\text{Gen} \) that generates the binary encodings of all Turing machines.
- **Theorem.** There exist a bijection between the set of natural numbers, Turing machine codes and Turing machines.

\[
\begin{array}{c}
\text{Gen} \\
M \\
\langle M \rangle \\
\end{array} \rightarrow \begin{array}{c}
\text{Equality test} \\
\text{+ counter} \\
\rightarrow \text{number } n \\
\end{array}
\begin{array}{c}
\text{Gen} \\
\text{number } n \\
\end{array} \rightarrow \begin{array}{c}
\text{Count} \\
\text{up to } n \\
\end{array} \rightarrow \begin{array}{c}
\langle M \rangle \\
\rightarrow M \\
\end{array}
\]

Diagonalization

- Let \(w_i \) be the \(i \)-th word in \(\{0, 1\}^* \) and \(M_j \) the \(j \)-th Turing machine.
- Table \(T \) with \(t_{ij} = \begin{cases}
1, & \text{if } w_i \in L(M_j) \\
0, & \text{if } w_i \notin L(M_j)
\end{cases} \)

\[
\begin{array}{c|c|c|c|c|c|}
 & 1 & 2 & 3 & 4 & \ldots \\
\hline
1 & 0 & 1 & 1 & 0 & \ldots \\
2 & 1 & 1 & 0 & 1 & \ldots \\
3 & 0 & 0 & 1 & 0 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots \\
\end{array}
\]

- **Diagonal language** \(L_d = \{ w_i \in \{0, 1\}^* \mid w_i \notin L(M_j) \} \).
- **Theorem.** \(L_d \) is not recursively enumerable.
- **Proof:** Suppose \(L_d = L(M_k) \), for some \(k \in \mathbb{N} \). Then
 \[w_k \in L_d \iff w_k \notin L(M_k) \]
 contradicting \(L_d = L(M_k) \).
Universal language

- \(\langle M, w \rangle\): encoding \(\langle M \rangle\) of \(M\) concatenated with \(w \in \{0,1\}^*\).
- Universal language
 \[L_u = \{ \langle M, w \rangle \mid M\ \text{accepts} \ w \} \]
- **Theorem.** \(L_u\) is recursively enumerable.
- A Turing machine \(U\) accepting \(L_u\) is called **universal Turing machine**.
- **Theorem** (Turing 1936). \(L_u\) is not recursive.

 Proof: Assume \(L_u\) is recursive and show that this would imply \(L_d\) (and thus \(L_d\)) is recursive.

Decision problems

- Decision problems are problems with answer either yes or no.
- Associate with a language \(L \subseteq \Sigma^*\) the decision problem \(D_L\)

 Input: \(w \in \Sigma^*\)

 Output: \[
 \begin{cases}
 \text{yes,} & \text{if } w \in L \\
 \text{no,} & \text{if } w \notin L
 \end{cases}
 \]

 and vice versa.
- \(D_L\) is **decidable** (resp. **semi-decidable**) if \(L\) is recursive (resp. recursively enumerable).
- \(D_L\) is **undecidable** if \(L\) is not recursive.

Reductions

- A **many-one reduction** of \(L_1 \subseteq \Sigma_1^*\) to \(L_2 \subseteq \Sigma_2^*\) is a computable function \(f : \Sigma_1^* \to \Sigma_2^*\) with \(w \in L_1 \iff f(w) \in L_2\).
- **Proposition.** If \(L_1\) is many-one reducible to \(L_2\), then

 1. \(L_1\) is decidable if \(L_2\) is decidable.
 2. \(L_2\) is undecidable if \(L_1\) is undecidable.

Post’s correspondence problem

- Given pairs of words
 \[(v_1, w_1), (v_2, w_2), \ldots, (v_k, w_k)\]

 over an alphabet \(\Sigma\), does there exist a sequence of integers \(i_1, \ldots, i_m, m \geq 1\), such that
 \[v_{i_1}, \ldots, v_{i_m} = w_{i_1}, \ldots, w_{i_m}\].
- **Example**
 \[
 \begin{array}{c|c|c}
 i & v_i & w_i \\
 \hline
 1 & 1 & 111 \\
 2 & 1011 & 10 \\
 3 & 10 & 0
 \end{array}
 \Rightarrow v_2 v_1 v_3 = w_2 w_1 w_3 = 101111110

 \]
- **Theorem** (Post 1946). Post’s correspondence problem is undecidable.