1. **Bin Packing**

Consider the following variant of the *bin packing* problem:

- Pack \(n \) items of size \(g_i, i = 1, \ldots, n \), into (at most) \(n \) bins, each of capacity \(c \).
- Put the first \(m \) items into different bins.
- Find the minimal number of bins necessary.

Model the problem in integer linear programming.

2. **IP Formulations**

Suppose that you are interested in choosing a set of investments \(\{1, \ldots, 7\} \) using \(0 - 1 \) variables. Model the following constraints:

(a) You cannot invest in all of them.

(b) You must choose at least one of them.

(c) Investment 1 cannot be chosen if investment 3 is chosen.

(d) Investment 4 can be chosen only if investment 2 is also chosen.

(e) You must choose either both investments 1 and 5 or neither.

(f) You must choose either at least one of the investments 1, 2, 3 or at least two investments from 2, 4, 5, 6.

3. **n-Queens Problem**

Model the \(n \)-queens problem (as an integer linear program):

Place \(n \) queens on an \(n \times n \) chess board such that in each line (horizontal, vertical and diagonal) only one queen is allowed.
4. **SCIP**

Use SCIP to solve the following exercise:

There are 3 depots and 4 customers and each customer ordered 1 package.

f_i denotes the costs to open the depot i, c_{ij} are the costs for delivering the package from depot i to the customer j.

Each customer has to get his package and the aim is to minimize the costs. The given values are: $f_1 = 3$, $f_2 = 2$, $f_3 = 4$ and

c_{11} = 2	c_{21} = 3	c_{31} = 1.5
c_{12} = 2.5	c_{22} = 4.5	c_{32} = 1
c_{13} = 2	c_{23} = 4.5	c_{33} = 1.5
c_{14} = 3	c_{24} = 5	c_{34} = 2

Of course customer j can only get his package from depot i if this depot is open. Thus:

$x_{ij} \leq y_i$, where

$y_i = \begin{cases}
1, & \text{depot } i \text{ is open} \\
0, & \text{else}
\end{cases}$

Don’t use the command “Binary” but Bounds (≥ 0 and ≤ 1) for the variables x_{ij} and y_i. Formulate the problem in two different ways and compare the results:

(a) $x_{ij} \leq y_i$ for every j and i.

(b) rewrite the above formulation such that $\sum_{j=1}^{4} x_{ij} \leq 4y_i$ for all $i = \{1, 2, 3\}$.