9.1 Linear time suffix array construction

This exposition has been developed by David Weese. It is based on the following sources, which are all recommended reading:


9.2 Definitions

We consider a string $T$ of length $n$. For $i, j \in \mathbb{N}_0$ we define:

- $[i..j] := \{i, i+1, \ldots, j\}$
- $[i..j) := [i..j-1]$
- $T[i]$ is the $i$-th character of $T$.
- $T[i..j] := T[i]T[i+1]\ldots T[j]$ is the substring from the $i$-th to the $j$-th character
- We start counting from $0$, i.e. $T = T[0..n-1]$
- $|T|$ denotes the string length, i.e. $|T| = n$
- The concatenation of strings $X, Y$ is denoted as $X \cdot Y$, e.g. $T = T[0..i-1] \cdot T[i..n-1]$ for $i \in [1..n)$

9.3 Lexicographical naming

**Definition 1.** Given a set of strings $S$. A map $\phi : S \to [0..|S|)$ is called lexicographical naming if for every $X, Y \in S$ holds: $X <_{\text{lex}} Y \iff \phi(X) < \phi(Y)$. We call $\phi(X)$ the name or rank of $X$.

The skew algorithm uses the following lemma to reduce the lex. relation of concatenated strings to the relation of the concatenation of names.

**Lemma 2.** Given a set $S \subseteq \Sigma^t$ of strings having length $t$ and a lex. naming $\phi$ for $S$. Let $X_1, \ldots, X_k \in S$ and $Y_1, \ldots, Y_l \in S$ be strings from $S$. The lexicographical relation of the concatenated strings $X_1 \cdot X_2 \cdot \ldots \cdot X_k$ and $Y_1 \cdot Y_2 \cdot \ldots \cdot Y_l$ equals the lex. relation of the strings of names:

$$X_1 \cdot X_2 \cdot \ldots \cdot X_k <_{\text{lex}} Y_1 \cdot Y_2 \cdot \ldots \cdot Y_l \iff \phi(X_1)\phi(X_2)\ldots\phi(X_k) <_{\text{lex}} \phi(Y_1)\phi(Y_2)\ldots\phi(Y_l)$$

9.4 Outline of the skew algorithm

1. Construct the suffix array $A^{12}$ of the suffixes starting at positions $i \not\equiv 0 \mod 3$. This is done by a recursive call of the skew algorithm for a string of two thirds the length.
2. Construct the suffix array $A^0$ of the remaining suffixes using the result of the first step.
3. Merge the two suffix arrays into one.
9.5 **Step 1: Construct the suffix array** $A^{12}$

We consider a text $T$ of length $n$ and want to create the suffix array $A^{12}$ for suffixes $T[i..n-1]$ where $0 < i < n$ and $i \not\equiv 0 \pmod{3}$.

In order to call the suffix array algorithm recursively we construct a new text $T'$ whose suffix array can be used to derive $A^{12}$. This is done as follows:

1. (a) Lexicographically name all triples $T[i..i+2]$
   (b) Construct a text $T'$ of triple names
   (c) Construct suffix array $A'$ of $T'$ (recursively)
   (d) Transform $A'$ into $A^{12}$

9.6 **Step 1a: Lexicographically name triples**

A triple is a substring of length 3. In the following we only consider triples $T[i..i+2]$ with $i \not\equiv 0 \pmod{3}$. Let $\$$ be a character that is not contained in $T$ and less than every other character. We append $\$$ to $T$ to obtain well-defined triples even for $i \in [n-2..n]$.

We lexicographically sort the triples using 3 passes of radix sort. Hereafter we assign $\tau_i$ the lex. rank of the triple $T[i..i+2]$. The $\tau_i$ are now lexicographical names of the triples.

**Example ($T = GACCCACCACC$)**: Initialize list of triple start positions with $\langle i \mid i \in [1..n+(n_0-n_1)) \land i \not\equiv 0 \pmod{3} \rangle = (1,2,4,5,7,8,10)$. Sort list with radix sort:

<table>
<thead>
<tr>
<th>$i$</th>
<th>$T[i..i+2]$</th>
<th>radix pass</th>
<th>$i$</th>
<th>$T[i..i+2]$</th>
<th>radix pass</th>
<th>$i$</th>
<th>$T[i..i+2]$</th>
<th>radix pass</th>
<th>$i$</th>
<th>$T[i..i+2]$</th>
<th>$\tau_i$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ACC</td>
<td></td>
<td>10</td>
<td>C$$</td>
<td></td>
<td>1</td>
<td>ACC</td>
<td></td>
<td>5</td>
<td>ACC</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>CCC</td>
<td>10</td>
<td>10</td>
<td>C$$</td>
<td>4</td>
<td>5</td>
<td>ACC</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>CAC</td>
<td>1</td>
<td>7</td>
<td>CAC</td>
<td>8</td>
<td>8</td>
<td>ACC</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>ACC</td>
<td>4</td>
<td>8</td>
<td>ACC</td>
<td>7</td>
<td>8</td>
<td>ACC</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>CAC</td>
<td>2</td>
<td>4</td>
<td>CAC</td>
<td>3</td>
<td>10</td>
<td>C$$</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>ACC</td>
<td>2</td>
<td>8</td>
<td>CAC</td>
<td>5</td>
<td>4</td>
<td>CAC</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>C$$</td>
<td>8</td>
<td>10</td>
<td>C$$</td>
<td>8</td>
<td>2</td>
<td>CCC</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

9.7 **Step 1b: Construct $T'$**

$T' = t_1t_2$ is the concatenation of strings $t_1$ and $t_2$ of triple names with

$$
    t_1 = \tau_1\tau_4\cdots\tau_1+3n_0
$$

$$
    t_2 = \tau_2\tau_5\cdots\tau_2+3n_2
$$

with

$$
    n_j = \left\lfloor \frac{n-j}{3} \right\rfloor
$$

$n_j$ for $j \in [0,1,2]$ is the number of triples starting at positions $i \equiv j \pmod{3}$ that overlap with the first $n$ text characters.

The last triple of $t_1$ and $t_2$ possibly ends with $. To ensure that $t_1$ always ends with a separating $\$$, we in case $n \equiv 1 \pmod{3}$ \iff $n_0-n_1 = 1$ include the extra triple $\$$ into the set of triples (in Step 1a) and append its name to $t_1$. Therefore $t_1$ contains $n_1+n_0-n_1 = n_0$ triples names.

Now, there is a one-to-one correspondence between suffixes of $T'$ and the (possibly empty) suffixes $T[i..n-1]$ with $i \not\equiv 0 \pmod{3}$.

**Example ($T = GACCCACCACC$)**: Construct $T' = \langle \tau_13i \mid i \in [0..n_0] \rangle \cdot \langle \tau_23i \mid i \in [0..n_2] \rangle$
\[
\begin{align*}
n &= 11 \\
n_0 &= \left\lfloor \frac{11}{3} \right\rfloor = 4 \\
n_2 &= \left\lfloor \frac{11-2}{3} \right\rfloor = 3 \\
T' &= \tau_1 \tau_4 \tau_7 \tau_{10} \tau_2 \tau_5 \tau_8 \\
&= 0 2 2 1 3 0 0 \\
&= \text{ACC CAC CAC C$\ldots$}
\end{align*}
\]

9.8 **Step 1c: Construct the suffix array \(A'\) of \(T'\)**

\(T'\) is a string of length \(\left\lceil \frac{2n-1}{3} \right\rceil\) over the alphabet \([0..|T'|]\). We recursively use the skew algorithm to construct the suffix array \(A'\) of \(T'\).

If the names \(\tau_i\) are unique amongst the triples, \(A'\) can be directly be derived from \(T'\) without recursion (Exercise). Example (\(T = \text{GACCCACC}\)):

\[
T' = 0 2 2 1 3 0 0
\]

\[
\begin{align*}
A'[0] &= 6 \equiv 0 \equiv \text{ACC} \\
A'[1] &= 5 \equiv 00 \equiv \text{ACCCACC} \\
A'[2] &= 0 \equiv 0221300 \equiv \text{ACCCACCACC$\ldots$} \\
A'[3] &= 3 \equiv 1300 \equiv \text{C$\ldots$} \\
A'[4] &= 2 \equiv 21300 \equiv \text{CACC$\ldots$} \\
A'[5] &= 1 \equiv 221300 \equiv \text{CACCACC$\ldots$} \\
A'[6] &= 4 \equiv 300 \equiv \text{CCACCACC}
\end{align*}
\]

9.9 **Step 1d: Transform \(A'\) into \(A^{12}\)**

Suffixes starting at \(j\) in \(t_2\) start at \(i = j+n_0\) in \(T'\) and one-to-one correspond to suffixes starting at \(2+3j = 2+3(i-n_0)\) in \(T\). Hence they are in correct lex. order.

Suffixes starting at \(i\) in \(t_1\) one-to-one correspond to suffixes starting at \(1+3i\) in \(T\). The \(t_2\)-tail has no influence on their order due to the unique triple at the end of \(t_1\).

Transform \(A'\) into \(A^{12}\) such that:

\[
A^{12}[i] = \begin{cases} 
1 + 3A'[i] & \text{if } A'[i] < n_0 \\
2 + 3(A'[i] - n_0) & \text{else}
\end{cases}
\]

Example (\(T = \text{GACCCACC}\)):

\[
\begin{align*}
A'[0] &= 6 &\rightarrow& A^{12}[0] &= 8 \\
A'[1] &= 5 &\rightarrow& A^{12}[1] &= 5 \\
A'[2] &= 0 &\rightarrow& A^{12}[2] &= 1 \\
A'[3] &= 3 &\rightarrow& A^{12}[3] &= 10 \\
A'[5] &= 1 &\rightarrow& A^{12}[5] &= 4 \\
\end{align*}
\]

9.10 **Step 2: Derive \(A^0\) from \(A^{12}\)**

Extract suffixes \(T_i\) with \(i \equiv 1 \pmod{3}\) from \(A^{12}\) and store \(i - 1\) in \(A^0\) in the same order. Use a radix pass to stably sort \(A^0\) by the first suffix character.

This gives the correct lexicographical order as for \(i < j\) either

\[
T[A^0[i]] < T[A^0[j]] \quad \text{or} \quad T[A^0[i]] = T[A^0[j]] \wedge T[A^0[i] + 1..n - 1] <_{lex} T[A^0[j] + 1..n - 1]
\]

holds.
Example ($T = \text{GACCCACCACC}$):

\[
\begin{align*}
A^{12} &= 8 \ 5 \ 1 \ 10 \ 7 \ 4 \ 2 \\
A^0 &= 0 \ 9 \ 6 \ 3
\end{align*}
\]

\[
\begin{align*}
A^0[0] &= 0 \equiv \text{GACCCACCACC} & \rightarrow & A^0[0] &= 9 \equiv \text{CC} \\
A^0[1] &= 9 \equiv \text{CC} & A^0[1] &= 6 \equiv \text{CCACC} \\
A^0[2] &= 6 \equiv \text{CCACC} & A^0[2] &= 3 \equiv \text{CCACCACC} \\
A^0[3] &= 3 \equiv \text{CCACCACC} & A^0[3] &= 0 \equiv \text{GACCCACCACC}
\end{align*}
\]

9.11 Step 3: Merge $A^{12}$ and $A^0$ into suffix array $A$

The two sorted suffix arrays are merged by scanning them simultaneously and comparing the suffixes from $A^0$ and $A^{12}$. If $n \equiv 1$ (mod 3), the first suffix of $A^{12}$ must be skipped.

To determine the lex. rank of a suffix in $A^{12}$ we construct the inverse $R^{12}$ of $A^{12}$ such that $R^{12}[A^{12}[i]] = i$. Two suffixes $i \in A^0$ and $j \in A^{12}$ can be compared using:

Case 1: $i \equiv 0$ (mod 3) and $j \equiv 1$ (mod 3)

\[
T[i..n-1] <_{\text{lex}} T[j..n-1] \iff \begin{cases} T[i] < T[j] \lor \left( T[i] = T[j] \land R^{12}[i+1] < R^{12}[j+1] \right) \end{cases}
\]

The rank comparison is possible as $i+1 \equiv 1$ (mod 3) and $j+1 \equiv 2$ (mod 3).

Case 2: $i \equiv 0$ (mod 3) and $j \equiv 2$ (mod 3)

\[
T[i..n-1] <_{\text{lex}} T[j..n-1] \iff \begin{cases} T[i..i+1] <_{\text{lex}} T[j..j+1] \lor \left( T[i..i+1] =_{\text{lex}} T[j..j+1] \land R^{12}[i+2] < R^{12}[j+2] \right) \end{cases}
\]

The rank comparison is possible as $i+2 \equiv 2$ (mod 3) and $j+2 \equiv 1$ (mod 3).

Example ($T = \text{GACCCACCACC}$):

\[
\begin{array}{cccccccccccc}
& 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
T & \text{G} & \text{A} & \text{C} & \text{C} \\
R^{12} & 3 & 7 & 6 & 2 & 5 & 1 & 4 & 0 \\
A^{12} & & & & & & & & & & & & \\
A^0 & & & & & & & & & & & & &
\end{array}
\]

If $n \equiv 1$ (mod 3), skip the first element of $A^{12}$ (this is not the case).

Compare $T_8$ with $T_9$:

$T[8..9] = \text{AC} <_{\text{lex}} \text{CC} = T[9..10] \Rightarrow A[0] = 8$

\[
\begin{array}{cccccccccccc}
A & 8 \\
A^{12} & 8 & 5 & 1 & 10 & 7 & 4 & 2 \\
A^0 & 9 & 6 & 3 & 0 \\
\end{array}
\]

Compare $T_5$ with $T_9$:

$T[5..6] = \text{AC} <_{\text{lex}} \text{CC} = T[9..10] \Rightarrow A[1] = 5$

\[
\begin{array}{cccccccccccc}
A & 8 & 5 \\
A^{12} & 8 & 5 & 1 & 10 & 7 & 4 & 2 \\
A^0 & 9 & 6 & 3 & 0 \\
\end{array}
\]
\[
\begin{align*}
A^{12} &= 8 \ 5 \ 1 \ 10 \ 7 \ 4 \ 2 \\
A^0 &= 9 \ 6 \ 3 \ 0
\end{align*}
\]

Compare \(T_1\) with \(T_9\):
\[
A = 8 \ 5 \ 1
\]
\[
\begin{align*}
A^{12} &= 8 \ 5 \ 1 \ 10 \ 7 \ 4 \ 2 \\
A^0 &= 9 \ 6 \ 3 \ 0
\end{align*}
\]

Compare \(T_{10}\) with \(T_9\):
\[
A = 8 \ 5 \ 1 \ 10
\]
\[
\begin{align*}
A^{12} &= 8 \ 5 \ 1 \ 10 \ 7 \ 4 \ 2 \\
A^0 &= 9 \ 6 \ 3 \ 0
\end{align*}
\]

Compare \(T_7\) with \(T_9\):
\[
A = 8 \ 5 \ 1 \ 10 \ 7
\]
\[
\begin{align*}
A^{12} &= 8 \ 5 \ 1 \ 10 \ 7 \ 4 \ 2 \\
A^0 &= 9 \ 6 \ 3 \ 0
\end{align*}
\]

Compare \(T_4\) with \(T_9\):
\[
A = 8 \ 5 \ 1 \ 10 \ 7 \ 4
\]
\[
\begin{align*}
A^{12} &= 8 \ 5 \ 1 \ 10 \ 7 \ 4 \ 2 \\
A^0 &= 9 \ 6 \ 3 \ 0
\end{align*}
\]

Compare \(T_2\) with \(T_9\):
\[
A = 8 \ 5 \ 1 \ 10 \ 7 \ 4 \ 9
\]
\[
\begin{align*}
A^{12} &= 8 \ 5 \ 1 \ 10 \ 7 \ 4 \ 2 \\
A^0 &= 9 \ 6 \ 3 \ 0
\end{align*}
\]
Compare $T_2$ with $T_6$:

\[
T[2..3] = \text{CC} \preceq_{\text{lex}} \text{CC} = T[6..7] \quad \wedge \\
\]

\[
A = 8 \ 5 \ 1 \ 10 \ 7 \ 4 \ 9 \ 6 \\
A^{12} = 8 \ 5 \ 1 \ 10 \ 7 \ 4 \ 2 \\
A^0 = 9 \ 6 \ 3 \ 0
\]

All characters of $A^{12}$ were read. Fill up $A$ with the remainder of $A^0$.

\[
A = 8 \ 5 \ 1 \ 10 \ 7 \ 4 \ 9 \ 6 \ 3 \ 2 \ 0
\]

Done. The resulting suffix array is:

\[
A[0] = 8 \equiv \text{ACC} \\
A[1] = 5 \equiv \text{ACCCACC} \\
A[2] = 1 \equiv \text{ACCCACCACC} \\
A[3] = 10 \equiv \text{C} \\
A[4] = 7 \equiv \text{CACC} \\
A[5] = 4 \equiv \text{CACCACC} \\
A[6] = 9 \equiv \text{CC} \\
A[7] = 6 \equiv \text{CCACC} \\
A[8] = 3 \equiv \text{CCACCACC} \\
A[9] = 2 \equiv \text{CCACCACCACC} \\
A[10] = 0 \equiv \text{GACCCACCACC}
\]

### 9.12 Linear running time

Assuming that $|\Sigma| = O(n)$, the running time $T(n)$ of the whole skew-algorithm is the sum of:

- A recursive part which takes $T\left(\frac{2n}{3}\right)$ time.
- A non-recursive part which takes $O(n)$ time.

Thus it holds: $T(n) = T\left(\frac{2n}{3}\right) + O(n)$ and $T(n) = O(1)$ for $n \leq 3$.

**Lemma 3.** The running time of the skew algorithm is $T(n) = O(n)$.

**Proof:** Exercise.
9.13 Difference Covers

The key idea of the skew algorithm is to

1. recursively sort a subset \( I \subset R \) of congruence class ring \( R \)
2. deduce the sorting of the remaining classes \( R \setminus I \).
3. merge \( I \) and \( R \setminus I \)

In the original skew algorithm holds \( R = \mathbb{Z}_3 = \langle 3\mathbb{Z}, 1 + 3\mathbb{Z}, 2 + 3\mathbb{Z} \rangle \) and \( I = \langle 1 + 3\mathbb{Z}, 2 + 3\mathbb{Z} \rangle \). Step 3 was feasible because for every \( x \in I \) and \( y \in R \setminus I \) there was a \( \Delta \in \mathbb{N} \) such that \( (x + \Delta) \in I \) and \( (y + \Delta) \in I \).

The recursion depth of the skew algorithm heavily depends on \( \lambda = \frac{|I|}{|R|} \) the factor the text length decreases with.

Is it possible to find \( I \) and \( R \) yielding a smaller \( \lambda \) and such that step 2 and 3 are still feasible?

**Definition 4.** For a set of congruence classes \( R = \langle m\mathbb{Z}, 1 + m\mathbb{Z}, \ldots, (m-1) + m\mathbb{Z} \rangle \) we call \( I \) to be difference cover if for any \( z \in R \) there exist \( a, b \in I \) such that \( a - b = z \).

**Lemma 5.** Step 3 of the skew algorithm is feasible for any \( m \), if \( I \) is a difference cover of \( R \).

**Proof:** For any \( x, y \in R \) there exist \( a, b \in I \) such that \( a - b = z \) with \( z = x - y \). For \( \Delta := a - x \) holds
\[
(x + \Delta) = x + (a - x) = a \Rightarrow (x + \Delta) \in I
\]
and
\[
(y + \Delta) = y + (a - x) = a - (x - y) = a - z = b \Rightarrow (y + \Delta) \in I
\]

By combinatorics the size of a set \( R \) that is covered by \( I \) is limited to:
\[
|R| \leq 2 \cdot \left( \frac{|I|}{2} \right)^2 + 1 = |I|^2 - |I| + 1
\]

We call \( I \) a perfect difference cover if \( |R| = |I|^2 - |I| + 1 \) holds. The following table shows perfect difference covers in bold:

| \(|I|\) | \(R\) | minimal difference cover | \(\lambda\) |
|---|---|---|---|
| 2 | \(\mathbb{Z}_3\) | \{1, 2\} | 0.6666... |
| 3 | \(\mathbb{Z}_7\) | \{1, 2, 4\} | 0.4285... |
| 4 | \(\mathbb{Z}_{13}\) | \{1, 2, 4, 10\} | 0.3076... |
| 5 | \(\mathbb{Z}_{21}\) | \{1, 2, 7, 9, 19\} | 0.2380... |
| 6 | \(\mathbb{Z}_{31}\) | \{1, 2, 4, 9, 13, 19\} | 0.1935... |
| 7 | \(\mathbb{Z}_{39}\) | \{1, 2, 17, 21, 23, 28, 31\} | 0.1794... |
| 8 | \(\mathbb{Z}_{57}\) | \{1, 2, 10, 12, 15, 36, 40, 52\} | 0.1403... |
| 9 | \(\mathbb{Z}_{73}\) | \{1, 2, 4, 8, 16, 32, 37, 55, 64\} | 0.1232... |
| 10 | \(\mathbb{Z}_{91}\) | \{1, 2, 8, 17, 28, 57, 61, 69, 71, 74\} | 0.1098... |
| 11 | \(\mathbb{Z}_{109}\) | \{1, 2, 6, 9, 19, 21, 30, 32, 46, 62, 68\} | 0.1157... |
| 12 | \(\mathbb{Z}_{133}\) | \{1, 2, 33, 43, 45, 49, 52, 60, 73, 78, 98, 112\} | 0.0902... |

A next greater perfect difference cover is \( I = \{1 + 7\mathbb{Z}, 2 + 7\mathbb{Z}, 4 + 7\mathbb{Z}\} \) for \( R = \mathbb{Z}_7 = \langle 7\mathbb{Z}, 1 + 7\mathbb{Z}, \ldots, 6 + 7\mathbb{Z} \rangle \). It can be used with the following modifications to the original skew algorithm saving \( \approx 20\% \) of running time:

1. Recursively sort the suffixes starting at \( i \equiv 1, 2, 4 \) (mod 7).
2. Deduce the sorting of the remaining classes: \( 4 \rightarrow 3 \) and \( 1 \rightarrow 0 \rightarrow 6 \rightarrow 5 \).
3. Merge the suffixes of the 5 congruence class sets \{0\}, \{1, 2, 4\}, \{3\}, \{5\}, \{6\}. The necessary shift values \( \Delta \) for any \( x, y \in R \) are:

\[
\begin{array}{cccccccc}
    x, y & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
0 & 0 & 1 & 2 & 1 & 4 & 4 & 2 \\
1 & 1 & 0 & 0 & 1 & 0 & 3 & 3 \\
2 & 2 & 0 & 0 & 6 & 0 & 6 & 2 \\
3 & 1 & 1 & 0 & 5 & 6 & 5 & 4 \\
4 & 4 & 0 & 0 & 5 & 0 & 4 & 5 \\
5 & 4 & 3 & 6 & 6 & 4 & 0 & 3 \\
6 & 2 & 3 & 2 & 5 & 5 & 3 & 0
\end{array}
\]
// find the suffix array SA of s[0..n-1] in {1..K}^n
// require s[n]=s[n+1]=s[n+2]=0, n>2
void suffixArray(int* s, int* SA, int n, int K) {
    int n0=(n+2)/3, n1=(n+1)/3, n2=n/3, n02=n0+n2;
    int* s12 = new int[n02 + 3]; s12[n02]= s12[n02+1]= s12[n02+2]=0;
    int* SA12 = new int[n02 + 3]; SA12[n02]=SA12[n02+1]=SA12[n02+2]=0;
    int* s0 = new int[n0];
    int* SA0 = new int[n0];

    // generate positions of mod 1 and mod 2 suffixes
    // the "+(n0-n1)" adds a dummy mod 1 suffix if n%3 == 1
    for (int i=0, j=0; i < n+(n0-n1); i++) if (i%3 != 0) s12[j++]= i;
    // lsb radix sort the mod 1 and mod 2 triples
    radixPass(s12 , SA12, s+2, n02, K);
    radixPass(SA12, s12 , s+1, n02, K);
    radixPass(s12 , SA12, s , n02, K);

    // find lexicographic names of triples
    int name = 0, c0 = -1, c1 = -1, c2 = -1;
    for (int i = 0; i < n02; i++) {
        if (s[SA12[i]] != c0 || s[SA12[i]+1] != c1 || s[SA12[i]+2] != c2) {
            name++; c0 = s[SA12[i]]; c1 = s[SA12[i]+1]; c2 = s[SA12[i]+2];
        }
        if (SA12[i] % 3 == 1) { s12[SA12[i]/3] = name; } // left half
        else { s12[SA12[i]/3 + n0] = name; } // right half
    }

    // recurse if names are not yet unique
    if (name < n02) {
        suffixArray(s12, SA12, n02, name);
        // store unique names in s12 using the suffix array
        for (int i = 0; i < n02; i++) if (SA12[i] < n0) s0[i/3] = i + 1;
    } else // generate the suffix array of s12 directly
    for (int i = 0; i < n02; i++) if (i < n02) SA12[SA12[i] - 1] = i;

    // stably sort the mod 0 suffixes from SA12 by their first character
    for (int i=0, j=0; i < n02; i++) if (SA12[i] < n0) s0[i] = 3*SA12[i];
    radixPass(s0, SA0, s, n0, K);

    // merge sorted SA0 suffixes and sorted SA12 suffixes
    for (int i=0, j=0, k=0; k < n; k++) {
        #define GetI() (SA12[t] < n0 ? SA12[t] * 3 + 1 : (SA12[t] - n0) * 3 + 2)
        int i = GetI(); // pos of current offset 12 suffix
        int j = SA0[p]; // pos of current offset 0 suffix
        if (SA12[t] < n0) {
            leq(s[i], s12[SA12[t] + n0], s[j], s12[j/3]);
            leq(s[i], s12[SA12[t] + n0+1], s[j], s12[j/3+n0]);
        } else {
            SA[k] = j; p++;
        }
    }
    delete [] s12; delete [] SA12; delete [] SA0; delete [] s0;
}