• If \(u \not\geq 0 \), choose \(i \in I \) such that \(u_i < 0 \) and define the direction \(d \overset{\text{def}}{=} -A_i^{-1} e_i \), where \(e_i \) is the \(i \)-th unit basis vector in \(\mathbb{R}^I \).

• Next increase the objective function value by going from \(v \) in direction \(d \), while maintaining feasibility.

Simplex Algorithm: Algebraic version

1. If \(Ad \not\leq 0 \), the largest \(\lambda \geq 0 \) for which \(v + \lambda d \) is still feasible is

 \[
 \lambda^* = \min \{ \frac{b_p - A_p v}{A_p d} \mid p \in \{1, \ldots, m\}, A_p d > 0 \}.
 \]

 Let this minimum be attained at index \(k \). Then \(k \not\in I \) because \(A_i d = -e_i \leq 0 \).

 Define \(I' = (I \setminus \{i\}) \cup \{k\} \), which corresponds to the vertex \(v + \lambda^* d \).

 Replace \(I \) by \(I' \) and repeat the iteration.

2. If \(Ad \leq 0 \), then \(v + \lambda d \) is feasible, for all \(\lambda \geq 0 \). Moreover,

 \[
 c^T d = -c^T A_i^{-1} e_i = -u^T e_i = -u_i > 0.
 \]

 Thus the objective function can be increased along \(d \) to infinity and the problem is unbounded.

Termination and complexity

• The method terminates if the indices \(i \) and \(k \) are chosen in the right way (such choices are called pivoting rules).

• Following the rule of Bland, one can choose the smallest \(i \) such that \(u_i < 0 \) and the smallest \(k \) attaining the minimum in (PIV).

• For most known pivoting rules, sequences of examples have been constructed such that the number of iterations is exponential in \(m + n \) (e.g. Klee-Minty cubes).

• Although no pivoting rule is known to yield a polynomial time algorithm, the Simplex method turns out to work very well in practice.

Simplex : Phase I

• In order to find an initial feasible basis, consider the auxiliary linear program

 \[
 \max \{ y \mid Ax - by \leq 0, \ -y \leq 0, \ y \leq 1 \}, \quad \text{(Aux)}
 \]

 where \(y \) is a new variable.

• Given an arbitrary basis \(K \) of \(A \), obtain a feasible basis \(I \) for (Aux) by choosing \(I = K \cup \{m+1\} \). The corresponding basic feasible solution is 0.

• Apply the Simplex method to (Aux). If the optimum value is 0, then (LP) is infeasible. Otherwise, the optimum value has to be 1.

• If \(I' \) is the final feasible basis of (Aux), then \(K' = I' \setminus \{m+2\} \) can be used as an initial feasible basis for (LP).
Application: Metabolic networks

Stoichiometric matrix

- Metabolites (internal) \(\rightarrow \) rows
- Biochemical reactions \(\rightarrow \) columns

\[
\begin{array}{c}
\text{Reaction} \quad kA + lC \xrightarrow{i} mE + nH \\
\text{gives} \\
\begin{bmatrix}
A & \ldots & -k & \ldots \\
B & 0 \\
C & \ldots & -l \\
D & 0 \\
E & m \\
F & 0 \\
G & 0 \\
H & \ldots & n & \ldots
\end{bmatrix}
\end{array}
\]

Flux cone

- Flux balance: \(Sv = 0 \)
- Irreversibility of some reactions: \(v_i \geq 0, i \in \text{Irr} \).
- Steady-state flux cone \(C = \{ v \in \mathbb{R}^n \mid Sv = 0, v_i \geq 0, \text{ for } i \in \text{Irr} \} \)

Flux balance analysis

- Use linear programming to study flux distribution in a cell
 \[
 \max \{ c^T v \mid Sv = 0, \; v_{\text{min}} \leq v \leq v_{\text{max}} \}
 \]
- Objective function
 - Maximize biomass production
 - Maximize metabolite production (e.g. biofuel)
- Metabolic engineering