Constraint Programming

Constraint Programming

- Basic idea: Programming with constraints, i.e. constraint solving embedded in a programming language
- Constraints: linear, non-linear, finite domain, Boolean, . . .
- Programming: logic, functional, object-oriented, imperative, concurrent, . . . mathematical programming vs. computer programming

Recommended reading: Lustig/Puget'01

Finite Domain Constraints

Constraint satisfaction problem (CSP)

- \(n \) variables \(x_1, \ldots, x_n \)
- For each variable \(x_j \) a finite domain \(D_j \) of possible values, often \(D_j \subset \mathbb{N} \).
- \(m \) constraints \(C_1, \ldots, C_m \), where \(C_i \subseteq D_{i_1} \times \ldots \times D_{i_k} \) is a relation between \(k_i \) variables \(x_{i_1}, \ldots, x_{i_k} \). Write also \(C_{i_1, \ldots, i_k} \).
- A solution is an assignment of a value \(D_j \) to \(x_j \), for each \(j = 1, \ldots, n \), such that all relations \(C_j \) are satisfied.

Coloring Problem

- Decide whether a map can be colored by 3 colors such that neighboring regions get different colors.
- For each region a variable \(x_j \) with domain \(D_j = \{ \text{red, green, blue} \} \).
- For each pair of variables \(x_i, x_j \) corresponding to two neighboring regions, a constraint \(x_i \neq x_j \).
- NP-complete problem.

Resolution by Backtracking

- Instantiate the variables in some order.
- As soon as all variables in a constraint are instantiated, determine its truth value.
- If the constraint is not satisfied, backtrack to the last variable whose domain contains unassigned values, otherwise continue instantiation.

Efficiency Problems

Mackworth 77

1. If the domain \(D_j \) of a variable \(x_j \) contains a value \(v \) that does not satisfy \(C_j \), this will be the cause of repeated instantiation followed by immediate failure.
2. If we instantiate the variables in the order x_1, x_2, \ldots, x_n, and for $x_i = v$ there is no value $w \in D_j$, for $j > i$, such that $C_{ij}(v, w)$ is satisfied, then backtracking will try all values for x_j, fail and try all values for x_{j-1} (and for each value of x_{j-1} again all values for x_j), and so on until it tries all combinations of values for x_{i+1}, \ldots, x_{i-1} before finally discovering that v is not a possible value for x_j.

The identical failure process may be repeated for all other sets of values for x_1, \ldots, x_{i-1} with $x_i = v$.

Local Consistency

- Consider CSP with unary and binary constraints only.
- **Constraint graph G**
 - For each variable x_i a node i.
 - For each pair of variables x_i, x_j occurring in the same binary constraint, two arcs (i, j) and (j, i).
- The node i is consistent if $C_i(v)$, for all $v \in D_i$.
- The arc (i, j) is consistent, if for all $v \in D_i$ with $C_i(v)$ there exists $w \in D_j$ with $C_j(w)$ such that $C_{ij}(v, w)$.
- The graph is node consistent resp. arc consistent if all its nodes (resp. arcs) are consistent.

Arc Consistency

Algorithm AC-3 (Mackworth 77):

```
begin
  for $i \leftarrow 1$ until $n$ do $D_i \leftarrow \{v \in D_i \mid C_i(v)\}$;
  $Q \leftarrow \{(i, j) \mid (i, j) \in\text{arcs}(G), i \neq j\}$
  while $Q$ not empty do
    begin
      select and delete an arc $(i, j)$ from $Q$;
      if REVISE$(i, j)$ then
        $Q \leftarrow Q \cup \{(k, i) \mid (k, i) \in\text{arcs}(G), k \neq i, k \neq j\}$
      end
    end
end
```

Arc Consistency (2)

procedure REVISE(i, j):

```
begin
  $\text{DELETE} \leftarrow \text{false}$
  for each $v \in D_i$ do
    if there is no $w \in D_j$ such that $C_{ij}(v, w)$ then begin
      delete $v$ from $D_i$;
      $\text{DELETE} \leftarrow \text{true}$
    end;
  return $\text{DELETE}$
end
```

Complexity: $O(d^3 e)$, with d an upper bound on the domain size and e the number of binary constraints.
Crossword Puzzle

Dechter 92

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Word List

Aft Laser
Ale Lee
Eel Line
Heel Sails
Hike Sheet
Hoses Steer
Keel Tie
Knot

Solution

1 Across 4 Across 7 Across 8 Across

1 Across 4 Across 7 Across 8 Across

Lookahead

Apply local consistency dynamically during search

- **Forward Checking**: After assigning to x the value v, eliminate for all uninstantiated variables y the values from D_y that are incompatible with v.

- **Partial Lookahead**: Establish arc consistency for all (y, y'), where y, y' have not been instantiated yet and y will be instantiated before y'.

- **Full Lookahead**: Establish arc consistency for all uninstantiated variables.