Constraint Programming

- **Basic idea**: Programming with constraints, i.e. constraint solving embedded in a programming language
- **Constraints**: linear, non-linear, finite domain, Boolean, . . .
- **Programming**: logic, functional, object-oriented, imperative, concurrent, . . . mathematical programming vs. computer programming
- **Systems**: Prolog III/IV, CHIP, ECLIPSE, ILOG, CHOCO, Gecode, JaCoP, MiniZinc . . .

Recommended reading: Lustig/Puget'01

Finite Domain Constraints

Constraint satisfaction problem (CSP)

- n variables x_1, \ldots, x_n
- For each variable x_j a finite domain D_j of possible values, often $D_j \subset \mathbb{N}$.
- m constraints C_1, \ldots, C_m, where $C_j \subseteq D_{i_1} \times \ldots \times D_{i_k}$ is a relation between k_i variables x_{i_1}, \ldots, x_{i_k}. Write also $C_{j_1 \ldots j_k}$.
- A solution is an assignment of a value D_j to x_j, for each $j = 1, \ldots, n$, such that all relations C_j are satisfied.

Coloring Problem

- Decide whether a map can be colored by 3 colors such that neighboring regions get different colors.
- For each region a variable x_j with domain $D_j = \{\text{red, green, blue}\}$.
- For each pair of variables x_i, x_j corresponding to two neighboring regions, a constraint $x_i \neq x_j$.
- NP-complete problem.

Resolution by Backtracking

- Instantiate the variables in some order.
- As soon as all variables in a constraint are instantiated, determine its truth value.
- If the constraint is not satisfied, backtrack to the last variable whose domain contains unassigned values, otherwise continue instantiation.

Efficiency Problems

Mackworth 77

1. If the domain D_j of a variable x_j contains a value v that does not satisfy C_j, this will be the cause of repeated instantiation followed by immediate failure.
2. If we instantiate the variables in the order $x_1, x_2, ..., x_n$, and for $x_i = v$ there is no value $w \in D_j$, for $j > i$, such that $C_{ij}(v, w)$ is satisfied, then backtracking will try all values for x_j, fail and try all values for x_{j-1} (and for each value of x_{j-1} again all values for x_j), and so on until it tries all combinations of values for $x_{i+1}, ..., x_j$ before finally discovering that v is not a possible value for x_j.

The identical failure process may be repeated for all other sets of values for $x_1, ..., x_{i-1}$ with $x_i = v$.

Local Consistency

- Consider CSP with unary and binary constraints only.
- **Constraint graph G**
 - For each variable x_i a node i.
 - For each pair of variables x_i, x_j occurring in the same binary constraint, two arcs (i, j) and (j, i).
- The node i is consistent if $C_i(v)$, for all $v \in D_i$.
- The arc (i, j) is consistent, if for all $v \in D_i$ with $C_i(v)$ there exists $w \in D_j$ with $C_j(w)$ such that $C_{ij}(v, w)$.
- The graph is node consistent resp. arc consistent if all its nodes (resp. arcs) are consistent.

Arc Consistency

Algorithm AC-3 (Mackworth 77):

```
begin
for $i \leftarrow 1$ until $n$ do $D_i \leftarrow \{v \in D_i \mid C_i(v)\}$;
$Q \leftarrow \{(i, j) \mid (i, j) \in \text{arcs}(G), i \neq j\}$
while $Q$ not empty do
    begin
        select and delete an arc $(i, j)$ from $Q$;
        if $\text{REVISE}(i, j)$ then
            $Q \leftarrow Q \cup \{(k, i) \mid (k, i) \in \text{arcs}(G), k \neq i, k \neq j\}$
        end
    end
end
```

Arc Consistency (2)

```
procedure \text{REVISE}(i, j):
begin
    \text{DELETE} \leftarrow \text{false}
    for each $v \in D_i$ do
        if there is no $w \in D_j$ such that $C_{ij}(v, w)$ then
            begin
                delete $v$ from $D_i$;
                \text{DELETE} \leftarrow \text{true}
            end;
        return \text{DELETE}
end
```

Complexity: $O(d^3e)$, with d an upper bound on the domain size and e the number of binary constraints.
Crossword Puzzle

Word List

Aft Laser
Ale Lee
Eel Line
Heel Sails
Hike Sheet
Hoses Steer
Keel Tie
Knot

Solution

Lookahead

Apply local consistency dynamically during search

- **Forward Checking:** After assigning to x the value v, eliminate for all uninstantiated variables y the values from D_y that are incompatible with v.

- **Partial Lookahead:** Establish arc consistency for all (y, y'), where y, y' have not been instantiated yet and y will be instantiated before y'.

- **Full Lookahead:** Establish arc consistency for all uninstantiated variables.